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Streszczenie 

Niniejsza rozprawa doktorska skupia się na zastosowaniu Sztucznych Sieci Neuronowych 

(SNN), Drzew Decyzyjnych (DT) oraz Maszyn Wektorów Wspierających (SVM) do 

diagnozowania przyczyn powstawania wad w wyrobach. Celem pracy jest sprawdzenie i 

wykazanie, że wymienione modele, których skuteczność została już wcześniej potwierdzona w 

różnych dziedzinach i zadaniach z powodzeniem można zastosować również w dziedzinie 

wytwarzania i zadaniach identyfikacji przyczyn powstawania wad wyrobów pochodzących z 

procesu odlewania ciśnieniowego, mimo jego wysokiego skomplikowania. 

Rozprawa zawiera również opracowaną strategię odpytywania modeli zawierającą 

wielowymiarową optymalizację parametrów procesu dla maksymalnej i minimalnej wartości 

wady z wykorzystaniem metod gradientowych i ewolucyjnych. Tego typu zastosowane 

rozwiązanie umożliwiałoby w znacznym stopniu inżynierom procesów wytwórczych 

prawidłową identyfikację parametrów i ich określonych zakresów wartości, które wpływają na 

powstanie wady w produkcie.  

Poza szczegółowym studium literaturowym tematyki Sztucznych Sieci Neuronowych, 

Maszyn Wektorów Wspierających oraz Drzew Decyzyjnych, rozprawa zawiera również 

wnikliwą analizę wrażliwości modeli na zmiany określonych parametrów. Analiza ta oraz 

wykonane na jej podstawie podsumowanie jest jednym z najbardziej wieloaspektowych 

zestawień tego typu przedstawionych w dotychczasowej literaturze przedmiotu. 

 

Słowa kluczowe: Diagnoza wad, Metody Uczenia Maszynowego, Sztuczne Sieci Neuronowe, 

Drzewa Regresyjne, Maszyna Wektorów Wspierających, Optymalizacja Parametrów Procesu 
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Abstract 

This dissertation focuses on the application of Artificial Neural Networks (SNN), Decision 

Trees (DT)  and Support Vector Machines (SVM) for diagnosing the causes of defects in 

products. The aim of the work is to verify and demonstrate that the aforementioned models, 

whose effectiveness has already been confirmed in various fields and tasks, can be successfully 

applied also in the field of manufacturing and tasks of identifying the causes of defects in 

products originating from the die casting process, despite its high complexity. 

The study also includes an elaborated strategy of model questioning containing 

multidimensional optimization of process parameters for maximum and minimum defect values 

using gradient and evolutionary methods. This type of applied solution would significantly 

enable manufacturing process engineers to correctly identify parameters and their specific value 

ranges that influence the formation of a defect in a product.  

Moreover, apart from a detailed literature review of the topics of Artificial Neural Networks, 

Support Vector Machines and Decision Trees, the thesis also contains a deep analysis of the 

sensitivity of models to changes in the certain parameters. This analysis and the summary made 

on its basis is one of the most multi-faceted summaries of this kind presented in the literature 

so far. 

 

Keywords: Product Defect Diagnosis, Machine Learning Tools, Artificial Neural Network, 

Regression Trees, Support Vector Machine, Optimization of Process Parameters 
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1. Wstęp 

1.1. Motywacja i kontekst podjęcia badań 

Rozwój technologii komputerowych, który miał miejsce w pierwszej dekadzie XXI wieku 

stworzył nowe możliwości do wykorzystania metod sztucznej inteligencji w wielu dziedzinach 

nauki. Na początku drugiej dekady XXI wieku wzrosło również znacznie zainteresowanie 

przetwarzaniem wielkich zbiorów danych oraz rozpoczęto rozwijanie zastosowań metod 

eksploracji danych i technik uczenia maszynowego w sektorze produkcji i wytwarzania. Stało 

się tak, gdyż w tym czasie pojawiła się nowa koncepcja tzw. „Przemysłu 4.0.”, która dotyczy 

optymalizacji sposobów pracy, określonej roli pracowników w przemyśle, nowych technologii 

oraz sposobów funkcjonowania danego tradycyjnego przedsiębiorstwa produkcyjnego w 

nowoczesnej rzeczywistości cyfrowej. Czwarta rewolucja przemysłowa cechuje się ogólną 

zdolnością do transformowania gospodarek, społeczeństw oraz miejsc pracy poprzez 

implementację oraz adaptację nowoczesnych technologii i nową organizację procesów oraz 

zarządzania produkcją. Daje ona możliwość uelastycznienia planów produkcyjnych, a co za 

tym idzie wzrostu opłacalności ekonomicznej, poprzez silne zorientowanie na klienta oraz na 

jego potrzeby. Historycznie pojęcie „Przemysł 4.0.” zostało pierwszy raz użyte w 2011 roku 

podczas targów w Hanowerze i dotyczyło ogółu strategii połączonych z wdrożeniem technik 

cyfrowych do tradycyjnego przemysłu. Transformacja cyfrowa przedsiębiorstwa przede 

wszystkim wymaga skutecznych narzędzi analitycznych, gdyż jest do długotrwały proces, 

wcześniej zaplanowany, odpowiednio obserwowany oraz stale ulepszany. Tego typu działanie 

daje możliwość zysku poprzez możliwość obniżania kosztów wytworzenia, czy też produkcji, 

wzrostu wydajności maszyn i ludzi oraz podnoszenia jakości wyrobów. Główne trudności 

wynikające z wdrożenia cyfryzacji a następnie digitalizacji w przedsiębiorstwach to wielkie 

ilości danych pochodzących z procesów oraz często niedostosowane linie produkcyjne (np. 

zawierające maszyny, które nie mogą generować danych). Dlatego też podstawą jest obecnie 

nastawienie przedsiębiorstw na przetwarzanie ogromnych ilości danych przy zastosowaniu 

zaawansowanych metod modelowania opartych na wspomnianych danych. Dlatego też 

Przemysł 4.0. związany jest z technikami analizy dużych zbiorów danych, tzw. Big Data, 

Sztuczną Inteligencją, uczeniem maszynowym i innymi. Dane stanowią swego rodzaju 

najcenniejszy surowiec czwartej rewolucji przemysłowej, gdyż od ich efektywnego 
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wykorzystania zależy cały rozwój przemysłu przyszłości. Przemysł przyszłości będą tworzyły 

inteligentne fabryki (tzw. smart factories), których koncepcja wpisuje się w realia czwartej 

rewolucji przemysłowej i oznacza daleko idącą integrację świata cyfrowego, digitalnego ze 

światem fizycznym. Główne cechy fabryki inteligentnej to jej elastyczność, czyli zdolność 

dostosowania produkcji do zmieniających się potrzeb klienta w sposób automatyczny, dzięki 

automatycznemu planowaniu oraz wyposażeniu umożliwiającemu szybkie przezbrojenia, 

jednocześnie z nowoczesnym parkiem maszynowym zdolnym do monitorowania swojego 

stanu technicznego i reagowania np. samodzielnym składaniem zleceń naprawy. Następną, 

ważną z punktu widzenia niniejszej rozprawy cechą fabryki inteligentnej jest jej elastyczność 

przejawiająca się przez sprawny system kontroli procesu celem diagnostyki wadliwych 

produktów ocenianych w czasie rzeczywistym. Kolejna cecha zdolność do podejmowania 

działań zanim wystąpi potencjalne zagrożenie. Tego typu koncepcja może wysnuwać cel albo 

wizję dla niniejszej rozprawy, aby podjąć się próby diagnostyki wady wyrobu jeszcze przed jej 

wystąpieniem celem zapobieżenia jej wystąpieniu. Następna cecha inteligentnej fabryki to jej 

zdolność do optymalizacji, poprzez zastosowanie zaawansowanych rozwiązań 

technologicznych oraz odpowiednią organizację pracy i ograniczanie ryzyka popełnienia błędu 

i minimalizację kosztów wytworzenia, co również stanowi wyzwanie niniejszej rozprawy, gdyż 

błędnie wytworzony produkt, czyli produkt z wadą to zbędny koszt materiałów, czas pracy 

maszyn, ludzi oraz koszt odpadu produkcyjnego, który należy wyeliminować. Inteligentna 

fabryka powinna być również transparentna, czyli gromadzić i analizować dane dotyczące 

przebiegu produkcji, jednocześnie zapewniając spójny i wiarygodny opis sytuacji obecnej w 

hali produkcyjnej albo na stanowisku produkcyjnym. Inteligentna fabryka powinna być 

również wysoce skomunikowana, czyli wszystkie maszyny, systemy informatyczne powinny 

być ze sobą połączone, co umożliwiałoby wymianę informacji między działami planowania, 

magazynu, produkcji i utrzymania ruchu [1]. 

W niniejszej rozprawie poddano analizie dane rzeczywiste, pochodzące z procesu odlewania 

ciśnieniowego występującego w jednej z odlewni. Wybrano tego typu dane ze względu na 

wysoką złożoność procesu odlewniczego. Procesy metalurgiczne a w tym procesy odlewnicze, 

w ogólnym rozumieniu stanowią dziedzinę techniki obejmującą wytwarzanie materiałów 

metalowych, mogących stanowić części maszyn lub przedmiotów przez wypełnianie 

odpowiednio przygotowanych form ciekłym metalem oraz ich kształtowanie. W pracy 

skupiono się na zagadnieniu jakości odlewów dla przemysłu motoryzacyjnego, a w 

szczególności na bardzo ważnej ich cesze, jaką jest szczelność odlewu. Wyznacza się ją w 

próbach wykonywanych na specjalnym stanowisku, gdzie określa się wielkość tzw. przecieku 
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(ang. leakage), czyli objętości cieczy poddanej ciśnieniu, jaka przeniknęła przez ścianki 

odlewu. Zbyt duża wartość przecieku oznacza wystąpienie nieszczelności odlewu, 

powodowanej najczęściej porowatością stopu będącej na ogół wynikiem zbyt porowatej 

struktury na przekroju ścianki, związanej najczęściej z procesem krzepnięcia.  

Wspomniany już stopień złożoności oraz skomplikowania procesów odlewniczych 

przyczynia się do faktu, iż modelowanie oparte na danych z użyciem zaawansowanych równań 

matematycznych, które opisywałoby wszystkie zależności istotne z punktu widzenia procesu a 

dokładniej z punktu widzenia diagnostyki przyczyn powstawania wad wyrobów, byłoby 

niemożliwe lub po prostu zbyt czasochłonne. Procesy te są więc niezalgorytmizowane przez 

swoją złożoną naturę, lub charakter. Sprawia to, że procesy odlewnicze mogą zostać określone, 

z punktu widzenia nauki, jako czarna skrzynka, czyli proces możliwy do rozpatrzenia lub 

analizy tylko pod kątem wejść i wyjść, bez znanej charakterystyki i kompleksowej wiedzy, co 

dzieje się w jego wnętrzu. Złożoność tego problemu oraz zagadnień związanych z całym 

procesem wytwarzania sprawiły, iż zaistniała konieczność opracowania zbioru narzędzi celem 

zaawansowanego modelowania opartego na danych, a w szczególności wykorzystującego 

sztuczne sieci neuronowe, które obecnie wyparły tradycyjne i powszechnie stosowane 

narzędzia do statystycznego opisu procesu, czyli swego rodzaju modele matematyczne, a 

następnie drzewa decyzyjne, które są zdolne odwzorować dowolnie skomplikowane pojęcia 

oraz maszynę wektorów wspierających, wyróżniającą się stosunkowo wysoką skutecznością. 

Systemy uczące się, oparte o modele, które nie uwzględniają natury fizycznej procesu, 

nazywane miękkimi, znajdują swoje zastosowanie w gromadzeniu i analizie danych 

przemysłowych. Techniki, które pozwalają odkrywać złożone zależności statystyczne dużych 

zbiorów danych, będące w stanie wykorzystać metody uczenia maszynowego, lub przedstawiać 

ich reprezentację w formie reguł logicznych np. sztucznych sieci neuronowych [2], [3], [4] 

nazywane są eksploracją danych (ang. Data Mining). Podczas ostatnich dwóch dekad można 

było zaobserwować znaczny przyrost badań wykorzystujących techniki eksploracji danych. 

Zastosowanie tych technik w procesach związanych z wytwarzaniem może pomóc w 

przewidywaniu prawdopodobieństwa wystąpienia awarii maszyn lub urządzeń, wykrywania 

przyczyn pogorszenia jakości wyrobu, przewidywania skutków zmian w procesie z 

jednoczesnym wskazaniem na optymalne parametry lub parametry krytyczne dla procesu. 

Dokładna charakterystyka zastosowań technik eksploracji danych oraz płynących z tego 

zastosowania korzyści, została zaprezentowana w pracach [5], [6]. Ogólny opis charakterystyki 

przykładów wykorzystania techniki eksploracji danych w sektorze produkcji i wytwarzania 

można znaleźć w publikacji o charakterze przeglądowym [7], [8], [9], [10]. 
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 Przedsiębiorstwo produkcyjne posiadające dostęp do danych pochodzących z procesu, 

wykorzystując metody opisane w niniejszej rozprawie, będzie mogło prognozować tendencję 

do występowania wady wyrobu. Jest to ważna i wartościowa funkcjonalność, ponieważ na 

przykładzie przedsiębiorstwa, z którego pochodzą dane rzeczywiste do badań, można 

stwierdzić, iż badanie jakości odlewu poprzez określenie wartości przecieku, to koszt 

stanowiący nawet 40% jednostkowego kosztu wytworzenia. Odnosząc się do tego faktu 

możliwość przewidywania wartości przecieku pozwoliłaby na zaniechanie (częściowe lub 

całkowite) kosztownych badań. Wynik badań byłby znaczący również dlatego, że 

przedsiębiorstwa produkcyjne obecnie kładą coraz większy nacisk na spełnienie oczekiwań 

klienta ostatecznego, czyli dostarczenie produktu o wysokiej jakości, w konkurencyjnych 

cenach oraz w pożądanym przez klienta czasie. W tym celu poszukuje się sposobów ciągłego 

doskonalenia procesów produkcyjnych, czyli wdrażania filozofii Kaizen (kai – „zmiana” oraz 

zen – „dobry”), która w dosłownym tłumaczeniu oznacza „zmianę na lepsze”, filozofię 

skupioną na ciągłym ulepszaniu. Kaizen jest podstawą w podejściu Lean Manufacturing. Lean 

Manufacturing to metodologia, która pozwala nie tylko na uzyskanie wymiernych wyników 

działalności firmy, ale dodatkowo wprowadza do niej kulturę sprzyjającą rozwojowi i dobrej 

komunikacji pomiędzy pracownikami. Podstawą metodologii Lean jest praca nad redukcją 

marnotrawstw (nadprodukcji, oczekiwania, transportu, zbędnej obróbki, zapasów, zbędnego 

ruchu i defektów). Produkcja tzw. defektów czyli ostatni z wyżej wymienionych z siedmiu 

typów marnotrawstw, powinna być redukowana celem zmniejszenia kosztów materiałowych, 

kosztów utylizacji odpadów, kosztów energii, kosztów zatrudnienia, kosztów maszyn i narzędzi 

oraz optymalizacji stanów magazynowych, gdyż w przypadku braku defektów nie będzie 

potrzebny zwiększony zapas na pokrycie błędnych wyrobów produkcyjnych. Wszystkie z 

przywołanych argumentów umożliwiają stwierdzenie, iż właściwe wydobycie wiedzy z 

gromadzonych danych z zastosowaniem metod zaawansowanego modelowania procesu może 

stanowić dla przedsiębiorstwa źródło wartościowych informacji.  

Niniejsza rozprawa doktorska skupia się na określeniu, jaki sposób zaawansowanego 

modelowania opartego na dużych zbiorach danych, najlepiej odpowiada na potrzeby 

diagnozowania przyczyn wad wyrobów powstających podczas procesu odlewania 

wysokociśnieniowego. Dlatego też celem pracy jest stworzenie metodyki (zbioru zasad 

określającego metody), jako prezentacji całościowego postępowania celem diagnozowania 

przyczyn powstawania wad wyrobów na podstawie zaawansowanego modelowania opartego 

na dużych zbiorach danych (Big Data).   Wspomniane pojęcie dużych zbiorów danych 

określanych jako Big Data, w tym przypadku używane jest, gdyż wykorzystywane dane są 
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stosunkowo duże jak na dane pochodzące z procesu produkcyjnego. Wykorzystanie dużych 

zbiorów danych do analiz oznacza brak konieczności badania mniejszych zbiorów określanych 

za pomocą różnych sposobów doboru próby, eliminując tym samym związane z tym błędy.  

Dane badane są różnorodne oraz umożliwiają zdobywanie nowych informacji i pozyskiwanie 

z nich wiedzy. W badaniach skupiono się na próbach przewidzenia danej wyjściowej jaką jest 

przeciek, którego wartość wskazuje na jakość produktu wyjściowego. Podczas badań 

zauważono szczególny problem badawczy powodujący trudność znalezienia skutecznej 

techniki zaawansowanego modelowania procesu, przez silne niezrównoważenie danych, gdyż 

z jednej strony dostępna jest duża ilość danych procesowych, z drugiej natomiast mała ilość 

danych o stanach krytycznych – mała reprezentacja niektórych krytycznych wartości, 

dodatkowo zauważono zmienność skuteczności stosowanych metod, powodującą dodatkową 

trudność wyboru najbardziej skutecznej techniki modelowania procesu, celem jego 

optymalizacji.  Podczas badań zauważono również wysoką konieczność znalezienia i 

określenia wszystkich relacji między parametrami procesu produkcji i wytwarzania oraz ich 

wpływu na jakość produktu wytwarzanego.  

Badania rozpoczęto od wskazania najbardziej istotnych zmiennych wejściowych, na 

podstawie wstępnego przetwarzania danych, które następnie utworzyły zbiory danych do badań 

użytych do uogólnionych modeli regresyjnych jakimi są sztuczne sieci neuronowe. W 

kolejnych etapach zastosowano również alternatywne modele oparte na danych, czyli metodę 

Drzew Decyzyjnych, z uwagi na ich diametralnie inny charakter oraz rozpowszechnienie w 

zastosowaniach przemysłowych i innych oraz Maszynę Wektorów Wspierających, z uwagi na 

aktualne trendy w modelowaniu opartym na danych. Następnie dla metody zapewniającej 

najlepsze wyniki, a więc dzięki zbudowanym modelom sztucznych sieci neuronowych 

wyznaczono parametry o najwyższym wpływie na powstanie wady wyrobu. 

1.2. Cel i hipoteza pracy 

Zarysowany dotychczas motyw przewodni odnoszący się do ogólnej hipotezy badawczej, 

którą zamierza udowodnić niniejsza rozprawa doktorska, w ramach realizacji tematyki 

doktoratu, zakłada, iż diagnozowanie przyczyn powstawania wad wyrobów wymaga 

zastosowania określonego zbioru metod zaawansowanego modelowania opartego na dużych 

zbiorach danych. Cele rozprawy można dodatkowo doprecyzować w formie dokładniejszych 

zadań, a więc:  
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• odpowiedzieć na pytanie, jakie metody eksploracji danych w sektorze produkcji i 

wytwarzania, mogą być z powodzeniem zastosowane w zadaniach diagnozowania 

przyczyn powstawania wad wyrobów, w szczególności mając na uwadze wysoki 

stopień skomplikowania danych dostępnych w dziedzinie wytwarzania odlewów 

ciśnieniowych, 

• przeprowadzić skuteczny proces wstępnego przetwarzania danych celem 

przygotowania ich do zaawansowanego modelowania procesu, 

• zaprezentować działanie modeli opartych na wybranych metodach zaawansowanego 

modelowania opartego na danych, w formie studium przypadku dla danych 

pochodzących z rzeczywistego procesu odlewania ciśnieniowego, 

• przeanalizować wpływ zmian  rodzaju i parametrów modelu na jego skuteczność,  

• ocenić i wybrać najskuteczniejsze metody, celem stworzenia kompleksowej metodyki 

diagnozowania przyczyn powstawania wad wyrobów. 

Takie rozwiązanie pozwoli na implementację nowego rodzaju algorytmów do 

diagnozowania przyczyn powstawania wad wyrobów, a następnie sterowania parametrami 

procesu, celem zapobieżenia powstawania wady. 

 

1.3. Układ pracy 

Rozprawa została podzielona na sześć rozdziałów. Rozdziały od drugiego do czwartego 

zawierają ogólne wprowadzenie teoretyczne połączone z przeglądem literatury. Natomiast opis 

oryginalnych prac badawczych przeprowadzonych w ramach niniejszej rozprawy doktorskiej 

został zawarty w rozdziale piątym.  

Rozdział drugi stanowi ogólne wprowadzenie do zagadnienia sztucznych sieci 

neuronowych. Poza omówieniem funkcjonowania sztucznych sieci neuronowych i głównych 

założeń uczenia modeli opartych na dużych zbiorach danych, zawiera on przegląd najbardziej 

znaczących struktur, rodzajów i sposobów uczenia występujących w literaturze a także 

wybranych najnowszych koncepcji w zakresie konstruowania sztucznych sieci neuronowych.  

Rozdział trzeci skupia się na tematyce drzew decyzyjnych. Szczególną uwagę poświęcono 

metodzie drzew regresyjnych. Tekst rozdziału opisuje historię powstania metody, podstawy 

teoretyczne oraz przegląd literaturowy zastosowań drzew regresyjnych w dziedzinie 

wytwarzania.   
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Rozdział czwarty zawiera rozbudowany opis metody maszyn wektorów wspierających. 

Rozpoczyna się od historii powstania metody, następnie zawiera uzasadnienie zastosowania jej 

w niniejszej rozprawie. Dodatkowo opisuje jej podstawy teoretyczne wraz z charakterystyką 

parametrów modelu. 

Rozdział piąty przedstawia efekt prac badawczych związanych z wstępnym przetwarzaniem 

danych a następnie zastosowaniem metod sztucznych sieci neuronowych, drzew decyzyjnych i 

maszyny wektorów wspierających oraz wielowymiarowej optymalizacji parametrów procesu 

celem stworzenia metodologii skutecznego diagnozowania przyczyn powstawania wad 

wyrobów.  

Rozdział szósty stanowi podsumowanie rozprawy doktorskiej oraz wnioski ogólne 

formułujące odpowiedzi na cele niniejszej rozprawy doktorskiej. 

1.4. Powiązane publikacje i wystąpienia  

Wyniki oryginalnych prac eksperymentalnych przeprowadzonych przez autora, których 

omówienie znajduje miejsce w niniejszej rozprawie, zostały przedstawione w następujących 

publikacjach i wystąpieniach konferencyjnych, seminariach: 

• OKUNIEWSKA, Alicja, PERZYK, Marcin and KOZŁOWSKI, Jacek, 2021, 

Methodology for Diagnosing the Causes of Die-Casting Defects, Based on Advanced 

Big Data Modelling. Archives of Foundry Engineering. 2021. Vol. 21, no. 4, p. 103–

109. DOI 10.24425/afe.2021.138687. 

• OKUNIEWSKA, Alicja, Methods review of advanced data analysis tools, in process 

control and diagnosis. Piech K., ed. Zagadnienia Aktualne Poruszane Przez Młodych 

Naukowców, 17. Creativetime; 2020, p. 95-98. 

• OKUNIEWSKA, Alicja, Current tools of data preparation in industrial 

manufacturing. Piech K., ed. Zagadnienia Aktualne Poruszane Przez Młodych 

Naukowców, 17. Creativetime; 2020, p. 92-94. 

• 61 Międzynarodowa Konferencja Naukowa „Krzepnięcie i Krystalizacja Metali 

2021”, 18-20.10.2021, temat wystąpienia: „Metodyka diagnozowania przyczyn 

powstawania wad odlewów ciśnieniowych na podstawie zaawansowanego 

modelowania opartego na dużych zbiorach danych”. 

• Seminarium Neuromet 2021, pt. „Zaawansowanie sztucznej inteligencji w symulacji 

i sterowaniu procesami metalurgicznymi” 22.04.2021 r. temat wystąpienia: 

„Problematyka wyboru zmiennych do opracowania metodyki diagnozowania 
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przyczyn powstawania wad wyrobów na podstawie zaawansowanego modelowania 

opartego na dużych zbiorach danych”. 

• Konferencja CreativeTime, pt. „Analiza zagadnienia, analiza wyników -wystąpienie 

młodego naukowca” edycja II, 01-02.04.2020, temat wystąpienia: „Methods review 

of advanced data analysis tools in proces control and diagnosis”. 

Rozdział piąty zawiera ujednolicony i rozszerzony opis tych treści oraz dokładną analizę 

wyników eksperymentalnych. 
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2. Sztuczne Sieci Neuronowe 

2.1. Historia Sztucznej Inteligencji 

Opublikowany przez zespół Geoffreya Hinton z uniwersytetu w Toronto, w 2006 r. artykuł, 

dotyczący funkcjonowania i specyfiki sieci DBN [11] stanowił inspirację mającą na celu 

poprawić stan rzeczy. Tuż po wspomnianym artykule najpoczytniejsze czasopisma otrzymały 

liczne zgłoszenia publikacji poświęconych głębokiemu uczeniu się. Artykuły te podniosły 

znacznie wagę tematu widzenia komputerowego oraz możliwości i zastosowań uczenia 

maszynowego. Na wstępie rozprawy dokonano, więc przeglądu literatury dotyczącej metod 

zaawansowanego modelowania opartego na danych, stosowanych w sektorze produkcji i 

wytwarzania, wraz z jednoczesną oceną artykułów powstałych podczas ostatnich dwóch dekad. 

Metody sztucznej inteligencji obecnie opierają swoje działania na wykorzystaniu zasad 

funkcjonowania ludzkiego mózgu, który jest w stanie szybko przetwarzać informacje, jest 

zdolny do prawidłowego działania w szybko zmieniającym się otoczeniu, posiada umiejętność 

przyswajania (uczenia się) i stosowania bardzo obszernej wiedzy, ma możliwość prawidłowego 

działania nawet przy uszkodzeniach jego struktury, oraz wykazuje umiejętność abstrakcyjnego 

myślenia i potrafi rozwiązywać wysoce skomplikowane problemy. Z czym nie do końca 

zgadzają się psycholodzy, którzy niestety z reguły nie traktują poważnie porównywania 

ludzkiego mózgu do komputera. Amerykański psycholog, naczelny redaktor czasopisma 

„Psychology Today”, założyciel Cambrige Center for Behavioral Studies, Robert Epstein, w 

jednym ze swoich artykułów zatytułowanym „Pusty Mózg. Twój mózg nie przetwarza 

informacji, nie odzyskuje wiedzy ani nie przechowuje wspomnień. Krótko mówiąc: Twój mózg 

nie jest komputerem” z 2016 roku, napisał, iż: „Badacze mózgu i psychologowie, choćby nie 

wiadomo jak się starali, nie znajdą w mózgu piątej symfonii Bethovena, słów, obrazów, reguł 

gramatyki, ani jakichkolwiek bodźców środowiskowych” [12]. Niestety stwierdzenie to a co 

więcej sam tytuł artykułu nie bierze pod uwagę zasady działania konwolucyjnych sieci 

neuronowych. Podejście te jednak ma też swoje uzasadnienie, gdyż nadal nie odkryto wysoce 

skutecznych modeli wysokopoziomowych funkcji mózgu, takich jak na przykład myśl ludzka 

czy świadomość człowieka, jednak nie można też jednoznacznie stwierdzić czy w ogóle sama 

świadomość stanowi rzeczywistą funkcję mózgu [13]. Pojemność powszechnie znanych nam 

nośników informacji oraz czas dostępu do nich, porównując do możliwości mózgu jest 

ograniczona (widać to zwłaszcza, jeśli porówna się wiedzę zgromadzoną w mózgu oraz 
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prędkość zarządzania informacją u przeciętnego człowieka z właściwościami współczesnego 

twardego dysku) [14]. 

Sztuczna inteligencja gromadzi w sobie trzy podzbiory (rys. 2.1.1.): pierwszy z nich to 

uczenie maszynowe, kolejne jest głębokie uczenie i na końcu sieci neuronowe.  

 

Rys. 2.1.1. Relacje między sztuczną inteligencją, uczeniem maszynowym,  

głębokim uczeniem a sztucznymi sieciami neuronowymi [opracowanie własne] 

 

Zacznijmy od uczenia maszynowego, które zasadniczo tworzone jest w celu wyszukiwania 

wzorców, klasyfikacji danych, przewidywania wyników i na ich podstawie podejmowania 

zasadnych decyzji. Warto w tym miejscu zauważyć, że wcześniej powszechnie tworzone 

programy wykorzystujące wyrażenia warunkowe, będące w stanie podejmować decyzje 

jedynie na podstawie spełnienia określonych warunków, gdzie wszystkie kryteria muszą być 

uprzednio zdefiniowane przez programistę, powodowały i nadal powodują wiele trudności, 

które eliminuje obecnie uczenie maszynowe, ponieważ zastosowane algorytmy są stanie 

poprawiać się automatycznie poprzez doświadczenie, czyli ekspozycję na dane [15] i nie 

wymagają predefiniowania żadnych kryteriów warunkowych. Skuteczność tej poddziedziny 

sztucznej inteligencji została również udowodniona przez Alana Turninga już w 1950 roku w 

tzw. teście Turninga, podczas którego komputer miał rozróżnić właściwie ludzi od 

komputerów, aby zdać test [16].  Jednak można poddać wątpliwości ten fakt i stwierdzić, iż 

rewolucja danych rozpoczęła się jednak od postępów w metodologii zbierania danych i 

technologii powiązanych z dziedziną [17]. Można by nawet powiedzieć iż dane zawierają 

odpowiedzi na pytania, o których zadaniu jeszcze nikt nie pomyślał [18]. Pojęcie uczenie 

Sztuczna 
inteligencja

Uczenie 
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maszynowe zostało użyte po raz pierwszy, przez Arthura Samuela w 1959 roku na konferencji. 

Powiedział on, iż „Uczenie maszynowe daje komputerom możliwość „uczenia się” bez bycia 

konkretnie zaprogramowanym do danego zadania.” [19]. Neal Stephenson, autor znanej książki 

z 1999 roku, pt. „Zamieć”, skupiającej się na negatywnych konsekwencjach funkcjonowania 

ludzi w otoczeniu zaawansowanej technologii komputerowej i informacyjnej, stwierdził, iż 

sztuką jest „stworzyć niezbity fakt z pajęczyny domysłów” [20]. Można powiedzieć, że słowa 

te doskonale opisują uczenie maszynowe, które opiera się na wyodrębnianiu informacji (przy 

użyciu algorytmów), z surowych danych i tworzenia reprezentacji tych danych w postaci 

modelu. Pojęcie modelu możemy określić, jako reprezentację danego systemu, uproszczony 

lub wyidealizowany opis lub koncepcję określonego procesu [21]. Stworzony model jest 

wykorzystywany do przetwarzania dalszych zestawów danych, na których nie było wcześniej 

oparte modelowanie [13]. Modelowaniem nazywamy proces tworzenia odpowiedniej 

reprezentacji pewnego zjawiska (systemu). Jedyną potrzebą jest uchwycenie głównej idei 

prawdziwego systemu. W przeciwnym razie, projektuje się model, aby przewidzieć zachowanie 

systemu w obecności pewnego bodźca. Oczywistym jest, że w tym pożądany model powinien 

zachowywać się jak najbardziej zbliżony do rzeczywistego systemu [21].  Uczenie maszynowe 

jako część empirycznego, miękkiego modelowania opartego na danych, zgodnie z taksonomią 

przedstawioną na rysunku 2.1.2., swoje zastosowanie znajduje w rozwiązywaniu 

wysokokompleksowych problemów, w których nie mamy wiedzy w zakresie przyczyn 

wpływających na dane zachowanie obiektu lub procesu [22]. Modelowanie oparte na danych, 

z użyciem uczenia maszynowego nie wymaga posiadania wszystkich informacji na temat 

analizowanego procesu, obiektu lub systemu, dane mogą być ograniczone lub fragmentaryczne, 

gdyż modelowanie empiryczne, miękkie budowane jest z uproszczonych zależności lub reguł, 

które są wyprowadzane bezpośrednio z danych. Obserwacje procesów przemysłowych są 

zazwyczaj niepewne. Stopień niepewności zależy od analizowanego procesu. W przypadku 

danych pochodzących z przedsiębiorstw produkcyjnych jest on często dość wysoki [23]. 
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Rys. 2.1.2. Zakres zastosowania różnych typów modeli procesów [22]. 

 

Przykłady uczenia maszynowego sklasyfikowane ze względu na typ uczenia się 

przedstawiono na poniższym rysunku (rys.2.1.3.). Ogólnie sam temat uczenia maszynowego 

stał się bardzo żywy w ciągu ostatniej dekady. Podejmowany jest na licznych konferencjach 

naukowych i gospodarczych, w programach naukowych i praktycznie codziennie w „Wall 

Street Journal”, gdzie prowadzona jest oddzielna strona dotycząca prowadzonego programu o 

tytule: „Przyspieszenie rozwoju aplikacji do uczenia maszynowego”. Na przywołanej stronie 

autor David Schubmehl, Dyrektor badań, z Cognitive/Artificial Intelligence Systems, IDC – 

firmy poświęconej pogłębianiu rozumienia wpływu technologii na biznes, podsumował iż: 

„Rynek aplikacji opartych na uczeniu maszynowym i głębokim uczeniu, czyli ogólnie opartych 

na sztucznej inteligencji szybko się rozrósł i nadal rośnie. Firma IDC szacuje, że wydatki na 

uczenie maszynowe i rozwiązania uczenia głębokiego przekroczą 57 miliardów dolarów do 

2021 roku, a do 2026 roku firma IDC przewiduje, że 75 procent całego oprogramowania dla 

przedsiębiorstw będzie zawierało aspekty uczenia maszynowego i głębokiego uczenia na 

potrzeby prognoz, zaleceń lub porad” [24]. Dlatego też sam temat podjęty w niniejszej 

rozprawie jest ważny i innowacyjny nie tylko z perspektywy naukowej, ale dodatkowo jest 

potrzebny i wszechobecny z perspektywy biznesowej. Tak jak wspomniano we wstępie 

rozprawy w obecnym środowisku biznesowym organizacje starają się pracować nad ciągłym 

ulepszaniem się, aby dostarczać swoim klientom, pracownikom i udziałowcom, coraz lepszą 

wartość. Ulepszenie te rozumie się poprzez obniżenie kosztów wytworzenia produktu, 
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usprawnienia czy też uproszczenia procesów produkcyjnych i ostatecznie zwiększenia 

sprzedaży do klienta ostatecznego. Odpowiedzi na poszukiwane rozwiązania coraz częściej 

firmy znajdują właśnie w uczeniu maszynowym.  

 

Rys. 2.1.3. Klasyfikacja uczenia maszynowego [19]. 

 

Dzięki uczeniu maszynowemu oraz głębokiemu uczeniu wiele firm było w stanie rozwiązać 

złożone problemy, występujące w rzeczywistych procesach, nie posiadając pełnych informacji 

na temat analizowanego procesu, obiektu lub systemu, wykorzystując zalety sztucznej 

inteligencji 

Drugi podzbiór sztucznej inteligencji to uczenie głębokie. Temat głębokiego uczenia został 

podjęty w 2012 roku na konferencji Neural Information Processing Systems (NIPS) i w 

opublikowanych materiałach pokonferencyjnych autorzy Alex Krizhevsky, Ilya Sutskever i 

Geoffrey Hinton, w jednym z artykułów, o tytule: ImageNet Classification with Deep 

Convolutional Neural Network, napisali: „Warto zauważyć, że po usunięciu pojedynczej 

warstwy konwolucyjnej wydajność sieci obniża się. Na przykład usunięcie dowolnej 

wewnętrznej warstwy prowadzi do utraty około 2% wydajności sieci. Stąd wniosek, że dla 

osiągnięcia dobrych wyników bardzo ważna jest głębokość” [25]. W tym przełomowym 

artykule jednoznacznie podkreślono ważność ilości ukrytych warstw w głębokich sieciach 
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neuronowych. Autorzy tego artykułu dokładnie omawiają pojęcie warstw konwolucyjnych 

podkreślając ich znaczenie dla przetwarzania i rozpoznawania obrazów. Samo rozpoznawanie 

obrazów nadal jest jednym z najbardziej złożonych problemów nauk informatycznych, 

ponieważ trudno jest przekazać informację maszynie o wszystkich cechach charakteryzujących 

dany obraz. Zgodnie ze znanym chińskim powiedzeniem „jeden obraz jest wart więcej niż 

tysiąc słów”. Te niepozorne przysłowie swoją drogą stanowiło skrócony opis metody nauczania 

zastosowanej przez Abigaila Housena w późnych latach osiemdziesiątych, w której narzędziem 

do osiągnięcia zamierzonego celu była dyskusja na temat obrazów. Obecnie znany program 

oparty o tę technikę, to np. Visual Thinking Strategies, w Polsce znany, jako Strategia myślenia 

Wizualnego. Na szczęście nie musimy opisywać obrazów tysiącami słów, gdyż techniki 

głębokiego uczenia się a więc głęboka sieć neuronowa sama jest w stanie nauczyć się cech 

każdego obiektu i dzięki tej wiedzy właściwie je rozpoznawać i klasyfikować [17]. 

Stwierdzenie te zostało udowodnione w artykule autorstwa H. Lee, R. Grosse, R. Ranganath, 

A. Ng, pod tytułem: Convolutional deep belief networks for scalable unsupervised learning of 

hierarchical representations, opublikowanym w materiałach pokonferencyjnych, z konferencji 

International Conference on Machine Learning w 2009 roku. Autorzy artykułu zaprezentowali 

sieci neuronowej zdjęcia obiektów z różnych kategorii rzeczy oraz zwierząt. W pierwszej 

warstwie sieć nauczyła się prostych cech charakterystycznych takich jak kształty krawędzi, 

linii. W następnej warstwie już wiedziała w jaki sposób wcześniej nauczone krawędzie oraz 

linie pasują do siebie, dzięki temu była w stanie odtworzyć konkretne obiekty. Artykuł ten 

potwierdził, że sieć neuronowa w każdej kolejnej warstwie zaczyna rozumieć coraz bardziej 

skomplikowane cechy [26]. 

Trzeci ze wspomnianych podzbiorów, (którego dokładna historia powstania i rozwoju 

zostanie opisana w kolejnym rozdziale), czyli sztuczne sieci neuronowe, zostały odkryte 

wskutek stworzenia w 1943 roku przez wybitnego matematyka Waltera Pitts oraz 

utalentowanego neurofizjologa Warrena McColloch, pierwszego modelu matematycznego, 

ludzkiego neuronu biologicznego. W końcu w 1956 roku, spotkanie w Dartmouth, 

zapoczątkowało oficjalnie nowy dział badań, który nazwano sztuczną inteligencją (nazwa 

została zaproponowana przez Johna McCarthy’ego, amerykańskiego informatyka i lauteata 

Nagrody Turninga z 1971 r.). Jednym z dziesięciu uczestników tego spotkania był również 

Allen Newell, amerykański informatyk, który otrzymał wraz z Herbertem Simonem, 

amerykańskim polihistorem, ekonomistą, informatykiem, Nagrodę Turninga w 1975 roku, za 

dwudziestoletnie badania nad sztuczną inteligencją i psychologią ludzkiego poznania, które 

prowadzono głównie na Carnegie Mellon University, w Pittsburghu [27].  Te oraz wiele innych 
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innowacji w dziedzinie uczenia maszynowego doprowadziły do tworzenia od początku XXI 

wieku coraz to lepszych, szybszych i bardziej wydajnych maszyn obliczeniowych, nazywanych 

potocznie superkomputerami, była to swego rodzaju informatyczna „eksplozja kambryjska”. 

Komputery te są w stanie stale uczyć się i samodzielnie podejmować decyzje, bazując na 

zdobytym doświadczeniu, dokładnie tak jak ludzie.  

2.2. Historia modelowania wykorzystującego Sztuczne Sieci Neuronowe 

Tak jak już wspomniano w poprzednim rozdziale historia Sztucznych Sieci Neuronowych 

sięga 1943 roku, kiedy to Warren S. McCulloch i Walter Pitts stworzyli pierwszy opis 

matematyczny, uproszczonego schematycznego modelu  działania neuronu i przetwarzania 

przez niego danych, wzorując się na zasadach funkcjonowania ludzkiego mózgu, który jest 

zdolny do wytwarzania wysokich złożoności, przez wykorzystanie licznych połączeń 

wzajemnych komórek podstawowych nazywanych neuronami [28]. Stworzony wówczas 

model, opisując odpowiednią strukturę i naśladując procesy zachodzące w mózgu, który to 

posiada w swojej strukturze miliardy neuronów połączonych w sieć. W swoich badaniach 

stworzyli proste neurony, które były zdolne do modelowania opartego na funkcjach logicznych, 

na przykład: AND, OR itd., w tym opisie natomiast nie było ujętej koncepcji uczenia się sieci. 

Swoimi badaniami zapoczątkowali szereg kolejnych badań, które skupiały się na problemach 

modelowania inteligentnych sposobów działania mózgu.  

W 1949 roku kanadyjski psycholog Donald Oldigin Hebb rozwinął koncepcję o 

wzmacnianiu połączeń i współdziałaniu zespołów neuronowych w procesie uczenia się [29]. 

Opracowany algorytm (nazywany regułą Hebba), czyli reguła uczenia się bez nadzoru, bierze 

pod uwagę działanie komórek nerwowych, w których połączenie między nimi czyli synapsa, 

ulega wzmocnieniu, w momencie, kiedy neuron presynaptyczny i postsynaptyczny ulegają 

równoczesnemu pobudzeniu lub hamowaniu. Dzięki temu algorytm zakłada modyfikację wag 

poszczególnych neuronów [30]. Ograniczeniami tej metody to zależność przebiegu uczenia od 

wartości reprezentowanych przez wagi początkowe, nie ma pewności, że zawsze jeden neuron 

będzie odpowiadał jednej klasie wzorców oraz nie ma pewności, że zawsze wszystkie klasy 

wzorców będą reprezentowane przez oddzielne zbiory aktywnych neuronów [31]. W 1958 r. 

John Von Neumann stworzył historyczną pracę teoretyczną, w której wprowadził pomysł 

uczenia się sieci, które miałoby zastąpić konieczność jej programowania [32]. W tym samym 

roku Frank Rossenblatt jako pierwszy zbudował działający elektroniczny model ludzkiego 

mózgu, jako koncepcję sytemu złożonego ze sztucznych neuronów, wykazującego zdolność do 

nabywania wiedzy na podobieństwo ludzi [33]. Proces uczenia się systemu miał przebiegać na 
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zasadzie rozpoznawania. System ten został nazwany perceptronem, ponieważ zjawisko 

zdobywania danych i informacji z otoczenia, następnie ich identyfikacja, odpowiednia 

klasyfikacja i poznanie, w psychologii nosi nazwę percepcji. System nauczony został 

rozpoznawania znaków alfanumerycznych. Stworzony perceptron wraz ze zwiększającą się 

ilością pokazów obrazów w procesie uczenia się popełniał coraz mniej błędów. Cały cykl 

uczenia się trzeba było powtórzyć dwa tysiące razy, co wskazuje na wysoką czasochłonność i 

pracochłonność badań [34]. Ostatecznie system wykazywał wysoką wrażliwość na 

transformacje znaków, działał jednak normalnie nawet po uszkodzeniu kilku jednostek. 

Stworzony system mimo wielu niedoskonałości zainspirował badaczy do dalszych, 

dynamicznie rozwijających się badań.  

W 1960 roku, powstała tzw. struktura pojedynczego elementu liniowego o nazwie Adaline, 

oparta na modelu Rossenblatta, stworzona przez Bernarda Widrowa ze Standford University 

[35]. Adaline był analogowym urządzeniem elektronicznym. Istota modelu neuronu Adaline, 

skupiała się na sposobie liczenia a dokładniej na korekcie wag, która odbywała się poprzez 

porównanie oczekiwanej odpowiedzi z potencjałem membranowym neuronu, powodując 

zmianę we wzorze, który opisuje błąd popełniany przez neuron. Zmiana ta umożliwia 

zastosowanie gradientowego algorytmu uczenia, który jest oparty o minimalizację funkcji 

średniokwadratowej, mimo iż neuron wykazuje charakter nieliniowy [36]. Następnie z 

neuronów Adaline zbudowano sieć jednowarstwową, po dodaniu do niej kolejnych 

połączonych ze sobą elementów, tworząc sieć o nazwie Madaline (nazwa od słów Many 

Adaline). W tej sieci każdy neuron uczy się w oparciu o regułę Adaline [36]. Po tym wydarzeniu 

nastąpił okres frustracji i zniechęcenia, który został spowodowany przez wydarzenia mające 

miejsce w 1969 roku, kiedy to Marvin Minsky i Seymoura Papert [37], w swojej książce pt. 

Perceptrons, dowiedli, że jednowarstwowe sieci neuronowe typu perceptronu mają bardzo 

ograniczone zastosowanie i uogólnili je na sieci wielowarstwowe. Zahamowanie badań trwało 

aż do końca lat osiemdziesiątych, dodatkowym powodem tego spowolnienia były również 

obcięte fundusze na badania związane z sieciami neuronowymi. Mimo to  w latach 

siedemdziesiątych naukowcy pracowali nad kolejnymi ciekawymi rozwiązaniami, takimi jak: 

opracowanie i użycie w 1974r. przez Werbosa metody wstecznej propagacji błędu do uczenia 

sieci neuronowej [38], stworzenie przez F. Kunihiko w 1975 roku sieci do rozpoznawania 

pisma o nazwie „Cognitron” [39], następnie w 1978 roku rozbudowanej do sieci o nazwie 

Neocognitron, która była zdolna do odczytu nawet bardzo skomplikowanych znaków takich jak 

pismo chińskie [40], niezależne opracowanie koncepcji sieci asocjacyjnych „Brain in the Box” 

w 1977r. przez Andersona i Kohonena [41], stworzenie sieci o nazwie „Cerebellatron” przez 
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Dawida Mara, oraz stworzenie sieci o nazwie „Avalanche” przez Rossenberga służącej do 

rozpoznawania mowy. Przełomem w badaniach prowadzonych w temacie sztucznych sieci 

neuronowych była publikacja poświęcona algorytmowi uczenia wielowarstwowej nieliniowej 

sieci neuronowej [42], wówczas dowiedziono sensowność używania perceptronów 

wielowarstwowych w roli klasyfikatorów w warunkach niepewności probabilistycznej [43].  

Od początku lat osiemdziesiątych nastąpiło odrodzenie tematu badań, już w 1982 roku 

Tuewo Kohonen przedstawił opracowanie sieci klasyfikacyjnych niewymagających 

nauczyciela w procesie uczenia, opierających swoje działanie na odkrywaniu i uzyskiwaniu 

cech. W połowie lat osiemdziesiątych dwudziestego wieku nastąpił rozwój działalności firm 

produkujących neuropodobne układy elektroniczne, gdyż rozpoczęto prace nad budową 

analogowych rozwiązań sprzętowych, między innymi neuroprocesorów.  Pomysł Werbosa 

metody wstecznej propagacji błędu do uczenia sieci neuronowej został rozpowszechniony w 

1982 r. i w 1986r. w książce „Learning Internal Representation by Error Propagation” autorstwa 

Rumelharta, Hintona i Williamsa [44]. Zaproponowana sieć umożliwiała budowę i skuteczne 

uczenie wielowarstwowych nieliniowych sieci neuronowych wykorzystujących własności sieci 

z neuronami radialnymi w ukrytej warstwie i stanowiła początek sieci RBF (ang. Radial Basis 

Function) wykorzystujących lokalną optymalizację w procesie uczenia [34]. Kolejne 

przełomowe badania prowadzone przez Steve Grossberga i Gail Carpentera, którzy w 1988 

wymyślili teorię adaptacyjnych sieci rezonansowych, ART (ang. Adaptive Resonance Theory), 

bazujących na biologicznych analogiach [45]. W 1987 roku rozpoczęto coroczne 

międzynarodowe konferencje związane z tematem sztucznych sieci neuronowych 

organizowane przez Instytut Inżynierów Elektryków i Elektroników, IEEE (od ang. Institute of 

Electrical and Electronics Engineers). Następnie w 1987 roku powstało międzynarodowe 

stowarzyszenie - International Neural Network Society (INNS), a w 1988 roku czasopismo 

INNS Neural Networking journal.  

Pod koniec lat dziewięćdziesiątych dwudziestego wieku entuzjazm środowiska naukowego 

związany z tematem sztucznych sieci neuronowych wygasał, a sieci stały się ustabilizowaną, 

dobrze znaną technologią. Stało się tak dlatego, że możliwości techniczne związane z 

technologiami komputerowymi tamtych czasów limitowały ich możliwości rozwoju. 

Naukowcy aby zaimplementować sieć zdolną do skomplikowanych obliczeń budowali sieci 

wielowarstwowe, których uczenie wielu warstw i dużej liczby neuronów trwało tygodniami, 

miesiącami lub latami obliczeń [46]. Przełom nastąpił wraz z rozwojem nowych technologii, w 

2006 roku zaczęły pojawiać się głębokie sieci oraz odkrywać metody ich uczenia. Początkowo 

sieci tego rodzaju wykazywały możliwości generalizacji na bazie niewielkich zbiorów danych 
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następnie wraz z rozwojem Internetu oraz pojawieniem się elementów obliczeniowych w 

postaci kart graficznych GPU nurt skierował się na wykorzystywanie wielkich zbiorów danych 

do obliczeń opartych na wcześniej znanych metodach. 

W dzisiejszych czasach w publikacjach można znaleźć przykłady zastosowania sztucznych 

sieci neuronowych w wielu dziedzinach nauki i techniki w tym procesów odlewniczych, wraz 

z opisami skomplikowanych problemów, które dzięki ich zastosowaniu można było skutecznie 

rozwiązać. Jednym z pierwszych głównych i kompleksowych opracowań stworzonych w 

formie poradnika naukowego była praca Profesora Ryszarda Tadeusiewicza, który opisał 

główne problemy, które mogą zostać rozwiązane przez implementację sztucznych sieci 

neuronowych i główne zadania, które mogą zostać powierzone sztucznym sieciom 

neuronowym.  Początek lat dziewięćdziesiątych dwudziestego wieku został uznany za początek 

badań naukowych nad tematem sztucznych sieci neuronowych w Polsce [47]. 

2.3. Podstawowe informacje o Sztucznych Sieciach Neuronowych. 

Ludzki mózg jest najbardziej złożonym obiektem we Wszechświecie [48].  Waży około 

1100 - 1400 gramów, zawiera on trylion komórek, a 100 miliardów spośród nich stanowią 

neurony połączone w sieci, dzięki którym powstają emocje, świadomość, inteligencja, pamięć 

i zdolności twórcze. Neuron, inaczej nazywany komórką nerwową, jest zdolny do 

przetwarzania i przewodzenia informacji zawartej w sygnale elektrycznym oraz do transmisji 

chemicznej sygnału poprzez pobudzone przez neurotransmitery receptorów. Neuron składa się 

z ciała komórki tzw. perikarionu oraz aksonu i dendrytów, które umożliwiają przewodzenie 

informacji [49]. Wzorem do stworzenia mechanizmu sztucznych sieci neuronowych jest 

neuroplastyczność mózgu, która objawia się w rozwijającym mózgu poprzez dostosowywanie 

zmian rozwojowych do sygnałów i bodźców płynących ze środowiska zewnętrznego oraz 

poprzez proces uczenia się. W pełni rozwiniętym mózgu zmiany neuroplastyczne stanowią 

podstawę procesu uczenia się i zapamiętywania, czyli powstawania nowych obwodów 

neuronalnych służących śladowi pamięciowemu [48]. 

Na temat sztucznych sieci neuronowych napisano wiele prac o charakterze przeglądowym 

oraz popularnonaukowym. W literaturze przedmiotu prezentowane są zróżnicowane podejścia, 

gdyż przedmiotem badań może być pojedyncza struktura, czyli pojedyncza komórka nerwowa 

lub jej fragment, na przykład synapsy, aksony, dendryty (rys. 2.3.1.), jak również cała sieć 

neuronowa, jako samodzielny obiekt badań [47]. Zgodnie z definicją, sztuczna sieć neuronowa 

jest paradygmatem przetwarzania informacji, inspirowanego przetwarzaniem informacji przez 

biologiczne systemy nerwowe [50], na przykład w korze mózgowej ssaków tworząc, 



27 
 

uproszczony model funkcjonowania ludzkiego mózgu, a jednocześnie stanowiąc nowoczesną 

metodę matematycznego modelowania zjawisk i procesów [51]. 

 

Rys.2.3.1. Przybliżony wygląd komórki nerwowej [52] 

 

W ciągu ostatnich lat wykorzystanie technik sztucznych sieci neuronowych zyskało duże 

zainteresowanie i zastosowanie w różnych dziedzinach nauki takich do rozwiązywania 

skomplikowanych problemów (w rolnictwie, naukach medycznych, edukacji, finansach, 

zarządzaniu, bezpieczeństwie, handlu, sztuce, architekturze, biznesie, transporcie, bankowości, 

ubezpieczeniach, zarządzaniu nieruchomościami, marketingu itd.), klasyfikacji, grupowania i 

rozpoznawania wzorców oraz predykcji [53], stając się konkurencyjnymi dla 

konwencjonalnych modeli regresyjnych i statystycznych pod względem ich użyteczności [54]. 

Powody licznego stosowania sztucznych sieci neuronowych wynikają z ich zalet. Ocena 

zastosowania sztucznych sieci neuronowych może być odniesiona do ich dokładności, 

wydajności, szybkości przetwarzania, opóźnienia, wartości błędu, skalowalności i kowergencji 

[55], [56]. W momencie, kiedy istnieje potrzeba opisania skomplikowanych i złożonych 

procesów fizycznych, chemicznych z jednoczesną analizą wpływu określonych parametrów na 

ich przebieg przy użyciu równań odzwierciedlających ich naturę może być trudne i bardzo 

czasochłonne, dlatego też struktury neuronowe znalazły swoje zastosowanie do modelowania 

procesów o nieokreślonej naturze fizycznej, nazywanych „czarną skrzynką”. Znaczącym 

potencjałem sztucznych sieci neuronowych jest również szybkie przetwarzanie wielkich 

zbiorów danych [57], [58]. Znalazły one liczne zastosowanie również w rozpoznawaniu i 

analizie obrazu, przetwarzaniu języka i innych, jednak najczęściej są używane do aproksymacji 

funkcji w paradygmatach numerycznych, ponieważ mają doskonałe właściwości uczenia się, 

nieliniowości i możliwości uzależnienia wartości wyjściowych od wartości wejściowych [59]. 

Sztuczne sieci neuronowe ustanawiają więc związek między wieloma wektorami wejściowymi 
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(𝑥1, 𝑥2, … , 𝑥𝑛), a po jego przetworzeniu zmienną lub zmiennymi wyjściowymi (𝑦1, 𝑦2, … , 𝑦𝑛), 

wynikającymi z danych zmiennych wejściowych, co można przedstawić w następujący sposób 

(2.1.) [42]:  

 

𝑦1 = 𝑗( 𝑥1, 𝑥2, … , 𝑥𝑛)       (2.1) 

𝑦2 = 𝑗( 𝑥1, 𝑥2, … , 𝑥𝑛)  

gdzie:  

− 𝑦1, 𝑦2, … ,  𝑦𝑛 −  wartości zmiennych wyjściowych 

− 𝑥1, 𝑥2, … ,  𝑥𝑛 − wartości zmiennych wejściowych 

− 𝑗 −funkcja aktywacji 

Jak już wspomniano neuron otrzymuje pewną liczbę sygnałów nazywanych wartościami 

wejściowymi. Wartości te mogą pochodzić z pierwotnych danych zewnętrznych kierowanych 

do sieci obliczeń, mogą jednak też pochodzić z wartości wyjściowych innych neuronów 

tworzących daną sieć, wówczas są to tzw. sygnały pośrednie [60]. Każda wartość wejściowa 

kierowana do neuronu ma określone znaczenie, nazywane wagą. Odwołując się do inspiracji 

biologicznej, wagi są odpowiednikiem synaps z neuronu biologicznego. W biologii synapsy są 

miejscem komunikacji między dwoma neuronami (presynaptycznym, czyli nadawczym i 

postsynaptycznym, czyli odbierającym) lub między neuronem a komórką docelową [61], [62]. 

W sztucznych sieciach neuronowych synapsy sprowadzane są do operatorów przemnażania 

wejściowych sygnałów przez współczynniki ustalone w procesie uczenia się sieci. Początkowo 

wagi są dobierane losowo, następnie następuje ich wielokrotna korekta w procesie uczenia się 

sieci. Wspomniane korygowanie można przeprowadzić poprzez porównywanie znanych, 

rzeczywistych, zaobserwowanych, lub doświadczalnie wyznaczonych wartości wyjściowych z 

tymi obliczonymi przez sieć. Dzieje się tak w jednej z podstawowych metod uczenia się sieci, 

nazywanej metodą z nauczycielem, czyli metodą uczenia nadzorowanego (ang. supervised 

learning). W metodzie tej dąży się do osiągnięcia minimalnej wartości funkcji kryterialnej, 

którą jest suma kwadratów różnic między wartościami otrzymanymi przez sieć w procesie 

ucznia się z tymi pochodzącymi z rzeczywistego procesu. Celem minimalizacji tej wartości 

stosuje się gradientową metodę największego spadku. Modyfikacja wielokrotna wag daje 

nauczoną sieć zdolną do prognozowania wartości wyjściowych na podstawie dowolnych 

wprowadzonych wartości wejściowych. Znane jest również pojęcie funkcji błędu, służącej do 

oceny jakości sieci neuronowej podczas jej iteracyjnego uczenia się lub podczas późniejszych 
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etapów analizy. W algorytmach uczących się iteracyjnie podstawowym narzędziem do 

modyfikacji wag jest pochodna funkcji błędu [63]. 

Podsumowując podstawowe elementy neuronu to: wagi (𝑤1, 𝑤2, … , 𝑤𝑛), funkcja aktywacji 

i funkcja wewnętrznego przetwarzania. Ustalenie wartości sygnału wyjściowego z neuronu jest 

prowadzone najpierw przez przemnożenie sygnałów wejściowych (𝑥1, 𝑥2, … , 𝑥𝑛) przez 

odpowiadające im wagi i poddanie zadanej funkcji (etap nazywany funkcją wewnętrznego 

przetwarzania), następnie wynik funkcji wewnętrznego przetwarzania 𝑒, poddany zostaje 

działaniu określonej funkcji wejścia-wyjścia, zwanej funkcją aktywacji 𝜑 (rys.2.3.2.). Funkcje 

aktywacji sztucznej sieci neuronowej, to równania matematyczne, które określają moc 

wyjściową sieci neuronowej, są one kluczowym elementem algorytmów uczenia się. Określają 

one wyniki modelu, jego dokładność i wydajność obliczeniową, jednocześnie wpływając na 

zdolność sieci neuronowej do konwergencji, lub jej zapobieżenia. 

 

Rys.2.3.2. Model neuronu [52] 

 

Sygnał wyjściowy pojedynczego neuronu może być obliczany według następującego 

równania (2.2.) [52]: 

𝑦 = 𝜑( ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ) =  𝜑(𝑊 ·  𝑋)       (2.2.) 

gdzie:  

− 𝑋 −  wektor danych wejściowych 

− 𝑊 − wektor wag 

− 𝑗 −funkcja aktywacji 

−𝑦 −sygnal wyjściowy 

Naukowcy, którzy poświęcili lata na badania neuronów, odkryli ponad tysiąc różnych typów 

neuronów biologicznych, dlatego istnieje potrzeba aby umieć zamodelować co najmniej kilka 
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różnych typów sztucznych sieci neuronowych [64]. Można to zrobić wykorzystując różne typy 

funkcji aktywacji, określonych na wewnętrznym stanie neuronu, o aktywacji obliczonej na 

podstawie wejść wszystkich neuronów wejściowych. Najczęściej używane funkcje aktywacji 

definiujące wyjście neuronu, to:  

• funkcja liniowa, pobiera dane wejściowe pomnożone przez wagi i tworzy sygnał 

wyjściowy proporcjonalny do sygnału wejściowego. Funkcja liniowa posiada 

przewagę nad funkcją progową, ponieważ umożliwia powstanie wielu wyjść.  

• funkcja tangens hiperboliczny (zwana też tangensoidalna), druga najczęściej 

stosowana funkcja, 

• funkcja logistyczna (nazywana też logistycznym sigmoidem), często stosowana, 

przekazuje wartość w przedziale od 0 do 1, możliwa do interpolacji stochastycznej 

jako prawdopodobieństwo uaktywnienia neuronu, 

• funkcja tożsamości, przekazująca wartość aktywacji, 

• funkcja progowa aktywacji, oparta jest na wartości progowej, oznacza to, iż w 

przypadku, gdy wartość wejściowa jest powyżej lub poniżej pewnego progu, to 

neuron zostaje aktywowany i wysyła dokładnie ten sam sygnał do następnej 

warstwy, 

• funkcja sigmoid bipolarny (wersja sigmoidu logistycznego o wartościach w 

przedziale od (-1 do 1)).  

• Funkcję ReLU (od ang. Rectifier Linear Unit), (nazywaną też rektyfikatorem), 

stanowi kombinację funkcji tożsamości z funkcją progową [17]. 

Jeżeli sieć miałaby nauczyć się złożonych zestawów danych z wysoką dokładnością 

niezbędne może być zastosowanie kilku ukrytych warstw neuronów (ang. input hidden layer) 

(rys. 2.3.3), natomiast sieć z jedną warstwą ukrytą powinna nauczyć się rozwiązywać 

podstawowe problemy, zastosowanie zbyt wielu warstw może spowodować pogorszenie 

jakości uczenia się sieci, gdyż poświęci się ona zbyt wielu szczegółom. 
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Rys.2.3.3. Schemat ukrytych warstw neuronów  i przykładowa lokalizacja funkcji 

aktywacji [opracowanie własne] 

 

W literaturze przedmiotu w omawianej dziedzinie nauki i techniki związanej z 

zagadnieniami metalurgicznymi sieć najczęściej ma strukturę wielowarstwową, zawierającą 

warstwy wejściowe i wyjściowe a między nimi jedną lub kilka warstw ukrytych. Natomiast 

najczęściej używane techniki uczenia sieci to aproksymacja funkcji wielu zmiennych. 

Odnosząc się jednak dokładniej do tematu modelowania zagadnień wytwarzania w procesach 

odlewniczych sztuczne sieci neuronowe dotychczas stosowano do: analizy wpływu różnych 

parametrów procesu na poziom porowatości odlewu [65], analizy wytrzymałości na rozciąganie 

[66], sterowania jakością mas formierskich [67], prognozowania parametrów mas formierskich 

[68], [69], jak również do projektowania oprzyrządowania odlewniczego, sterowania pracą 

pieców do topienia metalu i innych. Główne zalety sztucznych sieci neuronowych, wpływające 

na ich liczne wykorzystanie do modelowania złożonych procesów i zjawisk, to:  

• zdolność do odwzorowania złożonych, nieliniowych procesów z dużą ilością 

zmiennych niezależnych z jednoczesną kontrolą wielowymiarowości procesów i 

danych, nawet takich procesów, które są niezalgorytmizowane, w tym w procesów 

odlewniczych, czy ogólnie procesów metalurgicznych [69]. 

• kolektywność (masowa współbieżność) obliczeń, czyli wykonywanie równocześnie 

przydzielonych zadań przez tysiące sztucznych neuronów w sztucznych sieciach 

neuronowych,  
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• samouczenie się sieci, niewymagających programowania, co pozwala na skuteczne 

działanie bez konieczności formułowania hipotez i znajomości skomplikowanych 

zależności i mechanizmów danego zjawiska, 

• adaptacyjność, czyli nauka na podstawie przedstawionych przykładów, 

• zdolność do generalizacji, czyli możliwość pracy sieci na przykładach, których 

wcześniej nie przetwarzała, co pozwala na prognozy bazujące na zjawiskach, które 

nigdy wcześniej nie wystąpiły, 

• konieczność znajomości podstaw procesu przez twórcę sieci celem selekcji istotnych 

zmiennych niezależnych mających wpływ na zmienną zależną aby właściwie 

modelować procesy i dobrać właściwy rodzaj i strukturę sztucznej sieci neuronowej, 

• zdolność do przechowywania informacji w sieci neuronowej, a nie w bazie danych, 

co nie zaburza funkcjonowania sieci, 

• zdolność do rozumienia zależności, gdy dane są niekompletne lub zawierają błędy 

[69]. 

Wspomniane cechy w znaczy sposób wpłynęły również na wykorzystanie sztucznych sieci 

neuronowych do realizacji niniejszej pracy. 

2.4.  Działanie Sztucznych Sieci Neuronowych. 

Na przestrzeni wielu lat najpowszechniej stosowaną techniką modelowania 

matematycznego, do opisywania rzeczywistości w języku matematyki i logiki formalnej, 

którego algorytmy zapewniały osiągnięcie globalnego minimum funkcji błędu [70], były 

modele funkcyjne liniowe (w postaci funkcji liniowej) [71]. W zakresie tego typu modeli znane 

były strategie optymalizacji podczas ich budowy, jednak często zastosowanie aproksymacji 

liniowej celem opisania określonego problemu czy zjawiska nie miało podstaw i prowadziło do 

wniosku o braku możliwości opisu danego problemu czy zjawiska w postaci matematycznej 

[72], ewentualne zastosowanie modeli liniowych do opisu zjawisk nieliniowych spowoduje 

duże niedoskonałości w opisie danego procesu lub zjawiska. W związku z tym, celem opisu 

tych zjawisk używa się modeli nieliniowych, co wiąże się z koniecznością określenia kształtu 

modelu i doborem parametrów najlepiej określających dany proces, lub zjawisko. Określenie 

kształtu modelu ma charakter intuicyjny i wpływa na jakość predykcji modelu, ponieważ w 

przypadku błędnie dobranego modelu, nie ma późniejszej możliwości jego właściwej 

optymalizacji. W przypadku doboru parametrów można zastosować metody statystyczne, które 

uprzednio zoptymalizują parametry do wybranego kształtu modelu, na przykład można użyć 
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do tego regresji nieliniowej. W tym momencie warto odwołać się do sztucznych sieci 

neuronowych, które umożliwiają szybkie i wygodne modelowanie [43] procesów, z dużym 

prawdopodobieństwem odniesienia sukcesu w problemach związanych z tworzeniem modeli 

matematycznych, celem odwzorowania złożonych zależności występujących między 

zmiennymi wejściowymi i wyjściowymi [73], gdyż mają one zdolność do samodzielnego 

znajdywania modelu nieliniowego bez potrzeby uprzedniego określania jego kształtu co 

wpływa na zmniejszenie ryzyka popełnienia błędu na początku modelowania.  

Dotychczasowe prace doświadczalne w dziedzinie metalurgii i odlewnictwa w większości 

wykorzystywały modelowanie oparte na danych, z użyciem sztucznych sieci neuronowych do 

regresji, czyli aproksymacji nieznanej funkcji wielu zmiennych bazując na danych 

doświadczalnych, do wykrywania wzorców, grupując sygnały podczas uczenia 

nienadzorowanego, niewymagającego zbioru uczącego z wejściem i wyjściem, do predykcji, 

czyli przewidywania wyniku bazując na danych historycznych lub wcześniejszych 

obserwacjach doświadczalnych [74]. Chciano więc uzyskać jak największą zgodność 

modelowanego zjawiska z działaniem modelu neuronowego. Sprawdzano dzięki temu również 

wpływ badanego problemu lub zjawiska na określone parametry, czynniki, których nie było 

możliwości osiągnięcia w doświadczeniu w prosty sposób, bez zmieniania pozostałych 

czynników czy parametrów. Oryginalnym podejściem okazało się użycie modeli neuronowych 

do ekstrakcji wiedzy z danych i uzupełnienie brakującej wiedzy o mało znanym 

skomplikowanym procesie lub o całkiem nowym zjawisku. Przykładem może być praca [75], 

w której autorzy wykorzystali miękkie techniki obliczeniowe, w tym sztuczne sieci neuronowe 

do ekstrakcji wiedzy z danych dotyczących właściwości termomechanicznie przetwarzanej stali 

wysokowytrzymałej. Badania ukierunkowano na lepsze zrozumienie procesu metalurgicznego 

przetwarzanej stali i potwierdzono uzyskane informacje z istniejącymi koncepcjami fizycznej 

metalurgii stali. Udowodniono więc, że sztuczne sieci neuronowe są w stanie potwierdzić 

niektóre z hipotez wygenerowanych na drodze eksperymentalnej i mogą być wykorzystane do 

projektowania systemów o lepszych parametrach dostosowanych do potrzeb użytkownika. 

Dotychczasowy opis uwydatniał pozytywne cechy modelowania opartego na danych, z 

użyciem sztucznych sieci neuronowych, jednak należałoby jeszcze rozważyć wady ich 

działania, a są to między innymi: 

• uzależnienie prędkości i jakości przetwarzania od parametrów procesorów 

sprzętowych, gdyż wymagają one procesorów o odpowiedniej mocy obliczeniowej, 



34 
 

• niewyjaśniona przyczyna źródłowa zachowania się sieci, gdyż podane przez sieć 

rozwiązanie sondujące, bez uzasadnienia dlaczego zostało wybrane może 

powodować brak zaufania do jej wyboru, 

• brak jednej, sprawdzonej i najlepszej struktury sieci neuronowej, co powoduje 

konieczność znajomości struktur i ich możliwości oraz doświadczenia, lub po prostu 

wielu prób i analiz, 

• trudność przedstawienia dokładnego problemu sieci neuronowej, gdyż sztuczne sieci 

neuronowe pracują z danymi numerycznymi, więc należy przetłumaczyć dany 

problem na wartości liczbowe, 

• czas pracy sztucznej sieci neuronowej jest nieznany, gdyż sieć zawsze będzie szukać 

odpowiedniej wartości błędu na określonej próbce. Osiągnięcie tej wartości będzie 

dla sieci sygnałem do zakończenia pracy. Możliwe, że te wartości nie są jeszcze 

wartościami optymalnymi [76],  

• brak umiejętności rozwiązania wszystkich skomplikowanych problemów, gdyż sieć 

nie posiada żadnej reguły prognozującej wartość potrzebnej zmiennej, dlatego też 

wymagana jest specjalistyczna wiedza procesowa celem właściwego doboru 

zmiennych wejściowych i wyjściowych umożliwiających wyszukanie istniejących 

zależności, 

• konieczność występowania zależności, relacji lub prawidłowości w danych. Sieć 

może zidentyfikować nawet ukryte lub mało precyzyjne informacje, jeżeli zbiór 

uczący będzie odpowiednio duży a zależności będą mały charakter powtarzalny. 

Ponadto sieć zidentyfikuje występujące zakłócenia w danych i dopasuje się do 

uogólnionych trendów występujących w zbiorze uczącym, 

• trudność uczenia się ze zbioru danych, w których występuje problem silnego 

niezrównoważenia danych, z małą reprezentacją wartości, które chcemy 

prognozować (zauważono w toku badań),  

• brak pewności czy znaleziony stopień dopasowania modelu jest optymalny (nawet 

w przypadku osiągnięcia minimalnego błędu uczenia sieci) w przypadku 

modelowania nieliniowej charakterystyki przebiegu. 

Sztuczne sieci neuronowe rozwijają się bardzo szybko. Należy więc pamiętać, że wady 

sztucznych sieci neuronowych, napotykane w procesie ich stosowania są stale eliminowane, a 

jednocześnie następuje wzrost odkrywanych ich zalet. Może być to podstawa do stwierdzenia, 

że staną się one niebawem nieodłączną częścią naszego życia [76].  
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2.5. Wybór struktury i rodzaju sieci neuronowych oraz sposobu ich uczenia. 

Obecnie istnieje wiele rodzajów sieci neuronowych, zróżnicowanych pod względem 

struktury i zasad ich działania. Pojedyncze sztuczne neurony posiadają ograniczone 

możliwości, dlatego też są one łączone w sieci, co gwałtownie podnosi ich rzeczywistą moc 

obliczeniową, która wynika z jednoczesnej pracy wielu neuronów, tworzących różnorodne 

architektury (struktury). W związku z tym rozróżnia się sieci jednokierunkowe (ang. 

feedforward) (jednowarstwowe i wielowarstwowe), sieci rekurencyjne, sieci komórkowe [77], 

sieci radialne (RBF), sieci GRNN oraz sieci probabilistyczne (PNN). W pierwszym rodzaju 

struktury do sieci jest dostarczana porcja danych, które rozchodzą się w sieci neuronowej, 

między neuronami zdolnymi do uczenia się. Sieć wewnątrz opracowuje charakterystyki, dzięki 

którym definiowane są zmienne wyjściowe [70]. Sieci jednokierunkowe charakteryzują się 

istnieniem połączeń między neuronami znajdującymi się w sąsiednich warstwach, gdyż mogą 

składać się z wielu warstw, a informacje przepływają w jednym kierunku. Drugi typ struktury 

to sieci rekurencyjne, w których następuje przepływ informacji w dwóch kierunkach, 

sprzężenie zwrotne oraz występują w ich pracy przebiegi dynamiczne [77]. Przykładami sieci 

rekurencyjnych są sieci Hopfielda (znane z tzw. „Problemu Komiwojażera” [78], czyli 

rozpoznawania obrazów z dziedziny medycyny), maszyna Boltzmana, sieci BAM 

(Bidirectionxl Associxtive Memory), oraz sieci ART (Adaptive Resonance Theory). Trzeci typ 

struktury, czyli sieci komórkowe, w których każda komórka połączona jest ze wszystkimi 

neuronami, które znajdują się w jej sąsiedztwie, jednocześnie wszystkie neurony posiadają taką 

samą funkcję aktywacji. Kolejne struktury to sieci radialne (RBF), mające dwuwarstwową 

strukturę, w tym warstwę ukrytą realizującą, przez neurony radialne funkcję bazową, 

odwzorowującą liniowo. Zastosowanie ich zamiast sieci MLP (opisanej dokładniej poniżej) 

spowoduje, że sieć neuronowa odnajdzie aproksymację, która będzie lepiej dopasowana, do 

lokalnych właściwości zbioru danych ale będzie miała gorszą zdolność do ekstrapolacji, 

ponadto sieć ta wykazuje nadmierną wrażliwość na nawet najmniejsze błędy w danych [79], co 

w przypadku modelowania procesów odlewniczych stanowiłoby duży problem. Kolejna 

struktura to sieci uogólnione GRNN (ang. Generalized Regression Neural Network) sieć 

neuronowa realizująca regresję uogólnioną, gdzie liczba neuronów radialnych jest równa 

liczbie punktów uczących [80]. Ostatnie z omawianych to sieci probabilistyczne PNN (ang. 

Probabilistic Neural Network), które służą do klasyfikacji danych, na podstawie funkcji 

decyzyjnej. Sieć ta składa się z minimum trzech warstw: wejściowej, radialnej i wyjściowej.  

Warstwa radialna zawiera neurony radialne, które reprezentują funkcję radialną z centrum nad 
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swoim przypadkiem uczącym. Warstwa ta zawiera tyle neuronów ile wzorców znajduje się w 

ciągu uczącym [81]. Należałoby wspomnieć, że jedną z najbardziej popularnych struktur 

sztucznych sieci neuronowych są jednokierunkowe sieci liniowe, stanowiące najprostszy model 

neuronowy, w których funkcja aproksymująca stanowi hiperpłaszczyznę, dodatkowo 

optymalizacja takiego modelu jest uproszczona i polega na znalezieniu pochylenia i położenia. 

Najpopularniejsza architektura sieciowa wiąże się z koncepcją sieci jednokierunkowej a 

dokładniej perceptronem wielowarstwowym [82], [83]. Sieć jednokierunkowa 

wielowarstwowa jest najczęściej wykorzystywana do modelowania procesów 

technologicznych [74]. Wspomniany perceptron wielowarstwowy (ang. Multilayer Perceptron, 

klasy MLP), to sieć składająca się z neuronów ułożonych w warstwy (rys. 2.5.1.).  

 

Rys. 2.5.1. Schemat perceptronu wielowarstwowego [84] 

 

Posiada warstwę wejściową, w której neurony obliczają ważoną sumę swoich wejść, która 

następnie staje się argumentem funkcji przejścia celem obliczenia w kolejnej warstwie wyjścia 

neuronu, warstwy ukryte i warstwę wyjściową. W warstwie ukrytej najczęściej znajdują się 

neurony McCullocha-Pittsa. Określenie właściwej liczby warstw ukrytych oraz liczby 

neuronów ukrytych w poszczególnych warstwach jest problemem ogólnym i swego rodzaju 

wyzwaniem dla twórcy sieci. Sygnały czy informacje w tej sieci przesyłane są w jednym 

kierunku od wejścia do wyjścia, bez żadnych sprzężeń zwrotnych. Parametrami sieci są 

wartości progowe i wagi. Istnieje możliwość modelowania w oparciu o różne funkcje, z 

dowolnym stopniem złożoności przy użyciu tych sieci, jednak ważne jest aby właściwie dobrać 

ich strukturę, która wpływa na ostateczną jakość prognozy, czyli jakość modelu. Należałoby 

więc znaleźć prostą strukturę generującą wyniki na pożądanym poziomie jakości. Jak 

wspomniano wcześniej prosty model (zawierający małą liczbę neuronów ukrytych i małą liczbę 

warstw ukrytych) powinien być w stanie rozwiązać podstawowe problemy, jednak może on 

zbyt ogólnie opisać pewne złożone zależności. Z drugiej strony złożony model (zawierający 
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dużą liczbę warstw ukrytych i wiele neuronów ukrytych w tych warstwach) powoduje dłuższy 

proces uczenia się sieci i może wykazywać skłonności do nadmiernego dopasowania się do 

danych. Sztuczne sieci neuronowe są stosowane aby po nauczeniu się rozwiązywać zadania 

podobne do tych do których była uczona (jednak nie identyczne z nimi). Przenoszenie zdobytej 

wiedzy do rozwiązywania nowych przypadków nazywa się generalizacją. Głównym 

zagrożeniem dla zdolności sieci do generalizacji jest jej przeuczenie, występujące wskutek 

nadmiernego dopasowania do mniej istotnych szczegółów, niemających znaczenia w 

rozwiązaniu danego problemu. Taki przewymiarowany model ma skłonności do uczenia się 

danych ze zbioru uczącego na pamięć. Celem kontroli tego problemu tworzy się zbiory 

walidacyjne [85] (rys.2.5.2.). 

 

Rys. 2.5.2. Porównanie wykresów sieci zachowującej zdolność do generalizacji i sieci z 

utraconą zdolnością do generalizacji [85]. 

 

 W publikacji [86], stwierdzono iż badania wskazują, że nie ma uzasadnienia do 

zastosowania więcej niż jednej warstwy ukrytej, ponieważ nie wpływa ona na zwiększenie 

jakości wyniku, a jedynie komplikuje model. Obecnie istnieje wiele teorii dotyczących 

sposobów doboru struktur sieci, jednak można podsumować, iż do każdego rozpatrywanego 

problemu, czy przypadku, powinno się podejść indywidualnie i dobrać właściwe parametry w 

oparciu o badania. Posłużyć do tego może procedura walidacji krzyżowej lub podzielenie 

zbiorów danych na dwa zbiory trenujący (służy do korygowania wag sieci) i testowy (służy do 

bieżących obliczeń błędu dla innych danych aby sprawdzić zdolność danej sieci do 

generalizacji), następnie porównać wyniki prognoz dla różnych struktur dla zbioru testowego a 

po trenowaniu sieci dla zbioru trenującego. Problem właściwego doboru struktury dotyczy 

również niniejszej rozprawy doktorskiej i wpłynął w znacznym stopniu na realizację badań, 

podczas których dobierano indywidualne plany badań dla każdego badanego zbioru danych 

doświadczalnych pochodzących z rzeczywistego procesu. Należy jednak pamiętać, że dane 
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procesowe (szczególnie pochodzące z odlewni) mogą posiadać niedobory danych. Trudno jest 

również wybrać z nich zbiór danych najlepszych jakościowo, aby wytypować dane do zbiorów 

walidujących i testujących. Dlatego też często pomija się te zbiory w procesie uczenia się sieci 

jeżeli nie ma konieczności ich tworzenia. Jednak w niniejszej rozprawie sprawdzono również 

jakość prognoz dla modeli zawierających zbiór walidujący i testujący. Podczas uczenia należy 

również prowadzić stale obserwacje stopnia dopasowania zbioru danych uczących i 

walidujących sztucznej sieci neuronowej, aby nie pozwolić na nadmierne jej przeuczenie.  

 Proces uczenia sieci typu MLP możliwy jest poprzez zastosowanie metody wstecznej 

propagacji błędów (ang. Backpropagation), polegającej na uczeniu się poprzez propagację 

różnicy między otrzymanym sygnałem na wyjściu sieci a oczekiwanym [85] (rys. 2.5.3).  

 

Rys. 2.5.3. Przykładowy przebieg korekt błędu sieci w kolejnych iteracjach [69] 

 

Celem całego procesu uczenia się sieci jest poznanie ukrytej wiedzy znajdującej się w 

danych, czyli pewnych szczegółowych informacji a następnie dzięki temu możliwość 

rozwiązania problemów czy zadań podobnych do tych, przedstawionych sieci w procesie jej 

uczenia się, czyli wnioskowanie o ogólnych prawidłowościach. Dlatego też jak wcześniej 

wspomniano proces uczenia sieci neuronowej to w istocie proces minimalizacji funkcji błędu. 

Podczas tej minimalizacji jest niestety szansa, że otrzymane zostanie minimum lokalne, zamiast 

minimum globalnego, więc sieć będzie błędnie aproksymować dane wyjściowe (rys. 2.5.4.) 

[85], [87], [88]. 

  

Rys. 2.5.4. Minimum globalne i minima lokalne [48] 
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Celem zapobieżenia błędnemu określeniu minimum funkcji błędu wykonywana jest 

optymalizacja funkcji wielu zmiennych (czyli równej liczbie wag synaps i wyrazów wolnych). 

Należy znaleźć odpowiednie wartości wag sprawiających, że wartość średniokwadratowego 

błędu 𝐸 dla wszystkich odpowiedzi sieci była mniejsza w stosunku do obserwacji 

doświadczalnych (2.3). Każdorazowe obliczenie błędu i modyfikacja wag nazywana jest epoką 

[69]. 

 

𝐸 =  
1

𝑝
∙ ∑ (

1

𝑚
∙ ∑(𝑑𝑘𝑗 − 𝑌𝑘𝑗)

2
 

𝑚

𝑗=1

) 

𝑝

𝑘=1

 

(2.3) 

 

gdzie:  

− 𝐸 −  wartość błędu średniokwadratowego  

− 𝑚 −  liczba wyjść sieci 

− 𝑝 − liczba prezentacji, czyli rekordów obserwacji doświadczalnych 

− 𝑑 −wartości doświadczalne 

− 𝑌 −wartości otrzymane z sieci 

 Optymalizację można wykonać przy pomocy różnych metod, przykładowo może się to 

odbyć poprzez wykorzystanie algorytmu genetycznego [85], metod gradientowych (najczęściej 

stosowanych), w których koryguje się wcześniej ustalony zbiór wartości wag (rys. 2.5.5.), dążąc 

do zmniejszenia błędu sieci i metod poszukujących minimum globalne błędu (rzadko 

stosowane) np. metodę wyżarzania symulowanego (rys. 2.5.6.) i metody ewolucyjne [87].  

 

Rys. 2.5.5. Ilustracja metod gradientowych [69] 
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Rys. 2.5.6. Ilustracja metod wyżarzania symulowanego [69] 

 

Kolejnym problemem jest decyzja kiedy zakończyć trenowanie sieci. Można przyjąć, że 

koniec procesu uczenia sieci następuje, gdy zaczyna wzrastać wartość błędu dla danych 

weryfikujących. Głównie dlatego aby nie dopuścić do wspomnianego nadmiernego 

dopasowania się sieci neuronowej do danych uczących, co spowodowałoby brak zdolności do 

generalizacji, czyli prognoz dla innych danych. Jest to bardzo ważne, ponieważ jak już 

wspomniano jednym z głównych zadań sztucznych sieci neuronowych jest nauka wzorców i 

przewidywanie na podstawie danych, których sieć wcześniej nie widziała.  

 Perceptron wielowarstwowy MLP ze względu na najszerzej stosowaną sieć neuronową, 

wykorzystywaną przez większość badaczy [89], jednocześnie ocenianą jako najbardziej 

właściwą do rozwiązywania problemów związanych z odlewnictwem [42], stanowi jedyną 

strukturę użytą do badań prowadzonych w ramach niniejszej rozprawy.  

 Sztuczne sieci neuronowe zostały stworzone do realizacji paru rodzajów zadań, z 

których do modelowania procesów produkcyjnych w tym odlewniczych wykorzystywane są do 

zadań, takich jak klasyfikacja, regresja, predykcja i wykrywanie wzorców [69]. Klasyfikacja 

polega na dopasowaniu do odpowiednich klas, przypadków reprezentowanych przez dane. 

Zadania klasyfikacji najczęściej realizuje się przy uczeniu bez nauczyciela, czyli bez wartości 

wyjściowych, które są wykorzystywane w metodach uczenia opisywanych powyżej. 

Klasyfikacja realizowana jest przez wykorzystanie nominalnej zmiennej wyjściowej, dla której 

wartości odpowiadają danym klasom, do których można przyporządkować wartości wejściowe. 

Regresja, inaczej nazywana aproksymacją (nieznanej) funkcji wielu zmiennych bazująca na 

obserwacjach doświadczalnych wykorzystywana jest do określenia wartości ciągłej zmiennej 

wyjściowej w oparciu o posiadane wartości zmiennych wejściowych [69]. Jako rozwiązanie 

sieć podaje konkretną wartość, co wiąże się z późniejszym skalowaniem i ekstrapolacją. 

Skalowanie, może być wykonane poprzez normalizację danych wejściowych i wyjściowych, 

czyli umieszczenie ich w jednym przedziale np. od 0 do 1. Niestety w momencie kiedy dane 
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zostaną poddane skalowaniu nie będzie możliwości ekstrapolowania wykresu ciągłej wartości 

wyjściowej poza zakres danych uczących. Sieć może rozwiązać takie zadanie, jednak poda 

wynik nasycenia. Mimo różnych metod radzenia sobie z tym zjawiskiem [88], ogólnie przyjęta 

zasada mówi, że ekstrapolacja nie powinna wykraczać poza odpowiednią odległość [42]. 

Kolejne z głównych zadań sieci to predykcja, czyli zdolność do przewidzenia, czy prognozy 

przyszłych wartości lub zachowań systemu określone w oparciu o wartości historyczne z ciągłą 

adaptacją wag. Ostatnie czyli wykrywanie wzorców, które jest uczeniem nienadzorowanym, 

niewymagającym zbioru uczącego składającego się z danych wejściowych i doświadczalnych 

danych wyjściowych. Wykrywanie wzorców umożliwia zgrupowanie sygnałów 

charakteryzujących podobne cechy (np. sieci typu Kohonena) [69].  

W niniejszej rozprawie doktorskiej głównym zadaniem sztucznych sieci neuronowych 

będzie predykcja wartości wyjściowych oraz dalsza analiza wyników celem ustalenia wpływu 

zmiennych wejściowych na wartości zmiennej wyjściowej. Jak wcześniej wspomniano badania 

zostaną oparte na strukturze MLP, rekomendowanej przez wielu autorów do zadań związanych 

z wytwarzaniem, a dokładniej odlewnictwem. 

2.6. Metodyka gromadzenia i przygotowania danych do zaawansowanego 

modelowania  

Nadrzędny cel wszelkiej nauki to poznawanie, rozumienie i wyjaśnianie czy opisywanie 

świata. Otaczająca nas rzeczywistość jest jednak zbyt skomplikowana, aby mogła zostać 

opisana z najwyższą dokładnością, unikając uogólnień czy przybliżeń. Dlatego też celem 

zbudowania jak najdokładniejszego opisu uwzględnia się aspekty, które mają najwyższy wpływ 

na określone zjawisko. Pozostałe czynniki mogą wówczas zostać pominięte. Faza 

wyabstrahowania istotnych czynników i pominięcia tych nieistotnych z punktu widzenia 

danego zjawiska okazuje się być najważniejszą fazą poznania danego zjawiska. Ważne dlatego 

jest poznanie pewnych zasad i mechanizmów wpływających na określony obiekt badań, czyli 

stworzenie swego rodzaju modelu [90], który będzie stanowił reprezentację konceptualną lub 

umysłową, określonego systemu formalnego lub aksjomatycznego, spełniającą wszystkie jego 

formuły matematyczne, czy reguły służące do jego opisania. Modele te mogą być nazywane 

modelami matematycznymi [91]. Odnosząc się do definicji modelu możemy podsumować, że 

modelowaniem nazywamy proces tworzenia reprezentacji danego zjawiska, czy systemu. 

Odpowiednia adekwatność modelu związana jest bezpośrednio z jego jakością [90].  

Opisywany proces tworzenia reprezentacji danego zjawiska ma swoje odzwierciedlenie w 

opartym na danych modelowaniu, przyczyn powstawania wad wyrobów, gdyż na początku 
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tworzenia modelu ważne jest, aby przeanalizować następujące elementy. Po pierwsze należy 

określić strategię tworzenia zbiorów uczących oraz parametry produkcji i właściwości wyrobu 

czy materiały użyte do jego produkcji decydujące o powstawaniu wady wyrobu. Istotną 

trudnością jest pozyskanie tych informacji, gdyż nie zawsze są one zawarte w instrukcjach 

technologicznych, czy ogólnie w istniejącej dokumentacji stanowiskowej. Na tej podstawie 

następnie należy wybrać jedynie istotne parametry mające albo mogące mieć duży wpływ na 

powstawanie wady wyrobu.  

Kolejnym ważnym elementem jest podjęcie decyzji, które wartości traktować jako zmienne 

zależne (wynikowe, czyli sygnały wyjściowe), a które jako zmienne niezależne (sygnały 

wejściowe). Istotnym zadaniem pojawiającym się w niniejszej rozprawie jest otrzymanie 

dokładnego odwzorowania relacji bodziec reakcja, czyli relacji wejście wyjście dla 

modelowanego procesu, bez szczegółowego wyjaśniania jego właściwości. Modele takie jak 

już wspomniano w poprzednich rozdziałach nazywamy modelami typu czarnej skrzynki (ang. 

black-box). Podejście tego typu umożliwi odpowiednie zasymulowanie procesu, celem 

otrzymania przewidzianego stanu wyrobu (informację, czy dany wyrób posiada wadę, czy nie), 

jednak nie proponuje doboru parametrów technologicznych, celem uzyskania wyrobu o 

określonych właściwościach.  Dlatego też praktykuje się wykorzystanie jako wartości 

wejściowych właściwości wyrobów oraz jako wartości wyjściowe, wynikowe parametry 

procesu należne do zastosowania. Tego typu plan modelowania oparty na danych, znajdzie 

swoje zastosowanie przykładowo w ustalaniu koniecznej ilości dodatków odświeżających do 

mas formierskich, kiedy znany jest jej aktualny skład oraz właściwości [42]. Warto zauważyć, 

że nie wszystkie wskazania sieci będą możliwe do wprowadzenia, gdyż czasami nie ma 

możliwości zmiany danych parametrów albo zmiany ilości użytych surowców, wtedy 

modelowanie procesu tego rodzaju nie jest uzasadnione. Przykładowo w procesie wytopu 

wpływ na skład chemiczny kąpieli może być ograniczony, w zależności od materiałów 

wsadowych. Uzasadnione wtedy jest stworzenie sieci według pierwszego podejścia i 

dodatkowo celem uzyskania dodatkowych informacji o parametrach procesu należy 

przeprowadzić symulację wielokrotnego odpytywania sieci. Optymalizacja wartości 

wejściowych do sztucznych sieci neuronowych w określonych przez użytkownika zakresach, 

jest możliwa dzięki wybranym programom komputerowym, na przykład za pomocą dodatku 

Solver, do programu Microsoft Excel, które zostało wykorzystane i opisane w kolejnych 

rozdziałach niniejszej rozprawy. 

Gromadzenie danych przemysłowych, w tym przypadku danych dotyczących procesu 

odlewania jest znaczną trudnością. Warto zauważyć, że dane przemysłowe mają swoją 
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specyfikę i można je odróżnić od innych danych pochodzących z różnych obszarów badań i 

zastosowań naukowych. Dane te posiadają swoje cechy, których jednoczesne 

współwystępowanie jednoznacznie wyróżnia tego typu dane od innych. Istotna cecha danych 

przemysłowych, to ich objętość, gdyż zawierają one nie tylko dużą liczbę obserwacji ale też 

dużo parametrów charakteryzujących pojedynczą obserwację [90]. Przykładowo dla maszyn 

wyposażonych w systemy typu SCADA zbiory danych przemysłowych zawierają miliony 

rekordów. Jeżeli dodatkowo rozpatrzymy proces tworzenia zaawansowanego produktu, który 

może być wytwarzany w wielu operacjach, gdzie każda dostarcza wielu parametrów, powoduje, 

że bazy danych zawierają setki atrybutów, które w połączeniu z milionami obserwacji tworzą 

ogromne zbiory danych (ang. Big Data) [90].W przypadku przemysłu odlewania gromadzenie 

danych przemysłowych jest znacznie utrudnione, ponieważ standardowy proces produkcyjny 

odlewu składa się w przybliżeniu ze stu parametrów mogących mieć znaczący wpływ na jego 

przebieg. Odkrycie zależności między tymi parametrami jest wysoce skomplikowane i prawie 

niemożliwe, szczególnie w przypadku parametrów pochodzących z różnych etapów produkcji 

odlewu. Oprócz wyżej opisanej objętości danych, druga zauważona cecha charakteryzująca 

dane przemysłowe, to ich bezpośrednia zależność od czynnika ludzkiego lub od czynności 

kontrolnych lub pomiarowych wykonywanych w trakcie procesu produkcyjnego [90]. 

Zależność procesu od wpływu ludzkiego polega na bezpośrednim wpływie człowieka na 

wytwarzany produkt lub na półprodukty użyte do wytworzenia ostatecznego produktu. 

Wspomniana zależność od czynności kontrolnych lub pomiarowych zależy od jakości wskazań 

aparatury kontrolno-pomiarowej. W obu przypadkach, można zauważyć tworzenie się 

niezwykle szerokich albo bardzo ograniczonych zakresów wartości określonych parametrów 

procesu. W praktyce, proces odlewania, proces kontroli jakości i wytwarzania odlewów, (z 

których każdy posiada własny układ wlewowy, indywidualną masę rdzeniową i masę 

formierską), przebiega w różnych warunkach i obsługiwany jest przez wielu pracowników, 

pracujących w różnych komórkach i działach. Istnieje więc szansa, że jest wysoce zależny od 

wpływu operatorów, oraz od wskazań aparatury kontrolno-pomiarowej, co zostanie rozwinięte 

w badaniach realizowanych w ramach niniejszej rozprawy doktorskiej. Kolejną potwierdzoną 

w niniejszej rozprawie cechą danych przemysłowych to zauważalne częste współwystępowanie 

obserwacji różniących się o jeden, dwa, a nawet więcej rzędów wielkości (np. zawartość 

określonego pierwiastka w różnych stopach żeliwa) [90]. Następna cecha związana z poziomem 

pomiaru dotyczy istnienia w zbiorze danych do badań, wielu typów skali pomiarowych, takich 

jak skala nominalna (np. nazwy surowców, nazwy brygad), skala porządkowa (np. kolejność 

próbek pobranych do badań), skala przedziałowa (np. daty pobrania danej próbki) [90]. Ostatnia 
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cecha danych przemysłowych konieczna do przywołania to niedoskonałość danych polegająca 

na występowaniu brakujących wartości, błędnych wartości (widocznych na wykresach 

przebiegu zmiennych oraz ukrytych np. błędów pomiarowych), wartości odstających, 

nieprecyzyjnych lub niedokładnych, oraz duplikujących się wartości. Cecha ta powoduje 

konieczność przeprowadzenia procesu czyszczenia danych (ang. Data Cleaning), z 

wykorzystaniem zaawansowanej wiedzy o procesie. W tym przypadku dobrze znane narzędzia 

statystyczne mogą okazać się niewystarczające lub nieodpowiednie. Opis przeprowadzonego 

procesu czyszczenia danych rozszerzono w rozdziale 5.2.1..  

Ważnym punktem jest również zwrócenie uwagi na możliwości zbierania danych w czasie 

rzeczywistym przez przedsiębiorstwa produkcyjne. Obecnie znane jest wiele systemów i 

rozwiązań umożliwiających gromadzenie wyników i wykonywanie pomiarów wybranych 

istotnych parametrów technologicznych procesu odlewania. Czasami pomiary wymagają 

organizacji dodatkowych procesów kontroli i manualnych badań prowadzonych przez załogę 

odlewni lub automatycznych badań jedynie nadzorowanych. Takie pomiary to między innymi 

wartość temperatury i czasu zalewania, badania metalograficzne, analiza składu chemicznego 

wytopu, oraz analiza właściwości mechanicznych. Automatyczny monitoring warunków 

klimatycznych czyli temperatury i wilgotności powietrza w obszarach formowania i 

przygotowywania mas formierskich. Fakt zbierania danych świadczy o braku problemu z 

samymi pomiarami, czy ich przesyłaniem i zapisem. W badanym procesie występuje inny 

problem, którym jest identyfikacja zapisanej obserwacji i konkretnym fizycznym odlewem. 

Obecnie punktem odniesienia może być dana seria produkcyjna, co istotnie utrudnia szybką 

identyfikację przyczyn powstawania wad wyrobów. Zbierane dane mogą być również 

uśredniane, co też może powodować problemy z wydobywaniem wiedzy z danych.  

Budowa modeli na podstawie metod uczenia maszynowego wykorzystujących dane 

rzeczywiste pochodzące z procesów produkcyjnych stanowi pewnego rodzaju wyzwanie. 

Powoduje to wiele czynników, między innymi samo ich zebranie może być trudne, następnie 

należy zwrócić uwagę z jakiego okresu pochodzą dane, czy jest on referencyjny, a więc czy 

dane reprezentują w odpowiedni sposób cały badany proces produkcyjny. Należy zwrócić 

uwagę czy zmienność danych nie jest zbyt wysoka, czy nie występują nietypowe przerwy 

czasowe pomiędzy obserwacjami, czy zbierane dane są powiązane z produkowanym wyrobem 

na wszystkich etapach przepływu, tak aby warunki procesu były powiązane z jego jakością 

[92]. Odlewnie dążą więc do budowy coraz dokładniejszych systemów zbierających 

szczegółowe dane online, gdyż monitoring ten mim, że jest kosztowny, to przynosi realne 

korzyści. Związane jest to z coraz powszechniejszym stosowaniem zaawansowanych metod 
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modelowania bazujących na systemach uczących się. W wyniku im lepsze i dokładniejsze dane 

będą posiadać przedsiębiorstwa produkcyjne tym lepsze i dokładniejsze wyniki i wnioski mogą 

z nich otrzymać. 

2.7. Przykłady zastosowania SSN  w procesach wytwarzania 

Rozwój metod sztucznej inteligencji pozwolił na coraz powszechniejsze stosowanie 

sztucznych sieci neuronowych w sektorze produkcji. Nawiązując do ciągłych zmian procesów 

produkcyjnych wynikających ze zmian potrzeb klientów ostatecznych, a więc między innymi 

popytu na dane produkty oraz skróceniu cyklu życia produktu, obszar ten wymaga 

zastosowania metod i technologii, które są w stanie łatwo dostosowywać się do takich zmian.  

W opisywanym kontekście SSN stanowią odpowiednią technologię, gdyż są zdolne do 

radzenia sobie z zakłóceniami, niepełnymi i zniekształconymi danymi, ponadto są zdolne do 

uczenia się i tworzenia przybliżonych reguł ekspertowych na bazie przykładowych zestawów 

danych, co pozwala uniknąć czasochłonnych badań wykonywanych bezpośrednio przez 

ekspertów.  Dodatkowo są one od dawna stosowane do procesów decyzyjnych [93], 

projektowania, monitorowania i identyfikacji [94], [96], [26], [95], [97], planowania [98] i 

kontroli [97], [99] procesów wytwórczych. Jest to trudne zadanie, gdyż złożoność procesów 

produkcyjnych jest często wysoka, procesy są opisywane przez wiele zmiennych parametrów, 

w których wartościach mogą występować zakłócenia. Dlatego w wielu przypadkach bardzo 

trudne jest zdiagnozowanie zależności między jakością produktu ostatecznego a wartościami 

parametrów wejściowych. Autorzy zwrócili szczególną uwagę na elastyczność i złożoność 

metody SSN, oraz możliwość skutecznej integracji jej z innymi metodami inżynierii produkcji.  

Przechodząc do procesów odlewniczych, których modelowanie z zastosowaniem 

zaawansowanych metod uczących się jest uzasadnione przez złożony charakter tych procesów. 

Początkowym celem tworzonych modeli była predykcja wartości wyjściowej w oparciu o 

zmieniające się wartości parametrów wejściowych. Tego typu badania wykonywane były przy 

użyciu metod opartych na twierdzeniu Bayesa, na metodach statystycznych lub  logice 

rozmytej, jednak najbardziej powszechne były sztuczne sieci neuronowe. Wzrost oczekiwań i 

wymagań spowodował, że chciano już nie tylko przewidywać wartość zmiennej wyjściowej, 

ale zaczęto stosować metodę SSN do poznawania przyczyn występowania określonych sytuacji 

i zjawisk w procesach wytwórczych. Nadal jednak te zastosowanie stanowi nie do końca 

rozpoznany obszar, będąc jedynie uzupełnieniem do klasycznych celów metody, czyli 

prognozowania wyników. Z tego powodu naukowcy poświęcili wiele publikacji zagadnieniom 

związanym z zastosowaniem SSN do odkrywania wiedzy z danych.  
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Publikacją taką jest artykuł [100] poświęcony zastosowaniu metody SSN do rozwiązywania 

problemów o wysokiej złożoności bez możliwości stosowania pewnych uproszczeń. Autorzy 

zaznaczyli, że tworzone modele fizyczne mają możliwość opisu klasy obserwacji oraz 

umożliwiają prognozowanie łatwe do weryfikacji, jednak w wielu złożonych problemach tego 

typu modele nie istnieją. Ważnym odniesieniem jest praca [101], w której rozważono wady i 

zalety metody SSN, z szczególnym nawiązaniem do zastosowania metody do zadań 

klasyfikacji i regresji nieliniowej. Praca była znacząca, ponieważ autorzy przedstawili opis 

procesu za pomocą funkcji, zawierającej zdefiniowane współczynniki wynikające z wag sieci. 

Zaznaczając, że procesy te nie są już czarną skrzynką, co w kolejnych publikacjach zostało 

wielokrotnie podważone. Następna istotna praca [102], w której autorzy próbowali wykryć 

błędy w procesach produkcyjnych w trakcie przejściowych faz procesu, używając 

wielowarstwowych jednokierunkowych SSN. Głównym celem pracy było stworzenie metody 

odnoszącej się do wielu procesów przemysłowych. W publikacji porównano różne typy SSN 

wskazując sieć typu MLP jako lepszą od pozostałych, zaznaczając szczególnie jej wysoką 

odporność na zakłócenia występujące w danych procesowych. Jedną z publikacji, której celem 

było określenie źródła wad odlewów był artykuł [103], w którym wskazano, że istotną 

trudnością, z którą miały radzić sobie SSN jest wpływ wielu losowo zmieniających się 

parametrów na formowanie wady odlewu. 

Kolejne publikacje w tematyce odlewania ciśnieniowego dotyczyły [104] wykorzystania 

SSN do przewidywania procentowej wartości porowatości w odlewach tworzonych ze stopu 

aluminium z krzemem (Al – Si). Metoda SSN pozwoliła na skorelowanie składu chemicznego 

i szybkości chłodzenia z wartością porowatości odlewu. W tym samym roku powstała 

publikacja [105], której celem było zastosowanie metody SSN do symulacji zależności 

parametrów procesu od czasu krzepnięcia czy powstawania defektu. Następnie w artykule [106] 

zaproponowano generyczny model oparty o metodę SSN do estymacji optymalnych wartości 

parametrów procesu odlewania wysokociśnieniowego, obliczanych w czasie rzeczywistym. W 

2009r. [107] pojawiła się publikacja, która zaproponowała system oceny odlewu pod względem 

określenia ilościowego występowania wad powierzchniowych na podstawie metody SSN, która 

skorelowała wady powierzchniowe z parametrami procesu. Autorzy, podobnie jak [108] 

wykorzystali do badań algorytm wstecznej propagacji błędu do stworzenia sieci złożonej z 

trzech warstw, zawierającej trzy neurony na wejściu i jeden na wyjściu oraz trzy do pięciu 

neuronów w warstwie ukrytej. W publikacji [108] w oparciu o duże zbiory symulowanych 

danych opisujących proces odlewania wysokociśnieniowego, opracowano plan szkolenia SSN 

przez wybór w sposób losowy zbiorów wartości wejściowych. Wykazano wówczas, że defekty 
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związane z porowatością odlewów mogą być spowodowane przez temperatury początkowe 

stopu i formy i prędkości pierwszej i drugiej fazy. Jednak wyniki nie były wystarczające aby 

wyjaśnić wszystkie zjawiska zachodzące w rzeczywistym procesie odlewania 

wysokociśnieniowego (HPDC), w którym relacje pomiędzy zmiennymi procesu są złożone i 

często ukryte.  Kolejnym przykładem jest [109] zastosowanie modeli predykcyjnych do 

poprawy jakości odlewów aluminiowych celem minimalizacji odpadów produkcyjnych 

spowodowanych występowaniem porowatości. Autorzy zastosowali opracowane systemy 

rozmyte optymalizowane algorytmem genetycznym i symulowanym wyżarzaniem. 

Znaczna część artykułów rozważa metodę modelowania procesów z wykorzystaniem 

sztucznych sieci neuronowych. Metoda ta pozwala na uzyskanie wydajności predykcji na 

bardzo wysokim poziomie dlatego też zdominowała inne techniki zaawansowanego 

modelowania opartego na danych. W związku z tym w niniejszej rozprawie doktorskiej badania 

rozpoczęto od zastosowania właśnie tej metody zaawansowanego modelowania opartego na 

danych celem wykrycia przyczyn powstawania wad wyrobów. Warto również zwrócić uwagę 

na możliwości prowadzenia badań z wykorzystaniem technik hybrydowych łączących w sobie 

różne metody modelowania, które mogą prowadzić ku zwiększeniu dokładności 

przewidywania określonego parametru.  

Analiza literaturowa każdorazowo pozwala zrozumieć temat z wielu stron i pod względem 

wielu aspektów. W przypadku niniejszej rozprawy doktorskiej analiza ta pozwoliła na poznanie 

historii powstawania i rozwoju sztucznej inteligencji oraz zrozumienie obecnych trendów 

stosowanych w różnych sektorach przemysłu jednak ze skupieniem się na sektorze produkcji i 

wytwarzania a dokładniej na procesie odlewania wysokociśnieniowego. Najważniejsze 

techniki zaawansowanego modelowania opartego na danych zostały uwzględnione w analizie 

literaturowej celem wskazania ich kluczowej i ważnej roli w przemyśle produkcyjnym w 

ostatnich dwóch dekadach. 
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3. Drzewa decyzyjne 

3.1. Wprowadzenie  

Historia powstania drzew decyzyjnych sięga 1963 roku, kiedy to Morgan i Sonquist na 

Wydziale Statystyki Uniwersytetu Wisconsin-Madison zaproponowali nową metodę 

dopasowania drzew regresji do przewidywania wartości zmiennej ilościowej. Ten pierwszy 

analityczny algorytm, nazwany został AID, jako skrót od angielskich słów „Automatyczne 

Wykrywanie Interakcji” (ang. Automatic Interaction Detection) [110].  Następnie w 1966 r. 

Instytut Informatyki Politechniki Poznańskiej zaprezentował jedną z pierwszych publikacji na 

temat modelu drzewa decyzyjnego autorstwa Hunta [111]. W psychologii wówczas metodę 

drzew decyzyjnych wykorzystywano do modelowania koncepcji ludzkiego uczenia się. 

Badając umysł człowieka, naukowcy odkryli, że algorytm drzew decyzyjnych może być 

przydatny w technikach programowania [112]. Kolejnym ważnym krokiem było pojawienie się 

w 1973 r. pierwszego drzewa klasyfikacyjnego w projekcie THAID, autorstwa Messagera i 

Mandella, stanowiącego rozszerzenie metody AID. Rok później profesorowie nauk 

statystycznych Breiman i Stone z Berkeley oraz Friedman i Olshen ze Stanford rozpoczęli 

rozwój algorytmu drzewa klasyfikacji i regresji (CART), w 1977 r. opracowując pierwszą 

propozycję algorytmu CART.  

W 1984 r. nastąpiła swego rodzaju rewolucja świata algorytmów, gdyż oficjalnie 

opublikowano oprogramowanie oparte na algorytmie CART. Od tamtego momentu drzewa 

decyzyjne stały się jednym z najczęściej stosowanych metod analizy danych. Dwa lata później 

w 1986 r. John Ross Quinlan zaprezentował nową koncepcję wprowadzającą możliwość 

stworzenia drzewa z wieloma odpowiedziami. Do tego czasu zakładano, że wszystkie 

algorytmy klasyfikacji drzew decyzyjnych mogą mieć tylko dwie odpowiedzi na każde pytanie 

(zwane były drzewami binarnymi) [113].   

Metoda drzew decyzyjnych jako jedna z metod klasyfikacyjnych, ma na celu odkrycie 

zależności między zmienną celu a zmiennymi objaśniającymi zwanymi predykcyjnymi, tak jak 

większość metod budowy klasyfikatorów. Wspomniana zależność zawarta jest w strukturze, 

nazywanej modelem. Modele mają zadanie opisu i reprezentacji ukrytych w zbiorach danych 

zjawisk oraz predykcji na podstawie wartości atrybutów warunkowych, wartości atrybutu 

decyzyjnego. Utworzone modele w oparciu o zadania klasyfikacji dzielą przestrzeń poprzez 
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wyznaczenie granic między klasami na obszary odpowiadające określonym klasom [114].  

Proces klasyfikacji obejmuje dwa etapy, czyli uczenia oraz klasyfikacji właściwej [115].  

Łatwo wywnioskować, że do zbudowania modelu predykcyjnego potrzebny jest zbiór 

obiektów, posiadających określone zmienne celu i zmienne predykcyjne. Taki zbiór nazywany 

jest zbiorem uczącym, gdyż na jego podstawie można przewidzieć wartość zmiennej celu, dla 

każdej nowej wartości zmiennej predykcyjnej. Tworzenie takiego modelu może odbywać się 

na przykład przez wygenerowanie zestawu reguł, bądź drzew decyzyjnych, lub właściwego 

określenia parametrów rozkładu (regresja). Drzewa regresji są odmianą drzew decyzyjnych 

opracowanych na podstawie zmiennych przyjmujących wartości ciągłe lub uporządkowane 

dyskretne. Zawierają jedną zmienną wyjściową (numeryczną), nazywaną odpowiedzią i jedną 

lub więcej zmiennych wejściowych, nazywanych predyktorami.  W wyniku działania drzew 

regresji przewidziane wartości zmiennej wyjściowej będą zawarte w końcowych węzłach 

drzewa decyzyjnego. 

3.2. Przykłady zastosowania DT  w procesach wytwarzania 

Metoda drzew decyzyjnych znajduje swoje zastosowanie w procesach decyzyjnych 

dotyczących złożonych problemów, z wieloma możliwymi wariantami działania oraz 

występujących w warunkach wysokiego ryzyka. Ta zaawansowana metoda analizy danych 

umożliwia reprezentację hipotez, poprzez utworzenia graficznej reprezentacji badanego 

procesu lub zjawiska klasyfikującego skutecznie badane obserwacje. Stworzone drzewo 

zawiera wówczas jak najmniejszy błąd predykcji i ma jak najbardziej zoptymalizowany 

rozmiar.  

Drzewa decyzyjne wykorzystuje się między innymi w ekonomii i bankowości do analizy 

zdolności kredytowej [116], [117], w przemyśle do predykcji wydajności produkcyjnej [118], 

w energetyce do planowania konsumpcji energii [119], w medycynie do pogłębionej 

diagnostyki medycznej [120], [121] , do predykcji cen [122]  i wielu innych. Drzewa decyzyjne 

są uważane za łatwiejsze do interpretacji niż inne metody uczenia maszynowego. Struktura 

drzewiasta ułatwia sprawdzenie wyników zadań, pytań na każdym poziomie utworzonego 

drzewa. Metoda ta jest uznawana, również przez zdolność do analizy zmiennych zbiorów 

danych, zawierających kategoryczne lub ciągłe wartości zmiennych, a nawet zawierające braki 

w danych [123].   

W procesach wytwarzania a dokładniej w przemyśle odlewniczym praca nad redukcją 

wadliwych produktów była zawsze tematem bardzo ważnym ze względu na pracę nad ciągłym 

doskonaleniem przedsiębiorstw. Obecnie dodatkowo wzmocniona przez założenia koncepcji 
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Przemysłu 4.0.. W 2022 roku autorzy artykułu [124] skupili się na wpływie parametrów 

maszyny na defekty występujące w odlewach pochodzących z procesu odlewania 

wysokociśnieniowego. Skupiono się na sprawdzeniu różnych technik modelowania opartych 

na danych, sprawdzając możliwości drzew decyzyjnych, regresji liniowej i lasów losowych, 

wskazując drzewa decyzyjne jako metodę zapewniającą najlepszą skuteczność. Autorzy 

zaznaczyli jednak, że temat zastosowania drzew decyzyjnych nadal wymaga pogłębienia i 

optymalizacji. Między innymi z tego względu znalazł on swoje zastosowanie w niniejszej 

rozprawie doktorskiej.  

Kolejną ważną publikacją był artykuł [125], w którym chciano stworzyć system 

przewidywania i diagnozowania wad wyrobów celem pracy nad poprawą produktywności w 

procesie odlewania. Autorzy postanowili poradzić sobie z problemem z brakiem równowagi 

danych stosując metodę lasów losowych oraz drzew decyzyjnych. Uzyskane dokładności 

wskazywały na duży potencjał metody drzew decyzyjnych do wspierania procesów 

decyzyjnych personelu inżynierskiego, celem pracy nad jakością odlewów ciśnieniowych.  

Artykuł [126] wskazał konieczność budowy inteligentnych fabryk nakierowanych na 

dokładne gromadzenie danych, celem ich analizy i interpretacji przy użyciu metod eksploracji 

danych. Oczekuje się, że wszystkie przedsiębiorstwa produkcyjne chcące poprawiać swoje 

wyniki będą przekształcać się w inteligentne fabryki systematycznie wdrażając nowe 

rozwiązania między innymi wykrywanie optymalnych parametrów procesu celem na przykład 

ustalenia planów zarządzania produktami ubocznymi procesu. Autorzy użyli między innymi 

metodę drzew decyzyjnych w stworzonym systemie zaawansowanego modelowania opartego 

na danych, wskazując tę metodę jako właściwą do problemów związanych z zaawansowaną 

strukturą danych. 

Zidentyfikowane przez autorów wady drzew decyzyjnych, to między innymi brak 

stabilności, czyli przy zmianie zbioru uczącego zmieniają się reguły decyzyjne ustalone w 

węzłach drzewa decyzyjnego oraz stosunkowo niska skuteczność, czyli występowanie w 

złożonych zbiorach danych pojedynczych drzew osiągających niską skuteczność 

klasyfikowania [127].  Mimo to drzewa decyzyjne mają wiele zalet, przede wszystkim 

pozwalają na osiąganie coraz lepszych wyników zaawansowanych analiz, co wpływa na coraz 

częstsze wykorzystywanie ich w procesach produkcyjnych. Liczne zastosowania metody do 

rozwiązywania problemów związanych z procesem odlewania wysokociśnieniowego wpłynęło 

na zastosowanie drzew decyzyjnych  w niniejszej rozprawie celem zbadania przyczyn 

powstawania wad w wyrobach a dokładniej w odlewach wytwarzanych w procesie HPDC. 

Przebieg badań oraz wyniki i wnioski zostały przedstawione w rozdziale 5.2.5.. 
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4. Maszyna wektorów wspierających 

4.1. Wprowadzenie 

Maszyna wektorów wspierających (ang. support vector machine) (SVM) stanowi metodę 

maszynowego uczenia nadzorowanego, która jest zdolna do identyfikacji ukrytych wzorców w 

zbiorach danych, które są zaszumione i wysoce złożone. Powstanie tej metody sięga połowy 

XX wieku, kiedy to publikacja z 1950 r. [128] i prace Warrena McCullocha i Waltera Pittsa 

[28] zainspirowały Franka Rosenblatt do odkrycia w 1957 r. perceptronu, z którego miały 

narodzić się oraz doskonalić SSN. Po upływie sześciu lat w 1963 r. Vapnik i Lerner ogłosili 

„Uogólniony algorytm portretowy” [129], który stanowił inspirację dla Bosera, Guyona i 

Vapnika, którzy w 1992 r. podczas konferencji COLT (Computational Learning Theory) 

wprowadzili pojęcie SVM [130]. Następnie Vapnik pracując nad tą dziedziną statystyki, 

prowadził niezliczoną ilość wybitnych wykładów, a w 1995 r., z udziałem Cortesa odkrył 

miękki margines klasyfikatora. Zakładał on, że ograniczenie maksymalizacji marginesu linii 

oddzielającej klasy musi zostać zrelatywizowane, aby niektóre punkty w danych treningowych 

mogły naruszać linię rozdzielającą. Dodatkowo w tym samym roku rozszerzył jego 

zastosowanie na analizę regresji [131].  Trzy lata później Taylor, Shawe i inni w znaczący 

sposób uogólnili metodę SVM z twardym marginesem klasyfikatora. W 2000 roku podali 

również granice statystyczne dla uogólnienia miękkiego marginesu SVM. Od tego czasu 

metoda SVM zyskuje na popularności i jest wykorzystywana w wielu zastosowaniach, 

opisanych w rozdziale 4.2.. 

Maszyna wektorów wspierających jest jednym z najpopularniejszych i bardziej złożonym 

klasyfikatorem, którego uczenie polega na znalezieniu hiperpłaszczyzny, czyli swego rodzaju 

granicy decyzyjnej, która rozdzieli przestrzeń zmiennych wejściowych przynależących do 

dwóch różnych klas z najlepszą możliwą zdolnością do generalizacji i zachowując 

optymalność. Dążąc do zachowania przy tym maksymalnej wartości marginesu błędu, czyli 

maksymalizuje margines separacji jednocześnie minimalizując błąd klasyfikacji [130]. Ważne 

jest zapewnienie maksymalnej szerokości marginesu występującego pomiędzy próbkami 

pochodzącymi z różnych klas (rys.4.1.1.). Celem maksymalizacji szerokości marginesu 

pomiędzy próbkami pochodzącymi z różnych klas, należy zminimalizować parametry 

hiperpłaszczyzny. Szerszy margines daje możliwość do osiągania lepszych własności 

generalizacji oraz zmniejsza podatność na ewentualne przeuczenie (ang. overfitting). Węższy 

margines powoduje małą zmianę granicy i radykalne zmiany klasyfikacji [132]. 
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 Rys.4.1.1. Przykład problemu podzielonego na dwuwymiarową przestrzeń  z 

optymalnym marginesem [131] 

 

SVM realizuje zadania klasyfikacyjne, jednak można użyć tej metody również do regresji. 

Buduje się wówczas optymalną hiperpłaszczyznę w iteracyjnym algorytmie uczącym, 

minimalizującym funkcję błędu. Modele można rozróżnić ze względu na przynależność do 

czterech grup ustalonych według użytej funkcji błędu, czyli typ pierwszy klasyfikacyjny, typ 

drugi klasyfikacyjny, typ pierwszy regresyjny i typ drugi regresyjny [133].  W regresji typu 

pierwszego i dugiego użytych podczas badań niniejszej rozprawy szukana jest zalezność 

zmiennej zależnej 𝑎 od zbioru zmiennych niezależnych 𝑏, biorąc pod uwagę szum losowy. 

Funkcja jest obliczana według poniższego równania: 

𝑎 = 𝑓(𝑏)  +  𝑠𝑧𝑢𝑚 𝑙𝑜𝑠𝑜𝑤𝑦      (4.1) 

Celem tych funkcji błędu jest znalezienie postaci funkcji 𝑓(𝑏), podającej jak najbardziej 

przybliżone wartości zmiennej zależnej 𝑦 dla nowych przypadków. Proces ten bazuje na 

minimalizowaniu funkcji błędu co jest realizowane w oparciu o dwa typy regresji, obliczane z 

dwóch różnych postaci równania (5.2.) [131], [134].  

min    
𝑤,𝑏,𝜉    

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

 

𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 

(4.2.) 

𝜉𝑖 ≥ 0 

gdzie: 𝑤 𝑖 𝑏  – współczynniki optymalnej hiperpłaszczyzny, 

  𝜙  - funkcja jądrowa bazowa, 

  𝐶 - parametr wysokości kary, 

  𝜉𝑖 - zmienna rozluźniająca 
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  𝑥 - cechy wzorców 

  𝑦 - oznaczenia wzorców 

Zastosowano następujące funkcje jądowe dostępne w oprogramowaniu Statistica: 

o liniową, obliczaną wg wzoru (5.3) 

𝜙 =  𝑥𝑖𝑥𝑗        (4.3.) 

o wielomianową, obliczaną wg wzoru (5.4) 

𝜙 =  (𝛾𝑥𝑖𝑥𝑗 + 𝑟)𝑑, 𝛾 > 0  (4.4.) 

o radialną (RBF) , obliczaną wg wzoru (5.5) 

𝜙 = 𝑒𝑥𝑝(−𝛾|𝑥𝑖 − 𝑥𝑗|
2

 ), 𝛾 > 0 (4.5.) 

o sigmoidalną , obliczaną wg wzoru (5.6) 

𝜙 = tan(𝑥𝑖𝑥𝑗  + 𝑟)  (4.6.) 

gdzie: 𝛾 𝑖 𝑟  – parametry funkcji jądrowych. 

 

SVM są stosowane powszechnie do zaawansowanej analizy poprzez klasyfikację dużych 

zbiorów danych. Metodę tę można rozpatrywać w trzech wariantach klasyfikatora SVM: 

zawierającego funkcję jądra, liniowego, dedykowanych dla klas separowanych oraz liniowego 

z funkcją błędu dedykowanych dla klas nie w pełni liniowo separowanych. Metoda SVM 

sprawdza się lepiej niż pozostałe metody uczenia maszynowego w braku nadmiernej 

generalizacji, gdyż celem tej metody jest właśnie zdolność do poprawnego klasyfikowania 

danych.  

 

4.2. Przykłady zastosowania SVM w procesach wytwarzania 

Metoda maszyn wektorów wspierających (SVM) cieszy się dużym zainteresowaniem w 

różnych dziedzinach nauki. Stosowana jest celem prawidłowej klasyfikacji danych. Jej zalety 

są związane z możliwością zastosowania  do rozwiązywania problemów zarówno o liniowym 

i nieliniowym charakterze, ponadto jest efektywna obliczeniowo, jej złożoność wzrasta wraz 

ze wzrostem liczby wymiarów, modelowanie oparte na danych, jest stosunkowo szybkie, 

ponadto jest ona w stanie poradzić sobie z dużą liczbą atrybutów oraz małą liczbą przykładów 

uczących [135]. Wszystkie te cechy wpływają na zainteresowanie naukowców aplikacją 

metody w procesach wytwarzania. 

Jedną z ostatnich prac związanych z procesem odlewania wysokociśnieniowego była seria 

artykułów [136], [137], [138], w których podjęto próbę zbadania właściwości mechanicznych 
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pręta powstającego w procesie HPDC, podjęto też próbę klasyfikacji dobrych i złych 

produktów. Skupiono się głównie na sprawdzeniu relacji pomiędzy wytrzymałością na 

rozciąganie i cechami procesu wytwarzania. Zgromadzono w tym celu duży zbiór danych 

obejmujący miesiące produkcji. W pracy wykorzystano metody zaawansowanego 

modelowania oparte na danych, takie jak maszyny wektorów wspierających (SVM), lasy 

losowe, regresję, sztuczne sieci neuronowe (SSN) i XGBoost, czyli algorytm uczenia 

maszynowego, który wykorzystuje strukturę wzmacniającą gradient. Oceniono skuteczność 

zastosowanych metod porównując ich wyniki z danymi historycznymi. Wskazano, że metody 

nadzorowanego uczenia maszynowego okazały się być skuteczne do klasyfikacji dobrych i 

złych wyrobów. Prace te jednak skupiały się na modelowaniu opartym na dużych zbiorach 

danych, pod względem cech procesu i ich wpływu na wyrób ostateczny, jednak nie rozszerzały 

one rozważań w kierunku wskazania wartości określonych parametrów procesu sprzyjających 

wytwarzaniu produktu bez wady, co stanowi wyzwanie niniejszej rozprawy doktorskiej.  

Należy również wspomnieć o artykule [139], w którym autorzy przedstawili zastosowanie 

metod nadzorowanego uczenia maszynowego w tym SSN i SVM do sterowania procesami 

metalurgicznymi, charakteryzujących się występowaniem nieliniowych zależności pomiędzy 

poszczególnymi parametrami procesu. Głównym celem pracy było przewidzenie ilości 

dodatków stopowych aby przewidzieć właściwy skład chemiczny żeliwa białego.  Badania 

powstały na podstawie danych rzeczywistych pochodzących z procesu odlewniczego. 

Opracowano modele i wybrano spośród nich w oparciu o wynik błędu średniokwadratowego 

modele o najlepszej wydajności. Wyniki pokazały, że zarówno metoda sztucznych sieci 

neuronowych, jak i maszyn wektorów wspierających jest odpowiednia i niezawodna do 

kontroli procesu. Metody te zostały jednak sprawdzone dla stosunkowo małych zbiorów 

danych zawierających 300 obserwacji, artykuł nie rozważa badań w kierunku sprawdzenia 

skuteczności modeli na dużych zbiorach danych. 

W 2022 roku powstała kolejna znacząca publikacja [92], w której autorzy skupili się na 

stworzeniu modeli celem poprawy jakości produktów w wyniku optymalizacji zmiennych 

procesu odlewania niskociśnieniowego (LPDC). Modelowanie oparto o metody XGBoost, 

regresję oraz maszyny wektorów wspierających (SVM). Wyniki modelowania przy użyciu 

różnych metod porównano ze sobą i wskazano, że SVM zapewniła wystarczającą dokładność 

klasyfikacji wadliwych części. Zaznaczono jednak, że metoda SVM uzyskała niską 

skuteczność w przewidywaniu dobrych produktów. Sprawia to, że zastosowanie jej w 

rzeczywistym przedsiębiorstwie produkcyjnym może spowodować błędną klasyfikację 

dobrych odlewów, co wygeneruje wysoki koszt dodatkowych czynności kontrolnych. Jednak 
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zastosowanie metody i uzyskane wyniki były obiecujące i wpłynęły na zastosowanie metody 

w niniejszej rozprawie doktorskiej.  

Liczne zastosowania metody do rozwiązywania problemów związanych z obszarem 

wytwarzania a w szczególności związanych z procesem odlewania wysokociśnieniowego 

wpłynęło na zastosowanie metody maszyn wektorów wspierających w niniejszej rozprawie 

celem zbadania przyczyn powstawania wad w wyrobach a dokładniej w odlewach 

wytwarzanych w procesie HPDC. Przebieg badań oraz wyniki i wnioski zostały przedstawione 

w rozdziale 5.2.6.. 
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5. Badania własne 

5.1. Sformułowanie problemu  

Niniejsza rozprawa skupia się na rozwiązaniu ogólnego problemu badawczego w postaci 

pytania: w jaki sposób przy użyciu zaawansowanego modelowania opartego na dużych 

zbiorach danych można diagnozować przyczyny powstawania wad wyrobów?  

Ponadto niniejsza rozprawa doktorska zamierza udowodnić ogólną hipotezę badawczą, która 

zakłada, iż diagnozowanie przyczyn powstawania wad wyrobów wymaga zastosowania 

określonych w metodologii zbioru metod zaawansowanego modelowania opartego na dużych 

zbiorach danych.  Hipoteza jako przypuszczenie naukowe wymagające sprawdzenia jest 

uzasadniona, czyli oparta na wcześniejszych obserwacjach, badaniach lub teoriach oraz 

testowalna, czyli dotycząca istotnych zmiennych, które są manipulowane i mierzalne, gdyż 

podczas badań własnych sprawdzany będzie wpływ różnych zbiorów i zakresów zmiennych na 

zmienną zależną.  

Dane, które użyto do badań pochodzą z procesu odlewania ciśnieniowego, 

charakteryzującego się wysokim stopniem skomplikowania, złożonością, nieliniowym 

charakterem i niewyjaśnioną naturą fizyczną [42]. Obecnie przedsiębiorstwa wytwórcze 

produkujące odlewy zbierają dane procesowe na podstawowym poziomie technologii 

informacyjno-komunikacyjnych [125], [140], co oznacza, że obecnie nie ma systematycznej 

metodyki lub systemu predykcji i diagnozowania wad wyrobów oraz ich przyczyn, ponieważ 

informacje oparte na technologiach informacyjno-komunikacyjnych nie są właściwie 

rozpoznane i rozwinięte. Dlatego potrzebna jest metodologia, która wspiera podejście 

analityczne, aby konkretnie identyfikować i reagować na problemy w procesie odlewania [141]. 

Diagnostyka wad jakościowych jest jedną z metod kontroli jakości, która pozwala skutecznie 

rozwiązać problemy jakościowe wyrobów w procesie produkcyjnym i wzbudza coraz większe 

zainteresowanie w środowisku naukowym [142]. Dlatego też postawiono istotne pytania 

badawcze w niniejszej rozprawie: czy zaawansowane metody analizy danych będą w stanie 

skutecznie przewidzieć pojawienie się wady w wyrobie? oraz czy wielowymiarowa 

optymalizacja parametrów procesu będzie w stanie wskazać wartości parametrów określonych 

zmiennych, wpływające na powstanie wady w produkcie? 

Zauważono potrzebę skutecznego przewidywania dobrych produktów, defektów i 

stworzenia w przyszłości procesu do inteligentnego podejmowania decyzji przez maszynę 
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odlewniczą w czasie zbliżonym do rzeczywistego. Potrzeba ta wymaga stworzenia zestawu 

narzędzi zawierającego metody opartego na danych, zaawansowanego modelowania, które 

otwierają drzwi do wielowymiarowej analizy danych w procesach wytwórczych. Stale 

podejmowane są próby przewidywania porowatości odlewu [143], oraz wpływu kształtu 

odlewu na porowatość [144], mimo to nadal nie są znane rzeczywiste przyczyny lub 

kombinacja przyczyn wystąpienia wad w wyrobach [92]. Dodatkowo mimo licznych publikacji 

porównujących skuteczność różnych metod [137], [145] uczenia maszynowego, nadal brakuje 

opracowanej skutecznej i kompleksowej metodyki diagnozowania wad wyrobów możliwej do 

zastosowania w rzeczywistej odlewni, co stanowi szansę dla przemysłu oraz środowiska 

akademickiego aby przyspieszyć lub umożliwić postęp w tym obszarze. Istotną nowością pracy 

jest między innymi stworzenie metodyki zawierającej metody eksploracji danych w sektorze 

produkcji i wytwarzania, w myśl koncepcji tzw. „Przemysłu 4.0.”, istotny wpływ na stworzenie 

sprawnego systemu kontroli procesu celem diagnostyki wadliwych produktów realizując cele 

koncepcji inteligentnej fabryki. 

5.2. Przebieg badań 

5.2.1.  Wstępne przetwarzanie danych  

W niniejszym rozdziale zaprezentowane zostaną wyniki praktycznego zastosowania 

wstępnego przetwarzania danych, wykonanego w celu poprawy jakości danych i 

przygotowania ich do dalszych analiz.  

Badania oparte będą na danych rzeczywistych pochodzących z procesu odlewania 

wysokociśnieniowego, bloków cylindrowych przez jedną ze współpracujących odlewni. Krok 

ten jest niezbędny i wymaga wiedzy o procesie celem prawidłowej klasyfikacji danej próbki 

jako wartości odstającej, błędu pomiarowego lub ważnej z punktu widzenia procesu wartości. 

5.2.1.1. Metodyka i wyniki badań 

Wstępne przetwarzanie danych rozpoczęto od procesu czyszczenia danych poprzez 

normalizację danych, a dokładniej poprzez podział wartości 56 zmiennych (pomijając dwie 

zmienne a dokładnie zmienną informującą o dacie i godzinie powstania odlewu oraz zmiany 

roboczej na której powstał) na zakresy od 0,1 do 1 oraz dodanie w trzech kolumnach, 

informacji, ile w danym zakresie było wartości świadczącej o braku wady, ile wartości 

świadczących o odlewie naprawialnym oraz ile wartości świadczących o wadzie odlewniczej 

niemożliwej do naprawy - powodującej odpad. W tabelach przedstawiających wyniki (tab.5.1.-



58 
 

tab.5.56.) dodano również kolumnę prezentującą procentowy udział obserwacji w każdym z 

zakresów, aby wskazać proponowane zakresy wartości z największym udziałem obserwacji. 

Dodatkowo stworzono wykresy przebiegu oraz wykresy wartości posortowanych celem 

wizualnej analizy (rys.5.2.1.1.- rys.5.2.1.56.). Dane zostaną dzięki temu wybrane na podstawie 

największego ilościowego udziału w danych zakresach wartości oraz na podstawie ilości 

wytworzonego odlewu naprawialnego i odlewu niemożliwego do naprawy (złomu), czyli 

odlewu z wadą odlewniczą. Zaproponowane podejście pozwoli zoptymalizować zbiór danych 

poprzez klasyfikacje danej próbki jako wartości odstającej, błędu pomiarowego lub ważnej z 

punktu widzenia procesu wartości, mającej wpływ na wartość wyjściową, czyli na powstawanie 

wady w produkcie. 

Podczas etapu przygotowania danych skupiono się na weryfikacji podejrzanych wartości, 

które mogły być wynikiem występowania usterek czujników, różnymi kodami błędów 

raportowanych przez maszynę, błędnie obliczonymi wartościami, które klasyfikują się jako 

wartości odstające, mogące reprezentować problemy. 

 

Rys.5.2.1.1. Wykres przebiegu zmiennej niezależnej: ciśnienie sprężonego powietrza, z 

posortowanymi wartościami 
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Rys.5.2.1.2. Wykres przebiegu zmiennej niezależnej: ciśnienie wody miejskiej, z 

posortowanymi wartościami 

 

 

Rys.5.2.1.3. Wykres przebiegu zmiennej niezależnej: ciśnienie wody obiegowej, z 

posortowanymi wartościami 
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Rys.5.2.1.4. Wykres przebiegu zmiennej niezależnej: czas pierwszej fazy wtrysku, z 

posortowanymi wartościami 

 

Rys.5.2.1.5. Wykres przebiegu zmiennej niezależnej: czas chłodzenia obwodu 1, z 

posortowanymi wartościami 
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Rys.5.2.1.6. Wykres przebiegu zmiennej niezależnej: czas cyklu, z posortowanymi 

wartościami 

 

Rys.5.2.1.7. Wykres przebiegu zmiennej niezależnej: czas cyklu smarowania, z 

posortowanymi wartościami 
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Rys.5.2.1.8. Wykres przebiegu zmiennej niezależnej: czas dozowania stopu 1, z 

posortowanymi wartościami 

 

Rys.5.2.1.9. Wykres przebiegu zmiennej niezależnej: czas dozowania stopu 2, z 

posortowanymi wartościami 
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Rys.5.2.1.10. Wykres przebiegu zmiennej niezależnej: czas krzepnięcia t2, z 

posortowanymi wartościami 

 

Rys.5.2.1.11. Wykres przebiegu zmiennej niezależnej: czas przedmuchu, z 

posortowanymi wartościami 
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Rys.5.2.1.12. Wykres przebiegu zmiennej niezależnej: czas smarowania, z 

posortowanymi wartościami 

 

Rys.5.2.1.13. Wykres przebiegu zmiennej niezależnej: dzienny numer wtrysku, z 

posortowanymi wartościami 
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Rys.5.2.1.14. Wykres przebiegu zmiennej niezależnej: filtr próżni 1, z posortowanymi 

wartościami 

 

 

Rys.5.2.1.15. Wykres przebiegu zmiennej niezależnej: grubość piętki układu 

wlewowego, z posortowanymi wartościami 
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Rys.5.2.1.16. Wykres przebiegu zmiennej niezależnej: koncentrat, z posortowanymi 

wartościami 

 

Rys.5.2.1.17. Wykres przebiegu zmiennej niezależnej: ciśnienie maksymalne, z 

posortowanymi wartościami 
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Rys.5.2.1.18. Wykres przebiegu zmiennej niezależnej, prędkość wtrysku maksymalna, z 

posortowanymi wartościami 

 

 

Rys.5.2.1.19. Wykres przebiegu zmiennej niezależnej: opóźnienie multiplikacji, z 

posortowanymi wartościami 
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Rys.5.2.1.20. Wykres przebiegu zmiennej niezależnej: stała temperatura chłodzenia 

płyty, z posortowanymi wartościami 

 

Rys.5.2.1.21. Wykres przebiegu zmiennej niezależnej: poziom stopu w piecu 

podgrzewczym, z posortowanymi wartościami 
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Rys.5.2.1.22. Wykres przebiegu zmiennej niezależnej: poziom wody w strumieniu 

chłodzącym, z posortowanymi wartościami 

 

Rys.5.2.1.23. Wykres przebiegu zmiennej niezależnej: czas drugiej fazy wtrysku, z 

posortowanymi wartościami 
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Rys.5.2.1.24. Wykres przebiegu zmiennej niezależnej: profil próżni 1, z posortowanymi 

wartościami 

 

Rys.5.2.1.25. Wykres przebiegu zmiennej niezależnej: profil próżni 2, z posortowanymi 

wartościami 
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Rys.5.2.1.26. Wykres przebiegu zmiennej niezależnej: przepływ chłodzenia tłoka, z 

posortowanymi wartościami 

 

 

Rys.5.2.1.27. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

1, z posortowanymi wartościami 
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Rys.5.2.1.28. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

13, z posortowanymi wartościami 

 

Rys.5.2.1.29. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

14, z posortowanymi wartościami 
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Rys.5.2.1.30. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

15, z posortowanymi wartościami 

 

Rys.5.2.1.31. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

17, z posortowanymi wartościami 
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Rys.5.2.1.32. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

20, z posortowanymi wartościami 

 

 

Rys.5.2.1.33. Wykres przebiegu zmiennej niezależnej: przepływ w obwodzie chłodzenia 

6, z posortowanymi wartościami 
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Rys.5.2.1.34. Wykres przebiegu zmiennej niezależnej: prędkość we wlewach 

doprowadzających, z posortowanymi wartościami 

  

Rys.5.2.1.35. Wykres przebiegu zmiennej niezależnej: suw pierwszej fazy wtrysku, z 

posortowanymi wartościami 
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Rys.5.2.1.36. Wykres przebiegu zmiennej niezależnej: suw docisku po multiplikacji, z 

posortowanymi wartościami 

 

Rys.5.2.1.37. Wykres przebiegu zmiennej niezależnej: temperatura chłodzenia tłoka, z 

posortowanymi wartościami 
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Rys.5.2.1.38. Wykres przebiegu zmiennej niezależnej: temperatura stopu, z 

posortowanymi wartościami 

 

Rys.5.2.1.39. Wykres przebiegu zmiennej niezależnej: temperatura termoregulatora 

2.1., z posortowanymi wartościami 
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Rys.5.2.1.40. Wykres przebiegu zmiennej niezależnej: temperatura termoregulatora 

2.2., z posortowanymi wartościami 

 

Rys.5.2.1.41. Wykres przebiegu zmiennej niezależnej: temperatura termoregulatora 

3.2., z posortowanymi wartościami 
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Rys.5.2.1.42. Wykres przebiegu zmiennej niezależnej: temperatura tulei 1, z 

posortowanymi wartościami 

 

Rys.5.2.1.43. Wykres przebiegu zmiennej niezależnej: temperatura tulei 2, z 

posortowanymi wartościami 
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Rys.5.2.1.44. Wykres przebiegu zmiennej niezależnej: temperatura tulei 3, z 

posortowanymi wartościami 

 

Rys.5.2.1.45. Wykres przebiegu zmiennej niezależnej: temperatura tulei 4, z 

posortowanymi wartościami 
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Rys.5.2.1.46. Wykres przebiegu zmiennej niezależnej: temperatura w obwodzie 

chłodzenia 1, z posortowanymi wartościami 

 

Rys.5.2.1.47. Wykres przebiegu zmiennej niezależnej: temperatura w obwodzie 

chłodzenia 13, z posortowanymi wartościami 
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Rys.5.2.1.48. Wykres przebiegu zmiennej niezależnej: temperatura w obwodzie 

chłodzenia 14, z posortowanymi wartościami 

 

Rys.5.2.1.49. Wykres przebiegu zmiennej niezależnej: temperatura w obwodzie 

chłodzenia 15, z posortowanymi wartościami 
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Rys.5.2.1.50. Wykres przebiegu zmiennej niezależnej: temperatura w obwodzie 

chłodzenia 17, z posortowanymi wartościami 

 

Rys.5.2.1.51. Wykres przebiegu zmiennej niezależnej: temperatura w obwodzie 

chłodzenia 7, z posortowanymi wartościami 
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Rys.5.2.1.52. Wykres przebiegu zmiennej niezależnej: temperatura wody miejskiej, z 

posortowanymi wartościami 

 

Rys.5.2.1.53. Wykres przebiegu zmiennej niezależnej: temperatura wody w instalacji, z 

posortowanymi wartościami 
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Rys.5.2.1.54. Wykres przebiegu zmiennej niezależnej: wartość próżni 1, z 

posortowanymi wartościami 

 

Rys.5.2.1.55. Wykres przebiegu zmiennej niezależnej: wartość próżni 2, z 

posortowanymi wartościami 
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Rys.5.2.1.56. Wykres przebiegu zmiennej niezależnej: zużycie smaru, z posortowanymi 

wartościami 

 

 

Rys.5.2.1.57. Wykres przebiegu zmiennej zależnej: przeciek w obwodzie wysokiego 

ciśnienia, z posortowanymi wartościami 

 

Tab. 5.1.: Wyniki normalizacji dla zmiennej niezależnej: ciśnienie sprężonego powietrza, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość produktów 

z wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2664 20 1 2685 26,60 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 
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0.4-0.5 0 0 0 0 0,00 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 7360 38 11 7409 73,40 

Suma: 10024 58 12 10094 100 

 

Tab. 5.2.: Wyniki normalizacji dla zmiennej niezależnej: ciśnienie wody miejskiej, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 84 0 0 84 0,83 

0.1-0.2 1750 15 1 1766 17,50 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 6361 36 7 6404 63,44 

0.4-0.5 1801 7 4 1812 17,95 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 18 0 0 18 0,18 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 4 0 0 4 0,04 

0.9-1 0 0 0 0 0,00 

1.0 6 0 0 6 0,06 

Suma: 10024 58 12 10094 100 

 

Tab. 5.3.: Wyniki normalizacji dla zmiennej niezależnej: ciśnienie wody obiegowej, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość produktów 

z wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 5201 35 5 5241 51,92 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 4823 23 7 4853 48,08 

Suma: 10024 58 12 10094 100 
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Tab. 5.4.: Wyniki normalizacji dla zmiennej niezależnej: czas pierwszej fazy wtrysku, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 145 0 0 145 1,44 

0.1-0.2 440 3 0 443 4,39 

0.2-0.3 1575 7 1 1583 15,68 

0.3-0.4 2091 18 6 2115 20,95 

0.4-0.5 2798 18 1 2817 27,91 

0.5-0.6 2282 6 4 2292 22,71 

0.6-0.7 616 6 0 622 6,16 

0.7-0.8 59 0 0 59 0,58 

0.8-0.9 13 0 0 13 0,13 

0.9-1 4 0 0 4 0,04 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.5.: Wyniki normalizacji dla zmiennej niezależnej: czas chłodzenia obwodu, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 44 1 0 45 0,45 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 9915 57 12 9984 98,91 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 65 0 0 65 0,64 

Suma: 10024 58 12 10094 100 

 

Tab. 5.6.: Wyniki normalizacji dla zmiennej niezależnej: czas cyklu, w odniesieniu do zmiennej 

zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 6 0 0 6 0,06 

0.1-0.2 9400 50 11 9461 93,73 

0.2-0.3 338 6 1 345 3,42 

0.3-0.4 143 2 0 145 1,44 
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0.4-0.5 91 0 0 91 0,90 

0.5-0.6 29 0 0 29 0,29 

0.6-0.7 10 0 0 10 0,10 

0.7-0.8 1 0 0 1 0,01 

0.8-0.9 4 0 0 4 0,04 

0.9-1 1 0 0 1 0,01 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100,00 

 

Tab. 5.7.: Wyniki normalizacji dla zmiennej niezależnej: czas cyklu smarowania, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 9983 56 12 10051 99,57 

0.1-0.2 14 1 0 15 0,15 

0.2-0.3 18 1 0 19 0,19 

0.3-0.4 5 0 0 5 0,05 

0.4-0.5 2 0 0 2 0,02 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 1 0 0 1 0,01 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.8.: Wyniki normalizacji dla zmiennej niezależnej: czas dozowania stopu, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 9859 56 12 9927 98,35 

0.1-0.2 36 0 0 36 0,36 

0.2-0.3 31 1 0 32 0,32 

0.3-0.4 49 1 0 50 0,50 

0.4-0.5 35 0 0 35 0,35 

0.5-0.6 5 0 0 5 0,05 

0.6-0.7 7 0 0 7 0,07 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 1 0 0 1 0,01 

0.9-1 0 0 0 0 0,00 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 
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Tab. 5.9.: Wyniki normalizacji dla zmiennej niezależnej: czas dozowania stopu 2, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 41 0 0 41 0,41 

0.1-0.2 8340 35 10 8385 83,07 

0.2-0.3 1541 22 2 1565 15,50 

0.3-0.4 21 0 0 21 0,21 

0.4-0.5 4 0 0 4 0,04 

0.5-0.6 19 1 0 20 0,20 

0.6-0.7 46 0 0 46 0,46 

0.7-0.8 5 0 0 5 0,05 

0.8-0.9 2 0 0 2 0,02 

0.9-1 5 0 0 5 0,05 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 

 

Tab. 5.10.: Wyniki normalizacji dla zmiennej niezależnej: czas krzepnięcia t2, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 7457 21 11 7489 74,19 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 2567 37 1 2605 25,81 

Suma: 10024 58 12 10094 100 

 

Tab. 5.11.: Wyniki normalizacji dla zmiennej niezależnej: czas przedmuchu, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1 0 0 1 0,01 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 21 0 0 21 0,21 
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0.4-0.5 67 0 0 67 0,66 

0.5-0.6 9281 47 10 9338 92,51 

0.6-0.7 129 0 0 129 1,28 

0.7-0.8 11 0 0 11 0,11 

0.8-0.9 262 6 1 269 2,66 

0.9-1 251 5 1 257 2,55 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.12.: Wyniki normalizacji dla zmiennej niezależnej: czas smarowania, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość produktów 

z wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 31 0 0 31 0,31 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 1 0 0 1 0,01 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 9747 49 11 9807 97,16 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 240 9 1 250 2,48 

1.0 5 0 0 5 0,05 

Suma: 10024 58 12 10094 100 

 

Tab. 5.13.: Wyniki normalizacji dla zmiennej niezależnej: dzienny numer wtrysku, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1853 20 2 1875 18,58 

0.1-0.2 1814 9 3 1826 18,09 

0.2-0.3 1553 8 1 1562 15,47 

0.3-0.4 1382 4 1 1387 13,74 

0.4-0.5 1219 7 3 1229 12,18 

0.5-0.6 949 6 1 956 9,47 

0.6-0.7 533 2 0 535 5,30 

0.7-0.8 455 1 1 457 4,53 

0.8-0.9 203 1 0 204 2,02 

0.9-1 63 0 0 63 0,62 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 
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Tab. 5.14.: Wyniki normalizacji dla zmiennej niezależnej: filtr próżni 1, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 112 1 0 113 1,12 

0.1-0.2 293 0 0 293 2,90 

0.2-0.3 43 0 0 43 0,43 

0.3-0.4 32 1 0 33 0,33 

0.4-0.5 763 1 0 764 7,57 

0.5-0.6 3801 14 8 3823 37,87 

0.6-0.7 2745 29 3 2777 27,51 

0.7-0.8 1038 8 1 1047 10,37 

0.8-0.9 1071 4 0 1075 10,64 

0.9-1 126 0 0 126 1,25 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 

 

Tab. 5.15.: Wyniki normalizacji dla zmiennej niezależnej: grubość piętki układu wlewowego, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 86 0 1 87 0,86 

0.1-0.2 356 0 0 356 3,53 

0.2-0.3 997 3 3 1003 9,93 

0.3-0.4 2789 9 3 2801 27,75 

0.4-0.5 3362 25 5 3392 33,60 

0.5-0.6 1757 20 0 1777 17,60 

0.6-0.7 529 1 0 530 5,25 

0.7-0.8 131 0 0 131 1,29 

0.8-0.9 15 0 0 15 0,15 

0.9-1 1 0 0 1 0,01 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.16.: Wyniki normalizacji dla zmiennej niezależnej: koncentrat, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 8 0 0 8 0,08 

0.1-0.2 16 0 0 16 0,16 

0.2-0.3 83 0 0 83 0,82 

0.3-0.4 213 1 0 214 2,12 
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0.4-0.5 312 0 0 312 3,09 

0.5-0.6 921 4 1 926 9,17 

0.6-0.7 586 6 0 592 5,86 

0.7-0.8 514 1 0 515 5,10 

0.8-0.9 2791 17 5 2813 27,87 

0.9-1 3462 18 6 3486 34,54 

1.0 1118 11 0 1129 11,18 

Suma: 10024 58 12 10094 100 

 

Tab. 5.17.: Wyniki normalizacji dla zmiennej niezależnej: ciśnienie maksymalne, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 249 2 0 251 2,49 

0.1-0.2 1333 17 0 1350 13,37 

0.2-0.3 2314 16 4 2334 23,12 

0.3-0.4 2652 12 3 2667 26,42 

0.4-0.5 1938 7 2 1947 19,29 

0.5-0.6 1029 2 3 1034 10,24 

0.6-0.7 364 2 0 366 3,63 

0.7-0.8 125 0 0 125 1,24 

0.8-0.9 19 0 0 19 0,19 

0.9-1 0 0 0 0 0,00 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.18.: Wyniki normalizacji dla zmiennej niezależnej, prędkość wtrysku maksymalna, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 5 0 0 5 0,05 

0.1-0.2 11 0 0 11 0,11 

0.2-0.3 38 1 0 39 0,39 

0.3-0.4 540 7 1 548 5,43 

0.4-0.5 1 0 0 1 0,01 

0.5-0.6 4597 35 5 4637 45,94 

0.6-0.7 38 1 0 39 0,39 

0.7-0.8 4615 14 6 4635 45,92 

0.8-0.9 5 0 0 5 0,05 

0.9-1 106 0 0 106 1,05 

1.0 68 0 0 68 0,67 

Suma: 10024 58 12 10094 100 
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Tab. 5.19.: Wyniki normalizacji dla zmiennej niezależnej: opóźnienie multiplikacji, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2 0 0 2 0,02 

0.1-0.2 2 0 0 2 0,02 

0.2-0.3 54 0 0 54 0,53 

0.3-0.4 127 0 0 127 1,26 

0.4-0.5 412 2 0 414 4,10 

0.5-0.6 2494 6 5 2505 24,82 

0.6-0.7 2214 11 3 2228 22,07 

0.7-0.8 3820 26 4 3850 38,14 

0.8-0.9 752 10 0 762 7,55 

0.9-1 135 3 0 138 1,37 

1.0 12 0 0 12 0,12 

Suma: 10024 58 12 10094 100 

 

Tab. 5.20.: Wyniki normalizacji dla zmiennej niezależnej: stała temperatura chłodzenia płyty, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 21 0 0 21 0,21 

0.1-0.2 643 3 1 647 6,41 

0.2-0.3 5793 13 9 5815 57,61 

0.3-0.4 2539 11 1 2551 25,27 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 316 7 0 323 3,20 

0.6-0.7 496 18 0 514 5,09 

0.7-0.8 194 6 1 201 1,99 

0.8-0.9 7 0 0 7 0,07 

0.9-1 0 0 0 0 0,00 

1.0 15 0 0 15 0,15 

Suma: 10024 58 12 10094 100 

 

Tab. 5.21.: Wyniki normalizacji dla zmiennej niezależnej: poziom stopu w piecu 

podgrzewczym, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału 

obserwacji w każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 9397 58 12 9467 93,79 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 
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0.4-0.5 0 0 0 0 0,00 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 627 0 0 627 6,21 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 

 

Tab. 5.22.: Wyniki normalizacji dla zmiennej niezależnej: poziom wody w strumieniu 

chłodzącym, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału 

obserwacji w każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 528 1 2 531 5,26 

0.1-0.2 390 1 1 392 3,88 

0.2-0.3 861 2 0 863 8,55 

0.3-0.4 1215 2 0 1217 12,06 

0.4-0.5 1497 10 4 1511 14,97 

0.5-0.6 1636 14 2 1652 16,37 

0.6-0.7 1487 10 3 1500 14,86 

0.7-0.8 1863 8 0 1871 18,54 

0.8-0.9 508 7 0 515 5,10 

0.9-1 35 3 0 38 0,38 

1.0 4 0 0 4 0,04 

Suma: 10024 58 12 10094 100 

 

Tab. 5.23.: Wyniki normalizacji dla zmiennej niezależnej: czas drugiej fazy wtrysku, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 6 0 0 6 0,06 

0.1-0.2 292 2 0 294 2,91 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 3059 22 2 3083 30,54 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 4896 24 8 4928 48,82 

0.6-0.7 1603 9 2 1614 15,99 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 166 1 0 167 1,65 

0.9-1 0 0 0 0 0,00 

1.0 2 0 0 2 0,02 

Suma: 10024 58 12 10094 100 
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Tab. 5.24.: Wyniki normalizacji dla zmiennej niezależnej: profil próżni 1, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 7964 48 10 8022 79,47 

0.1-0.2 1478 7 2 1487 14,73 

0.2-0.3 558 3 0 561 5,56 

0.3-0.4 3 0 0 3 0,03 

0.4-0.5 2 0 0 2 0,02 

0.5-0.6 2 0 0 2 0,02 

0.6-0.7 15 0 0 15 0,15 

0.7-0.8 1 0 0 1 0,01 

0.8-0.9 0 0 0 0 0,00 

0.9-1 1 0 0 1 0,01 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 

 

Tab. 5.25.: Wyniki normalizacji dla zmiennej niezależnej: profil próżni 2, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2428 3 0 2431 24,08 

0.1-0.2 1161 1 6 1168 11,57 

0.2-0.3 6313 54 6 6373 63,14 

0.3-0.4 98 0 0 98 0,97 

0.4-0.5 4 0 0 4 0,04 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 9 0 0 9 0,09 

0.7-0.8 9 0 0 9 0,09 

0.8-0.9 0 0 0 0 0,00 

0.9-1 1 0 0 1 0,01 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.26.: Wyniki normalizacji dla zmiennej niezależnej: przepływ chłodzenia tłoka, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1 0 0 1 0,01 

0.1-0.2 135 0 0 135 1,34 

0.2-0.3 10 0 0 10 0,10 

0.3-0.4 189 0 1 190 1,88 



97 
 

0.4-0.5 322 0 0 322 3,19 

0.5-0.6 782 2 0 784 7,77 

0.6-0.7 5751 11 8 5770 57,16 

0.7-0.8 91 2 0 93 0,92 

0.8-0.9 523 9 0 532 5,27 

0.9-1 1946 31 3 1980 19,62 

1.0 274 3 0 277 2,74 

Suma: 10024 58 12 10094 100 

 

Tab. 5.27.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 1, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 22 0 0 22 0,22 

0.1-0.2 286 10 0 296 2,93 

0.2-0.3 684 17 0 701 6,94 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 1347 17 1 1365 13,52 

0.5-0.6 4875 7 6 4888 48,42 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 2341 6 4 2351 23,29 

0.8-0.9 367 1 1 369 3,66 

0.9-1 102 0 0 102 1,01 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 

 

Tab. 5.28.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 13, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2 0 0 2 0,02 

0.1-0.2 57 0 0 57 0,56 

0.2-0.3 114 0 0 114 1,13 

0.3-0.4 67 0 0 67 0,66 

0.4-0.5 45 0 0 45 0,45 

0.5-0.6 98 0 1 99 0,98 

0.6-0.7 5581 7 7 5595 55,43 

0.7-0.8 189 4 0 193 1,91 

0.8-0.9 2148 33 3 2184 21,64 

0.9-1 1718 14 1 1733 17,17 

1.0 5 0 0 5 0,05 

Suma: 10024 58 12 10094 100 
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Tab. 5.29.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 14, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2 0 0 2 0,02 

0.1-0.2 22 0 0 22 0,22 

0.2-0.3 67 0 0 67 0,66 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 788 18 0 806 7,98 

0.5-0.6 2443 28 1 2472 24,49 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 5590 10 10 5610 55,58 

0.8-0.9 1095 2 1 1098 10,87 

0.9-1 0 0 0 0 0,00 

1.0 17 0 0 17 0,17 

Suma: 10024 58 12 10094 100 

 

Tab. 5.30.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 15, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 37 0 0 37 0,37 

0.1-0.2 133 0 0 133 1,32 

0.2-0.3 2023 17 0 2040 20,21 

0.3-0.4 4849 14 7 4870 48,25 

0.4-0.5 2475 7 4 2486 24,63 

0.5-0.6 403 19 1 423 4,19 

0.6-0.7 84 0 0 84 0,83 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 1 0 0 1 0,01 

1.0 19 1 0 20 0,20 

Suma: 10024 58 12 10094 100 

 

Tab. 5.31.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 17, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 35 0 0 35 0,35 

0.1-0.2 67 3 0 70 0,69 

0.2-0.3 15 0 0 15 0,15 

0.3-0.4 544 17 0 561 5,56 
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0.4-0.5 1469 5 0 1474 14,60 

0.5-0.6 2033 14 2 2049 20,30 

0.6-0.7 182 1 0 183 1,81 

0.7-0.8 301 2 0 303 3,00 

0.8-0.9 3669 15 5 3689 36,55 

0.9-1 1475 1 5 1481 14,67 

1.0 234 0 0 234 2,32 

Suma: 10024 58 12 10094 100 

 

Tab. 5.32.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 20, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 5.33.: Wyniki normalizacji dla zmiennej niezależnej: przepływ w obwodzie chłodzenia 6, 

w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2 0 0 2 0,02 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 4 0 0 4 0,04 

0.3-0.4 549 1 0 550 5,45 

0.4-0.5 1857 2 2 1861 18,44 

0.5-0.6 600 4 1 605 5,99 

0.6-0.7 2328 28 0 2356 23,34 

0.7-0.8 3227 22 6 3255 32,25 

0.8-0.9 345 1 0 346 3,43 

0.9-1 1075 0 2 1077 10,66 

1.0 37 0 1 38 0,38 

Suma: 10024 58 12 10094 100 

 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 36 0 0 36 0,36 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 174 1 0 175 1,73 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 1492 29 1 1522 15,08 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 5265 20 7 5292 52,43 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 2949 8 3 2960 29,32 

0.9-1 0 0 0 0 0,00 

1.0 108 0 1 109 1,08 

Suma: 10024 58 12 10094 100 
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Tab. 5.34.: Wyniki normalizacji dla zmiennej niezależnej: prędkość we wlewach 

doprowadzających, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału 

obserwacji w każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 4 0 0 4 0,04 

0.1-0.2 9 0 0 9 0,09 

0.2-0.3 153 1 0 154 1,53 

0.3-0.4 547 5 0 552 5,46 

0.4-0.5 2010 8 3 2021 20,02 

0.5-0.6 3434 21 3 3458 34,26 

0.6-0.7 2605 13 4 2622 25,98 

0.7-0.8 1100 8 2 1110 10,99 

0.8-0.9 156 2 0 158 1,57 

0.9-1 5 0 0 5 0,05 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.35.: Wyniki normalizacji dla zmiennej niezależnej: suw pierwszej fazy wtrysku, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1 0 0 1 0,01 

0.1-0.2 11 0 0 11 0,11 

0.2-0.3 220 0 0 220 2,18 

0.3-0.4 2649 20 2 2671 26,46 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 4411 23 6 4440 43,99 

0.6-0.7 2399 13 3 2415 23,93 

0.7-0.8 299 2 1 302 2,99 

0.8-0.9 29 0 0 29 0,29 

0.9-1 0 0 0 0 0,00 

1.0 5 0 0 5 0,05 

Suma: 10024 58 12 10094 100 

 

Tab. 5.36.: Wyniki normalizacji dla zmiennej niezależnej: suw docisku po multiplikacji, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 3 1 0 4 0,04 

0.1-0.2 7 0 0 7 0,07 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 179 3 1 183 1,81 
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0.4-0.5 0 0 0 0 0,00 

0.5-0.6 2151 20 1 2172 21,52 

0.6-0.7 6139 27 9 6175 61,18 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 1538 7 1 1546 15,32 

0.9-1 0 0 0 0 0,00 

1.0 7 0 0 7 0,07 

Suma: 10024 58 12 10094 100 

 

Tab. 5.37.: Wyniki normalizacji dla zmiennej niezależnej: temperatura chłodzenia tłoka, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 91 0 1 92 0,91 

0.1-0.2 178 1 0 179 1,77 

0.2-0.3 1503 21 2 1526 15,12 

0.3-0.4 3109 13 0 3122 30,93 

0.4-0.5 4016 21 7 4044 40,06 

0.5-0.6 1003 2 2 1007 9,98 

0.6-0.7 6 0 0 6 0,06 

0.7-0.8 24 0 0 24 0,24 

0.8-0.9 61 0 0 61 0,60 

0.9-1 27 0 0 27 0,27 

1.0 6 0 0 6 0,06 

Suma: 10024 58 12 10094 100 

 

Tab. 5.38.: Wyniki normalizacji dla zmiennej niezależnej: temperatura stopu, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 2 0 0 2 0,02 

0.1-0.2 16 0 1 17 0,17 

0.2-0.3 356 0 0 356 3,53 

0.3-0.4 1604 7 5 1616 16,01 

0.4-0.5 2959 21 3 2983 29,55 

0.5-0.6 2382 20 0 2402 23,80 

0.6-0.7 1766 5 2 1773 17,56 

0.7-0.8 759 4 0 763 7,56 

0.8-0.9 164 1 1 166 1,64 

0.9-1 15 0 0 15 0,15 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 
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Tab. 5.39.: Wyniki normalizacji dla zmiennej temperatura termoregulatora 2.1., w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 12 1 0 13 0,13 

0.1-0.2 15 0 0 15 0,15 

0.2-0.3 2757 21 4 2782 27,56 

0.3-0.4 1932 14 1 1947 19,29 

0.4-0.5 1352 2 1 1355 13,42 

0.5-0.6 2490 11 3 2504 24,81 

0.6-0.7 1330 7 3 1340 13,28 

0.7-0.8 130 1 0 131 1,29 

0.8-0.9 6 0 0 6 0,06 

0.9-1 0 0 0 0 0,00 

1.0 0 1 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.40.: Wyniki normalizacji dla zmiennej temperatura termoregulatora 2.2., w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 7 0 0 7 0,07 

0.1-0.2 34 0 0 34 0,34 

0.2-0.3 73 0 0 73 0,72 

0.3-0.4 1346 7 1 1354 13,41 

0.4-0.5 1807 7 2 1816 17,99 

0.5-0.6 1951 10 3 1964 19,46 

0.6-0.7 4719 33 6 4758 47,14 

0.7-0.8 44 0 0 44 0,44 

0.8-0.9 28 0 0 28 0,28 

0.9-1 13 0 0 13 0,13 

1.0 2 1 0 3 0,03 

Suma: 10024 58 12 10094 100 

 

Tab. 5.41.: Wyniki normalizacji dla zmiennej temperatura termoregulatora 3.2., w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 0 1 0 1 0,01 

0.1-0.2 1 0 0 1 0,01 

0.2-0.3 1 0 0 1 0,01 

0.3-0.4 1 0 0 1 0,01 



103 
 

0.4-0.5 3 0 0 3 0,03 

0.5-0.6 4 0 0 4 0,04 

0.6-0.7 191 0 0 191 1,89 

0.7-0.8 3982 30 4 4016 39,79 

0.8-0.9 3120 15 3 3138 31,09 

0.9-1 2494 12 3 2509 24,86 

1.0 227 0 2 229 2,27 

Suma: 10024 58 12 10094 100 

 

Tab. 5.42.: Wyniki normalizacji dla zmiennej niezależnej: temperatura tulei 1, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 3 0 0 3 0,03 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 1 0 0 1 0,01 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 37 1 1 39 0,39 

0.8-0.9 8930 46 10 8986 89,02 

0.9-1 1052 11 1 1064 10,54 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.43.: Wyniki normalizacji dla zmiennej niezależnej: temperatura tulei 2, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 3 0 0 3 0,03 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 1 0 0 1 0,01 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 1 0 0 1 0,01 

0.8-0.9 352 1 0 353 3,50 

0.9-1 9665 57 12 9734 96,43 

1.0 2 0 0 2 0,02 

Suma: 10024 58 12 10094 100 
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Tab. 5.44.: Wyniki normalizacji dla zmiennej niezależnej: temperatura tulei 3, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 3 0 0 3 0,03 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 1 0 0 1 0,01 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 63 1 0 64 0,63 

0.8-0.9 9406 49 10 9465 93,77 

0.9-1 550 8 2 560 5,55 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.45.: Wyniki normalizacji dla zmiennej niezależnej: temperatura tulei 4, w odniesieniu 

do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów 

od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 3 0 0 3 0,03 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 0 0 0 0 0,00 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 1 0 0 1 0,01 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 4 0 0 4 0,04 

0.8-0.9 7259 33 8 7300 72,32 

0.9-1 2755 25 4 2784 27,58 

1.0 2 0 0 2 0,02 

Suma: 10024 58 12 10094 100 

 

Tab. 5.46.: Wyniki normalizacji dla zmiennej niezależnej: temperatura w obwodzie chłodzenia 

1, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1455 3 1 1459 14,45 

0.1-0.2 5461 18 8 5487 54,36 

0.2-0.3 2352 19 0 2371 23,49 

0.3-0.4 464 14 2 480 4,75 
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0.4-0.5 56 0 0 56 0,55 

0.5-0.6 62 1 0 63 0,62 

0.6-0.7 130 2 1 133 1,32 

0.7-0.8 29 0 0 29 0,29 

0.8-0.9 9 1 0 10 0,10 

0.9-1 5 0 0 5 0,05 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.47.: Wyniki normalizacji dla zmiennej niezależnej: temperatura w obwodzie chłodzenia 

13, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 7 1 0 8 0,08 

0.1-0.2 90 4 1 95 0,94 

0.2-0.3 879 4 0 883 8,75 

0.3-0.4 6552 38 9 6599 65,38 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 2024 7 1 2032 20,13 

0.6-0.7 252 4 0 256 2,54 

0.7-0.8 184 0 1 185 1,83 

0.8-0.9 34 0 0 34 0,34 

0.9-1 0 0 0 0 0,00 

1.0 2 0 0 2 0,02 

Suma: 10024 58 12 10094 100 

 

Tab. 5.48.: Wyniki normalizacji dla zmiennej niezależnej: temperatura w obwodzie chłodzenia 

14, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 25 0 0 25 0,25 

0.1-0.2 521 7 1 529 5,24 

0.2-0.3 4465 10 6 4481 44,39 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 4152 28 4 4184 41,45 

0.5-0.6 800 11 1 812 8,04 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 57 2 0 59 0,58 

0.8-0.9 3 0 0 3 0,03 

0.9-1 0 0 0 0 0,00 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 
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Tab. 5.49.: Wyniki normalizacji dla zmiennej niezależnej: temperatura w obwodzie chłodzenia 

15, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 65 4 0 69 0,68 

0.1-0.2 1111 7 0 1118 11,08 

0.2-0.3 3680 19 8 3707 36,72 

0.3-0.4 4183 22 3 4208 41,69 

0.4-0.5 789 3 0 792 7,85 

0.5-0.6 123 2 1 126 1,25 

0.6-0.7 61 1 0 62 0,61 

0.7-0.8 8 0 0 8 0,08 

0.8-0.9 3 0 0 3 0,03 

0.9-1 0 0 0 0 0,00 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.50.: Wyniki normalizacji dla zmiennej niezależnej: temperatura w obwodzie chłodzenia 

17, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 469 6 0 475 4,71 

0.1-0.2 2596 12 1 2609 25,85 

0.2-0.3 734 8 1 743 7,36 

0.3-0.4 476 1 2 479 4,75 

0.4-0.5 1134 5 1 1140 11,29 

0.5-0.6 2899 7 7 2913 28,86 

0.6-0.7 1306 11 0 1317 13,05 

0.7-0.8 283 6 0 289 2,86 

0.8-0.9 108 2 0 110 1,09 

0.9-1 17 0 0 17 0,17 

1.0 2 0 0 2 0,02 

Suma: 10024 58 12 10094 100 

 

Tab. 5.51.: Wyniki normalizacji dla zmiennej niezależnej: temperatura w obwodzie chłodzenia 

7, w odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w 

każdym z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 37 0 0 37 0,37 

0.1-0.2 926 6 1 933 9,24 

0.2-0.3 5856 21 8 5885 58,30 

0.3-0.4 0 0 0 0 0,00 
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0.4-0.5 2813 27 2 2842 28,16 

0.5-0.6 292 2 1 295 2,92 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 72 2 0 74 0,73 

0.8-0.9 22 0 0 22 0,22 

0.9-1 0 0 0 0 0,00 

1.0 6 0 0 6 0,06 

Suma: 10024 58 12 10094 100 

 

Tab. 5.52.: Wyniki normalizacji dla zmiennej niezależnej: temperatura wody miejskiej, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 42 0 0 42 0,42 

0.1-0.2 618 1 0 619 6,13 

0.2-0.3 1872 17 2 1891 18,73 

0.3-0.4 4591 30 3 4624 45,81 

0.4-0.5 1210 4 4 1218 12,07 

0.5-0.6 1538 5 3 1546 15,32 

0.6-0.7 138 1 0 139 1,38 

0.7-0.8 11 0 0 11 0,11 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 4 0 0 4 0,04 

Suma: 10024 58 12 10094 100 

 

Tab. 5.53.: Wyniki normalizacji dla zmiennej niezależnej: temperatura wody w instalacji, w 

odniesieniu do zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym 

z zakresów od największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 20 0 0 20 0,20 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 368 1 1 370 3,67 

0.3-0.4 0 0 0 0 0,00 

0.4-0.5 0 0 0 0 0,00 

0.5-0.6 4569 23 7 4599 45,56 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 4866 30 4 4900 48,54 

0.8-0.9 0 0 0 0 0,00 

0.9-1 0 0 0 0 0,00 

1.0 201 4 0 205 2,03 

Suma: 10024 58 12 10094 100 
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Tab. 5.54.: Wyniki normalizacji dla zmiennej niezależnej: wartość próżni 1, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1440 1 4 1445 14,32 

0.1-0.2 2597 7 4 2608 25,84 

0.2-0.3 4129 42 4 4175 41,36 

0.3-0.4 1553 8 0 1561 15,46 

0.4-0.5 291 0 0 291 2,88 

0.5-0.6 10 0 0 10 0,10 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 0 0 0 0 0,00 

0.9-1 4 0 0 4 0,04 

1.0 0 0 0 0 0,00 

Suma: 10024 58 12 10094 100 

 

Tab. 5.55.: Wyniki normalizacji dla zmiennej niezależnej: wartość próżni 2, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów 

z wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 1124 3 0 1127 11,17 

0.1-0.2 1440 1 5 1446 14,33 

0.2-0.3 1905 3 0 1908 18,90 

0.3-0.4 5533 51 7 5591 55,39 

0.4-0.5 15 0 0 15 0,15 

0.5-0.6 3 0 0 3 0,03 

0.6-0.7 0 0 0 0 0,00 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 1 0 0 1 0,01 

0.9-1 2 0 0 2 0,02 

1.0 1 0 0 1 0,01 

Suma: 10024 58 12 10094 100 

 

Tab. 5.56.: Wyniki normalizacji dla zmiennej niezależnej: zużycie smaru, w odniesieniu do 

zmiennej zależnej, z oznaczeniem procentowego udziału obserwacji w każdym z zakresów od 

największego (zielonego) do najmniejszego (czerwonego) 

Przedział 

Ilość 

produktów 

bez wady 

[szt.] 

Ilość 

produktów z 

wadą 

naprawialną 

[szt.] 

Ilość 

produktów z 

wadą 

nienaprawialną 

[szt.] 

Ilość 

obserwacji 

[szt.] 

Udział 

procentowy 

obserwacji 

[%] 

0.0-0.1 8255 49 11 8315 82,38 

0.1-0.2 0 0 0 0 0,00 

0.2-0.3 1534 8 1 1543 15,29 

0.3-0.4 0 0 0 0 0,00 
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0.4-0.5 209 1 0 210 2,08 

0.5-0.6 0 0 0 0 0,00 

0.6-0.7 20 0 0 20 0,20 

0.7-0.8 0 0 0 0 0,00 

0.8-0.9 4 0 0 4 0,04 

0.9-1 0 0 0 0 0,00 

1.0 2 0 0 2 0,02 

Suma: 10024 58 12 10094 100 

 

Po stworzeniu wykresów i normalizacji zakresów dla każdej zmiennej wejściowej, na 

podstawie największego ilościowego udziału w danych zakresach wartości i największej liczby 

odlewów naprawialnych i nienaprawialnych, można wywnioskować zakresy dla każdego 

parametru danych, mające znaczący wpływ na powstawanie wady produktu. Na podstawie 

przeprowadzonej zastąpiono zidentyfikowane wartości błędne lub odstające za pomocą 

teoretycznych wartości minimalnych i maksymalnych danej zmiennej, wyznaczonych bez 

brania pod uwagę wartości odstających [146] i za pomocą średnich wartości danej zmiennej.  

 

Tab. 5.59.: Wybrane zakresy zmiennych niezależnych: 

 

Nazwa zmiennej niezależnej Wybrany zakres wartości 

Ciśnienie sprężonego powietrza [Bar] >=0.0 <=1.0 

Ciśnienie wody miejskiej [Bar] >=0.1 <0.5 

Ciśnienie wody obiegowej [Bar] >=0.0 <=1.0 

Czas pierwszej fazy wtrysku [ms] >=0.1 <0.7 

Czas chłodzenia obwodu 1 [s] >=0.0 <=1.0 

Czas cyklu [s] >=0.1 <0.4 

Czas cyklu smarowania [s] >=0.0 <0.1 

Czas dozowania stopu [s] >=0.0 <0.1 

Czas dozowania stopu 2 [s] >=0.1 <0.3 

Czas krzepnięcia t2 [s] >=0.0 <=1.0 

Czas przedmuchu [s] >=0.5 <0.6, >=0.8 <1.0 

Czas smarowania [s] >=0.5 <0.6, >=0.9 <1.0 

Dzienny numer wtrysku [j.] >=0.0 <0.9 

Filtr próżni 1 [mBar] >=0.4 <0.9 

Grubość piętki układu wlewowego [mm] >=0.1 <0.8 

Koncentrat [%] >=0.3 <=1.0 

Ciśnienie maksymalne [Bar] >=0.0 <0.8 
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Prędkość wtrysku maksymalna [m/s] >=0.3 <0.4, >=0.5 <0,6, >=0.7 <0,8, 

Opóźnienie multiplikacji [ms] >=0.3 <1.0 

Stała temperatura chłodzenia płyty [°C] >=0.1 <0.4, >=0.5 <0.8 

Poziom stopu w piecu podgrzewczym [mm] >=0.0 <0.1 

Poziom wody w strumieniu chłodzącym [mm] >=0.0 <0.9 

Czas drugiej fazy wtrysku [ms] >=0.3 <0.4, >=0.5 <0.7 

Profil próżni 1 [mBar] >=0.0 <0.3 

Profil próżni 2 [mBar >=0.0 <0.3 

Przepływ chłodzenia tłoka [l] >=0.3 <0.7, >=0.8 <=1.0 

Przepływ w obwodzie chłodzenia 1 [l] >=0.1 <0.3, >=0.4 <0.6, >=0.7 <0.9 

Przepływ w obwodzie chłodzenia 13 [l] >=0.5 <1.0 

Przepływ w obwodzie chłodzenia 14 [l] >=0.4 <0.6, >=0.7 <0.9 

Przepływ w obwodzie chłodzenia 15 [l] >=0.2 <0.6 

Przepływ w obwodzie chłodzenia 17 [l] >=0.3 <=1.0 

Przepływ w obwodzie chłodzenia 20 [l] >=0.2 <0.3, >=0.4 <0.5, >=0.6 <0.7, 

>=0.8 <0.9, <=1.0 

Przepływ w obwodzie chłodzenia 6 [l] >=0.3 <=1.0 

Prędkość we wlewach doprowadzających [m/s] >=0.2 <0.9 

Suw pierwszej fazy wtrysku [mm] >=0.2 <0.4, >=0.5 <0.8 

Suw docisku po multiplikacji [mm] >=0.3 <0.4, >=0.5 <0.7, >=0.8 <0.9 

Temperatura chłodzenia tłoka [°C] >=0.0 <0.6 

Temperatura stopu [°C] >=0.1 <0.9 

Temperatura termoregulatora 2.1 [°C] >=0.2 <0.8 

Temperatura termoregulatora 2.2 [°C] >=0.3 <0.7 

Temperatura termoregulatora 3.2 [°C] >=0.6 <=1.0 

Temperatura tulei 1 [°C] >=0.7 <1.0 

Temperatura tulei 2 [°C] >=0.8 <1.0 

Temperatura tulei 3 [°C] >=0.7 <1.0 

Temperatura tulei 4 [°C] >=0.8 <1.0 

Temperatura w obwodzie chłodzenia 1 [°C] >=0.0 <0.8 

Temperatura w obwodzie chłodzenia 13 [°C] >=0.1 <0.4, >=0.5 <0.9 

Temperatura w obwodzie chłodzenia 14 [°C] >=0.1 <0.3, >=0.4 <0.6 

Temperatura w obwodzie chłodzenia 15 [°C] >=0.1 <0.6 
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Temperatura w obwodzie chłodzenia 17 [°C] >=0.0 <0.8 

Temperatura w obwodzie chłodzenia 7 [°C] >=0.1 <0.3, >=0.4 <0.6 

Temperatura wody miejskiej [°C] >=0.1 <0.7 

Temperatura wody w instalacji [°C] >=0.2 <0.3, >=0.5 <0.6, >=0.7 <0.8,  

Wartość próżni 1 [mBar] >=0.0 <0.5 

Wartość próżni 2 [mBar] >=0.0 <0.5 

Zużycie smaru [l] >=0.0 <0.1, >=0.2 <0.3, >=0.4 <0.5, 

 

5.2.1.2. Wnioski 

Na podstawie przeprowadzonej analizy i optymalizacji wartości danych parametrów 

zastąpiono zidentyfikowane wartości błędne lub odstające za pomocą teoretycznych wartości 

minimalnych i maksymalnych danej zmiennej, wyznaczonych bez brania pod uwagę wartości 

odstających [146] i część zmiennych (tj. czas cyklu smarowania [s] i poziom stopu w piecu 

podgrzewczym [mm]) za pomocą średnich wartości danej zmiennej.  

Przeprowadzona analiza potwierdziła cechy danych przemysłowych, czyli:  

• niedoskonała jakość danych, 

• brak równowagi w reprezentacji wartości,  

• różnorodność typów rozkładów zmiennych,  

• występowanie korelacji pomiędzy różnymi parametrami procesu.  

Pierwsza cecha jest związana z zauważonymi wartościami odstającymi oraz brakującymi, 

zdublowanymi, nieprecyzyjnymi danymi widocznymi na wykresach. Przykładem może być 

wykres zmiennej poziom stopu w piecu podgrzewczym [mm] na którym widoczne są wartości 

zawierające się w przedziale od 0 do 600 i dodatkowo 6% wartości w przedziale od 6533 do 

6548 (rys. 5.2.1.58.). Drugim przykładem może być wykres zmiennej filtr próżni 1 [mBar] (rys. 

5.2.1.59.), na którym wartości odstające widoczne są doskonale. Cecha nazywana niedoskonałą 

jakością jest również definiowała ukryte niepoprawności, które wydawały się być uzasadnione 

i poprawne z punktu widzenia wartości zmiennej jednak okazały się być kodami błędu 

aparatury kontrolno-pomiarowej. Przykładem jest wykres zmiennej zależnej, której wartości 

zawierały wartość równą 91, będącą bardzo racjonalną, gdyż z środka zakresu (rys. 5.2.1.60).  



112 
 

 

Rys.5.2.1.58. Wykres przebiegu zmiennej wejściowej: poziom stopu w piecu 

podgrzewczym, z posortowanymi wartościami zawierający niepoprawne wartości 

 

 

Rys.5.2.1.59. Wykres przebiegu zmiennej wejściowej: filtr próżni 1, z posortowanymi 

wartościami zawierający niepoprawne wartości 
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Rys.5.2.1.60. Wykres przebiegu zmiennej zależnej: przeciek w obwodzie wysokiego 

ciśnienia, z posortowanymi wartościami zawierający ukryte niepoprawne wartości 

 

Drugą cechą danych przemysłowych jest różnorodność typów rozkładów zmiennych, takich 

jak rozkład zbliżony do normalnego (Gaussa), rozkład zbliżony do Gamma i inne (rys.5.2.1.61., 

rys.5.2.1.62.). 

  

Rys.5.2.1.61. Wykres przebiegu zmiennej zależnej: grubość piętki układu wlewowego, z 

posortowanymi wartościami, z rozkładem zbliżonym do rozkładu normalnego  
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Rys.5.2.1.62. Wykres przebiegu zmiennej zależnej: przeciek w obwodzie wysokiego 

ciśnienia, z posortowanymi wartościami z rozkładem zbliżonym do rozkładu gamma 

 

Druga cecha, czyli brak równowagi w reprezentacji wartości stanowi istotny problem 

badawczy, gdyż z jednej strony dostępna jest duża ilość danych procesowych, z drugiej 

natomiast mała ilość danych o stanach krytycznych, czyli mała reprezentacja niektórych 

krytycznych wartości. Cecha ta jest widoczna na posortowanym wykresie przebiegu zmiennej 

zależnej (rys.5.2.1.57.). Wykres wskazuje (załamanie na krzywej), że mamy do czynienia z 

dwoma jakościowo i ilościowo różnymi zakresami wartości zmiennej zależnej, gdzie wartością 

graniczną jest 7,5. Ważne jest, że mamy aż 10 024 próbek w zakresie do 7,5, co stanowi 99,3% 

wyników i tylko 70 próbek od 7,5 do 171,86, co stanowi 0,7% wyników. Te rzadkie przypadki 

mogą zostać zignorowane przez niektóre modele oparte na danych. 

Ostatnia cecha może zostać rozszerzona ze względu na rodzaj i pochodzenie wskazywanych 

korelacji które zostaną dokładnie zbadane w kolejnym rozdziale wyróżniając korelacje:  

• naturalne (fizyczne), na przykład między dwiema temperaturami 

mierzonymi w sąsiednich obszarach odlewu lub między przepływem 

wody a jej temperaturą w tym samym kanale chłodzącym. Tego rodzaju 

skorelowane zmienne można łatwo zastąpić jedną zmienną, bardziej 

widoczną z punktu widzenia jakości produktu. 

• celowe, będące wynikiem działań operatorów lub personelu 

inżynierskiego. Tego rodzaju korelacje powinny zostać uzasadnione lub 

wyeliminowane.  

• przypadkowe, czyli wynikające z jednoczesnego występowania 

pewnych wartości w niektórych okresach.  
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5.2.2. Podział danych na zbiory do badań i dyskretyzacja danych 

W niniejszym rozdziale zaprezentowane zostaną wyniki podziału zbioru danych na pięć 

zbiorów danych do badań, wraz z uzasadnieniem zastosowanego podziału oraz metodyka 

przeprowadzonej dyskretyzacji wartości zmiennych zależnych i niezależnych dla każdego z 

pięciu zestawów danych do badań. Krok ten jest niezbędny i wymaga wiedzy o procesie celem 

przygotowania danych do analizy istotności parametrów oraz do zaawansowanego 

modelowania opartego na zbiorach danych. 

5.2.2.1. Metodyka i wyniki badań 

W przypadku analizy zbioru danych, w którym liczba rekordów reprezentujących krytyczne 

wartości wyników procesu jest mała, niektóre korelacje pomiędzy zmiennymi wejściowymi i 

wyjściowymi mogą być przypadkowe. Zależności te mogą przesłaniać ważne zależności 

fizyczne w procesie, ze względu na słabość i złożoność tych ostatnich. Wartości niektórych 

zmiennych wejściowych mogą być celowo wprowadzane przez pracowników jako reakcja na 

wartości innych zmiennych lub po prostu na podstawie ich indywidualnych doświadczeń, co 

prowadzi do "lokalnych" korelacji z danymi wyjściowymi pojawiającymi się w danych. 

Ostatecznie model procesu wejście-wyjście (ang. input-output) może więc łatwo 

odzwierciedlać nieistniejące zależności.   

Tego typu wnioskowanie doprowadziło nas do koncepcji przesłaniania rzeczywistych relacji 

w procesie przez relacje przypadkowe czy sztucznie wprowadzone do danych, które modele 

będą wskazywać jako równie ważne. Identyfikacja takich "pasożytniczych" zmiennych jest 

trudna.  Można zastosować w tym przypadku podział głównego zbioru danych na zbiory 

testowe zawierające różne zakresy wartości zmiennej zależnej. Dlatego w niniejszym rozdziale 

zaprezentowana zostanie metodyka podziału badanego rzeczywistego zbioru danych na pięć 

zbiorów danych do badań, z których każdy zawierał inną liczbę obserwacji i z inną proporcją 

rekordów o mniejszych wartościach zmiennej zależnej. 

Pierwszy zbiór danych do badań zawierał wszystkie dane ze zbioru danych rzeczywistych 

(rys.5.2.1.57.). Drugi zbiór danych do badań natomiast zawierał tylko obserwacje, dla których 

zmienna zależna przyjmowała wartości >=7,5 (rys.5.2.2.1). W niniejszym zbiorze można 

zaobserwować wysoką zmienność wartości zmiennej zależnej (rys.5.2.2.2). Z uwagi na tę 

wysoką zmienność, modelowanie oparte na tym zbiorze danych do badań, może dać 

wartościowe wyniki dla niniejszej rozprawy. 
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Rys.5.2.2.1. Wykres przebiegu zmiennej zależnej, z posortowanymi wartościami, w 

drugim zbiorze danych do badań 

 

Rys.5.2.2.2. Histogram zmiennej zależnej, w drugim zbiorze danych do badań 

 

Trzeci zbiór danych do badań zawierał tylko obserwacje, dla których zmienna zależna 

przyjmowała wartości < 7,5 (rys.5.2.2.3.). W niniejszym zbiorze również można zaobserwować 

wysoką zmienność wartości zmiennej zależnej (rys.5.2.2.4.).  Rozkład zmiennej zależnej jest 

zbliżony do normalnego, ale zaznacza się zwiększone występowanie wartości podwyższonych. 

Modelowanie oparte na tym zbiorze danych do badań może dać interesujące wyniki dotyczące 

trendów występujących w danych powszechnie.  
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Rys.5.2.2.3. Wykres przebiegu zmiennej zależnej, z posortowanymi wartościami, w 

trzecim zbiorze danych do badań 

 

 

Rys.5.2.2.4. Histogram zmiennej zależnej w trzecim zbiorze danych do badań 

 

Czwarty zbiór danych do badań zawierał w sobie wartości zbioru drugiego, czyli 

obserwacje, dla których zmienna zależna przyjmowała wartości < 7,5 oraz taką samą ilość 

obserwacji pochodzących z górnego zakresu zbioru trzeciego (rys.5.2.2.5.). Modelowanie 

oparte na tym zbiorze danych, pozwoli na najbardziej wartościowe wnioski, w temacie wpływu 

określonych parametrów na zwiększenie wartości zmiennej zależnej w niepożądanym stopniu, 

a więc na powstanie wady w produkcie. 
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Rys.5.2.2.5. Wykres przebiegu zmiennej zależnej, z posortowanymi wartościami, w 

czwartym zbiorze danych do badań 

 

Piąty zbiór danych do badań zawierał w sobie wartości zbioru drugiego, czyli obserwacje, 

dla których zmienna zależna przyjmowała wartości < 7,5 oraz taką samą ilość obserwacji 

pochodzących ze zbioru trzeciego, wybranych losowo, co 144 rekordy (rys.5.2.2.6.). 

 

Rys.5.2.2.6. Wykres przebiegu zmiennej zależnej, z posortowanymi wartościami, w 

piątym zbiorze danych do badań 

 

Zbiory pierwszy i trzeci nazywane są dalej zbiorami dużymi, zaś drugi, czwarty i piąty – 

zbiorami małymi. 

Dane wejściowe i wyjściowe zostały następnie zdyskretyzowane (celem przygotowania ich 

do dalszych analiz), dla każdego z pięciu zestawów danych, w celu wykrycia wpływu 

parametrów procesu na wartość przecieku. Zakresy przedziałów określono poprzez wizualną 

ocenę, uporządkowanych według wartości przyjmowanych przez dany parametr (wartości 

typowe, podwyższone i obniżone). Celem przeprowadzenia tej analizy stworzono plik w 
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programie Microsoft Excel przedstawiony na rys.5.2.2.7.. 

 

Rys.5.2.2.7. Tabele umożliwiające dyskretyzację wartości zmiennych zależnych i 

niezależnych 

 

W celu otrzymania zdyskretyzowanych wartości zmiennej należy: 

• w punkcie 1, wprowadzić wartości ciągłe określonej zmiennej, 

• w punkcie 2, wprowadzić liczbę obserwacji,  

• w punkcie 3 otrzymać najmniejszą i największą wartość ze zbioru liczb 

typu ciągłego wprowadzonych w punkcje 1, obliczaną w oparciu o 

funkcje =MAX () i funkcję =MIN (), 

• w punkcie 4, zadać górne wartości przedziałów, 

• w punkcie 5, otrzymać wynik, czy dana wartość typu ciągłego znajduje 

się w danym przedziale, obliczony w oparciu o funkcję =JEŻELI (), 

• w punkcie 6, otrzymać liczności wartości zawartych w zadanych 

przedziałach, w oparciu o funkcję =LICZ.JEŻELI(), 

• w punkcie 7, otrzymać wynikowe zdyskretyzowane wartości zmiennej. 

Na podstawie otrzymanych danych tworzone są poniższe wykresy (rys.5.2.2.8., rys.5.2.2.9.) 

umożliwiające weryfikację zadanych przedziałów poprzez wizualną ocenę, uporządkowanych 

według wartości przyjmowanych przez dany parametr (wartości typowe, podwyższone i 

obniżone).  
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Rys.5.2.2.8. Histogram automatyczny dla wartości oryginalnych (typu ciągłego) dla 

zmiennej niezależnej: ciśnienie sprężonego powietrza 

 

Rys.5.2.2.9. Wykres ilości obserwacji w poszczególnych przedziałach dla zmiennej 

niezależnej: ciśnienie sprężonego powietrza 

 

Opisaną procedurę dyskretyzacji danych powtórzono 290 razy, gdyż obliczenia wykonano 

dla 56 zmiennych niezależnych dla każdego utworzonych pięciu zestawów danych dodatkowo 

dla zmiennej niezależnej według 2 i 4 przedziałów, również dla każdego z utworzonych pięciu 

zbiorów danych. Wyniki zapisano w tab.5.60.-tab.5.64.. 
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Tab. 5.60.: Ustalane przedziały i wystąpienia danych wartości w przedziałach dla pierwszego 

zbioru danych do badań  

 

Wartość 

zdyskretyzowana 
1 2 3 4 5 

Ciśnienie sprężonego powietrza 

[Bar] 

Górne granice 

przedziałów 
5 6    

Liczby wystąpień 2685 7409    

Ciśnienie wody miejskiej [Bar] 

Górne granice 

przedziałów 
3 4 5   

Liczby wystąpień 1850 6404 1840   

Ciśnienie wody obiegowej [Bar] 

Górne granice 

przedziałów 
2 3    

Liczby wystąpień 5241 4853    

Czas pierwszej fazy wtrysku [ms] 

Górne granice 

przedziałów 
2241 2266 2289 2333  

Liczby wystąpień 2594 2584 2495 2421  

Czas chłodzenia obwodu 1 [s] 

Górne granice 

przedziałów 
30 31 32   

Liczby wystąpień 45 9984 65   

Czas cyklu [s] 

Górne granice 

przedziałów 
85 100 172,61   

Liczby wystąpień 7 9460 627   

Czas cyklu smarowania [s] 

Górne granice 

przedziałów 
23 27,5 31,5   

Liczby wystąpień 9705 336 53   

Czas dozowania stopu [s] 

Górne granice 

przedziałów 
11,1 32 33   

Liczby wystąpień 9420 504 170   

Czas dozowania stopu 2 [s] 

Górne granice 

przedziałów 
65 75 106,6   

Liczby wystąpień 163 9534 397   

Czas krzepnięcia t2 [s] 

Górne granice 

przedziałów 
10 11    

Liczby wystąpień 7527 2567    

Czas przedmuchu [s] 

Górne granice 

przedziałów 
6,7 7,5 11,7   

Liczby wystąpień 163 9315 616   

Czas smarowania [s] 

Górne granice 

przedziałów 
6 9,30    

Liczby wystąpień 9839 255    

Dzienny numer wtrysku [j.] 

Górne granice 

przedziałów 
100 210 349 663  

Liczby wystąpień 2549 2501 2527 2517  

Filtr próżni 1 [mBar] 

Górne granice 

przedziałów 
1350 1400 1460 1613  

Liczby wystąpień 2561 2508 2503 2522  

Grubość piętki układu wlewowego 

[mm] 

Górne granice 

przedziałów 
35,5 41,5 45   

Liczby wystąpień 1446 7970 678   

Koncentrat [%] 

Górne granice 

przedziałów 
2,1 2,6 2,7   

Liczby wystąpień 633 4846 4615   

Ciśnienie maksymalne [Bar] 
Górne granice 

przedziałów 
340 344 346   
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Liczby wystąpień 1601 7982 511   

Prędkość wtrysku maksymalna [m/s] 

Górne granice 

przedziałów 
5,9 6    

Liczby wystąpień 5233 4861    

Opóźnienie multiplikacji [ms] 

Górne granice 

przedziałów 
170 175 176   

Liczby wystąpień 1477 8467 150   

Stała temperatura chłodzenia płyty 

[°C] 

Górne granice 

przedziałów 
28 32    

Liczby wystąpień 6483 3611    

Poziom stopu w piecu 

podgrzewczym [mm] 

Górne granice 

przedziałów 
1000 6548,6    

Liczby wystąpień 9467 627    

Poziom wody w strumieniu 

chłodzącym [mm] 

Górne granice 

przedziałów 
246 269 298   

Liczby wystąpień 3367 3451 3276   

Czas drugiej fazy wtrysku [ms] 

Górne granice 

przedziałów 
88 89 90   

Liczby wystąpień 3383 4928 1783   

Profil próżni 1 [mBar] 

Górne granice 

przedziałów 
1170 1300 1384   

Liczby wystąpień 8328 1724 42   

Profil próżni 2 [mBar 

Górne granice 

przedziałów 
1050 1170 1321   

Liczby wystąpień 1554 2013 6527   

Przepływ chłodzenia tłoka [l] 

Górne granice 

przedziałów 
15 20 26   

Liczby wystąpień 336 6876 2882   

Przepływ w obwodzie chłodzenia 1 

[l] 

Górne granice 

przedziałów 
24 26 28   

Liczby wystąpień 1019 6253 2822   

Przepływ w obwodzie chłodzenia 13 

[l] 

Górne granice 

przedziałów 
15 17 19 20  

Liczby wystąpień 384 5595 2377 1738  

Przepływ w obwodzie chłodzenia 14 

[l] 

Górne granice 

przedziałów 
26 27 28 29  

Liczby wystąpień 897 2472 5610 1115  

Przepływ w obwodzie chłodzenia 15 

[l] 

Górne granice 

przedziałów 
25 26 27 28  

Liczby wystąpień 2210 4870 2486 528  

Przepływ w obwodzie chłodzenia 17 

[l] 

Górne granice 

przedziałów 
23 26 32 33 36 

Liczby wystąpień 2155 2049 2417 1758 1715 

Przepływ w obwodzie chłodzenia 20 

[l] 

Górne granice 

przedziałów 
22 23 25   

Liczby wystąpień 1733 5292 3069   

Przepływ w obwodzie chłodzenia 6 

[l] 

Górne granice 

przedziałów 
28 29 30 33  

Liczby wystąpień 3022 2356 3255 1461  

Prędkość we wlewach 

doprowadzających [m/s] 

Górne granice 

przedziałów 
38,10 38,80 39,43   

Liczby wystąpień 386 7098 2610   

Suw pierwszej fazy wtrysku [mm] 

Górne granice 

przedziałów 
536 537 538 539 540 

Liczby wystąpień 232 2671 4440 2415 336 
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Suw docisku po multiplikacji [mm] 

Górne granice 

przedziałów 
17 18 19 20  

Liczby wystąpień 194 2172 6175 1553  

Temperatura chłodzenia tłoka [°C] 

Górne granice 

przedziałów 
32 33 35   

Liczby wystąpień 4919 4044 1131   

Temperatura stopu [°C] 

Górne granice 

przedziałów 
674 684 689,2   

Liczby wystąpień 402 8687 1005   

Temperatura termoregulatora 2.1 

[°C] 

Górne granice 

przedziałów 
68 72 75   

Liczby wystąpień 2810 5806 1478   

Temperatura termoregulatora 2.2 

[°C] 

Górne granice 

przedziałów 
71 73 74   

Liczby wystąpień 3284 5836 974   

Temperatura termoregulatora 3.2 

[°C] 

Górne granice 

przedziałów 
148 152 156   

Liczby wystąpień 2890 4466 2738   

Temperatura tulei 1 [°C] 

Górne granice 

przedziałów 
205 223 242   

Liczby wystąpień 722 8763 609   

Temperatura tulei 2 [°C] 

Górne granice 

przedziałów 
215 224 235   

Liczby wystąpień 1158 7678 1258   

Temperatura tulei 3 [°C] 

Górne granice 

przedziałów 
212 230 256   

Liczby wystąpień 719 8716 659   

Temperatura tulei 4 [°C] 

Górne granice 

przedziałów 
220 239 258   

Liczby wystąpień 716 8656 722   

Temperatura w obwodzie chłodzenia 

1 [°C] 

Górne granice 

przedziałów 
29 33 39   

Liczby wystąpień 90 9625 379   

Temperatura w obwodzie chłodzenia 

13 [°C] 

Górne granice 

przedziałów 
32 37 40   

Liczby wystąpień 103 9770 221   

Temperatura w obwodzie chłodzenia 

14 [°C] 

Górne granice 

przedziałów 
31 32 33 34  

Liczby wystąpień 554 4481 4184 875  

Temperatura w obwodzie chłodzenia 

15 [°C] 

Górne granice 

przedziałów 
32 33 34 35 36 

Liczby wystąpień 1187 3707 4208 792 200 

Temperatura w obwodzie chłodzenia 

17 [°C] 

Górne granice 

przedziałów 
28 33 35   

Liczby wystąpień 3827 5695 572   

Temperatura w obwodzie chłodzenia 

7 [°C] 

Górne granice 

przedziałów 
27 28 29 30  

Liczby wystąpień 970 5885 2842 397  

Temperatura wody miejskiej [°C] 

Górne granice 

przedziałów 
18 25 27   

Liczby wystąpień 209 9731 154   

Temperatura wody w instalacji [°C] 

Górne granice 

przedziałów 
23 24 25   

Liczby wystąpień 390 4599 5105   

Wartość próżni 1 [mBar] 
Górne granice 

przedziałów 
235 435 599   
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Tab. 5.61.: Ustalane przedziały i wystąpienia danych wartości w przedziałach dla drugiego 

zbioru danych do badań 

 

  

Wartość 

zdyskretyzowana 1 2 3 4 

Ciśnienie sprężonego powietrza 

[Bar] 

Górne granice 

przedziałów 5 6     

Liczby wystąpień 21 49     

Ciśnienie wody miejskiej [Bar] 

Górne granice 

przedziałów 3 4 5   

Liczby wystąpień 16 43 11   

Ciśnienie wody obiegowej [Bar] 

Górne granice 

przedziałów 2 3     

Liczby wystąpień 40 30     

Czas pierwszej fazy wtrysku [ms] 

Górne granice 

przedziałów 2240 2280 2340   

Liczby wystąpień 13 41 16   

Czas chłodzenia obwodu 1 [s] 

Górne granice 

przedziałów 31       

Liczby wystąpień 70       

Czas cyklu [s] 

Górne granice 

przedziałów 100 165,5     

Liczby wystąpień 61 9     

Czas cyklu smarowania [s] 

Górne granice 

przedziałów 23 31,5     

Liczby wystąpień 58 12     

Czas dozowania stopu [s] 

Górne granice 

przedziałów 11,1 33     

Liczby wystąpień 67 3     

Czas dozowania stopu 2 [s] 

Górne granice 

przedziałów 61 80 106,6   

Liczby wystąpień 3 62 5   

Czas krzepnięcia t2 [s] 

Górne granice 

przedziałów 10 11     

Liczby wystąpień 32 38     

Czas przedmuchu [s] 

Górne granice 

przedziałów 8 11,7     

Liczby wystąpień 57 13     

Liczby wystąpień 1528 7287 1279   

Wartość próżni 2 [mBar] 

Górne granice 

przedziałów 
400 500 659   

Liczby wystąpień 3532 6263 299   

Zużycie smaru [l] 

Górne granice 

przedziałów 
0 1 2   

Liczby wystąpień 8315 1543 236   

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 2CAT 

Górne granice 

przedziałów 
7,4999 171,86    

Liczby wystąpień 10024 70    

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 4CAT 

Górne granice 

przedziałów 
3 7,4999 15 171,86  

Liczby wystąpień 8965 1059 39 31  
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Czas smarowania [s] 

Górne granice 

przedziałów 6 9,30     

Liczby wystąpień 60 10     

Dzienny numer wtrysku [j.] 

Górne granice 

przedziałów 100 300 652   

Liczby wystąpień 28 20 22   

Filtr próżni 1 [mBar] 

Górne granice 

przedziałów 1300 1500 1592   

Liczby wystąpień 3 58 9   

Grubość piętki układu wlewowego 

[mm] 

Górne granice 

przedziałów 35,5 42     

Liczby wystąpień 7 63     

Koncentrat [%] 

Górne granice 

przedziałów 2,3 2,7     

Liczby wystąpień 12 58     

Ciśnienie maksymalne [Bar] 

Górne granice 

przedziałów 340 343 345   

Liczby wystąpień 19 44 7   

Prędkość wtrysku maksymalna 

[m/s] 

Górne granice 

przedziałów 5,85 5,9 6   

Liczby wystąpień 9 40 21   

Opóźnienie multiplikacji [ms] 

Górne granice 

przedziałów 171 174 176   

Liczby wystąpień 13 44 13   

Stała temperatura chłodzenia 

płyty [°C] 

Górne granice 

przedziałów 28 32     

Liczby wystąpień 26 44     

Poziom stopu w piecu 

podgrzewczym [mm] 

Górne granice 

przedziałów 500 600     

Liczby wystąpień 11 59     

Poziom wody w strumieniu 

chłodzącym [mm] 

Górne granice 

przedziałów 260 298     

Liczby wystąpień 31 39     

Czas drugiej fazy wtrysku [ms] 

Górne granice 

przedziałów 88 89 90,0   

Liczby wystąpień 26 32 12   

Profil próżni 1 [mBar] 

Górne granice 

przedziałów 1100 1298     

Liczby wystąpień 25 45     

Profil próżni 2 [mBar 

Górne granice 

przedziałów 1200 1317     

Liczby wystąpień 10 60     

Przepływ chłodzenia tłoka [l] 

Górne granice 

przedziałów 24 26     

Liczby wystąpień 33 37     

Przepływ w obwodzie chłodzenia 

1 [l] 

Górne granice 

przedziałów 25 28     

Liczby wystąpień 45 25     

Przepływ w obwodzie chłodzenia 

13 [l] 

Górne granice 

przedziałów 18 19 20   

Liczby wystąpień 19 36 15   

Przepływ w obwodzie chłodzenia 

14 [l] 

Górne granice 

przedziałów 26 27 29   

Liczby wystąpień 18 29 23   

Przepływ w obwodzie chłodzenia 

15 [l] 

Górne granice 

przedziałów 25 26 27 28 

Liczby wystąpień 17 21 11 21 
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Przepływ w obwodzie chłodzenia 

17 [l] 

Górne granice 

przedziałów 20 30 35   

Liczby wystąpień 18 25 27   

Przepływ w obwodzie chłodzenia 

20 [l] 

Górne granice 

przedziałów 22 23 25   

Liczby wystąpień 31 27 12   

Przepływ w obwodzie chłodzenia 

6 [l] 

Górne granice 

przedziałów 29 33     

Liczby wystąpień 38 32     

Prędkość we wlewach 

doprowadzających [m/s] 

Górne granice 

przedziałów 38,4 38,8 39,27   

Liczby wystąpień 13 37 20   

Suw pierwszej fazy wtrysku [mm] 

Górne granice 

przedziałów 537 538 540   

Liczby wystąpień 22 29 19   

Suw docisku po multiplikacji 

[mm] 

Górne granice 

przedziałów 17 18 19 20 

Liczby wystąpień 5 21 36 8 

Temperatura chłodzenia tłoka 

[°C] 

Górne granice 

przedziałów 30 33 35   

Liczby wystąpień 9 57 4   

Temperatura stopu [°C] 

Górne granice 

przedziałów 678 688,5     

Liczby wystąpień 30 40     

Temperatura termoregulatora 2.1 

[°C] 

Górne granice 

przedziałów 67 72 75   

Liczby wystąpień 17 41 12   

Temperatura termoregulatora 2.2 

[°C] 

Górne granice 

przedziałów 72 74     

Liczby wystąpień 30 40     

Temperatura termoregulatora 3.2 

[°C] 

Górne granice 

przedziałów 150 156     

Liczby wystąpień 44 26     

Temperatura tulei 1 [°C] 

Górne granice 

przedziałów 208 218 229   

Liczby wystąpień 14 37 19   

Temperatura tulei 2 [°C] 

Górne granice 

przedziałów 218 226 232   

Liczby wystąpień 15 42 13   

Temperatura tulei 3 [°C] 

Górne granice 

przedziałów 218 228 236   

Liczby wystąpień 18 36 16   

Temperatura tulei 4 [°C] 

Górne granice 

przedziałów 228 236 245   

Liczby wystąpień 20 34 16   

Temperatura w obwodzie 

chłodzenia 1 [°C] 

Górne granice 

przedziałów 30 33 39   

Liczby wystąpień 4 58 8   

Temperatura w obwodzie 

chłodzenia 13 [°C] 

Górne granice 

przedziałów 34 35 38   

Liczby wystąpień 26 31 13   

Temperatura w obwodzie 

chłodzenia 14 [°C] 

Górne granice 

przedziałów 31 32 33 34 

Liczby wystąpień 8 16 32 14 

Temperatura w obwodzie 

chłodzenia 15 [°C] 

Górne granice 

przedziałów 32 34 36   

Liczby wystąpień 11 52 7   
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Temperatura w obwodzie 

chłodzenia 17 [°C] 

Górne granice 

przedziałów 28 33 35   

Liczby wystąpień 28 32 10   

Temperatura w obwodzie 

chłodzenia 7 [°C] 

Górne granice 

przedziałów 27 28 29 30 

Liczby wystąpień 7 29 29 5 

Temperatura wody miejskiej [°C] 

Górne granice 

przedziałów 20 22 26   

Liczby wystąpień 20 33 17   

Temperatura wody w instalacji 

[°C] 

Górne granice 

przedziałów 24 25     

Liczby wystąpień 32 38     

Wartość próżni 1 [mBar] 

Górne granice 

przedziałów 300 400 490   

Liczby wystąpień 10 49 11   

Wartość próżni 2 [mBar] 

Górne granice 

przedziałów 450 480 526   

Liczby wystąpień 14 45 11   

Zużycie smaru [l] 

Górne granice 

przedziałów 0 2     

Liczby wystąpień 60 10     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 2CAT 

Górne granice 

przedziałów 25 171,86     

Liczby wystąpień 52 18     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 4CAT 

Górne granice 

przedziałów 10 25 100 171,86 

Liczby wystąpień 25 27 9 9 

 

Tab. 5.62.: Ustalane przedziały i wystąpienia danych wartości w przedziałach dla trzeciego 

zbioru danych do badań  

 

  

Wartość 

zdyskretyzowana 1 2 3 4 5 

Ciśnienie sprężonego powietrza 

[Bar] 

Górne granice 

przedziałów 5 6       

Liczby wystąpień 2664 7360       

Ciśnienie wody miejskiej [Bar] 

Górne granice 

przedziałów 3 4 5     

Liczby wystąpień 1834 6361 1829     

Ciśnienie wody obiegowej [Bar] 

Górne granice 

przedziałów 2 3       

Liczby wystąpień 5201 4823       

Czas pierwszej fazy wtrysku [ms] 

Górne granice 

przedziałów 2241 2266 2289 2333   

Liczby wystąpień 2581 2553 2480 2410   

Czas chłodzenia obwodu 1 [s] 

Górne granice 

przedziałów 30 31 32     

Liczby wystąpień 44 9915 65     

Czas cyklu [s] 

Górne granice 

przedziałów 85 100 172,61     

Liczby wystąpień 7 9399 618     

Czas cyklu smarowania [s] 

Górne granice 

przedziałów 23 31,5       

Liczby wystąpień 9647 377       

Czas dozowania stopu [s] 
Górne granice 

przedziałów 11,1 32 33     
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Liczby wystąpień 9353 503 168     

Czas dozowania stopu 2 [s] 

Górne granice 

przedziałów 65 75 106,6     

Liczby wystąpień 160 9472 392     

Czas krzepnięcia t2 [s] 

Górne granice 

przedziałów 10 11       

Liczby wystąpień 7457 2567       

Czas przedmuchu [s] 

Górne granice 

przedziałów 6,7 7,5 11,7     

Liczby wystąpień 163 9258 603     

Czas smarowania [s] 

Górne granice 

przedziałów 6 9,30       

Liczby wystąpień 9779 245       

Dzienny numer wtrysku [j.] 

Górne granice 

przedziałów 100 210 349 663   

Liczby wystąpień 2521 2487 2512 2504   

Filtr próżni 1 [mBar] 

Górne granice 

przedziałów 1350 1400 1460 1613   

Liczby wystąpień 2553 2491 2472 2508   

Grubość piętki układu wlewowego 

[mm] 

Górne granice 

przedziałów 35,5 41,5 45     

Liczby wystąpień 1439 7908 677     

Koncentrat [%] 

Górne granice 

przedziałów 2,1 2,6 2,7     

Liczby wystąpień 632 4812 4580     

Ciśnienie maksymalne [Bar] 

Górne granice 

przedziałów 340 344 346     

Liczby wystąpień 1582 7933 509     

Prędkość wtrysku maksymalna 

[m/s] 

Górne granice 

przedziałów 5,9 6       

Liczby wystąpień 5184 4840       

Opóźnienie multiplikacji [ms] 

Górne granice 

przedziałów 170 175 176     

Liczby wystąpień 1473 8404 147     

Stała temperatura chłodzenia płyty 

[°C] 

Górne granice 

przedziałów 28 32       

Liczby wystąpień 6457 3567       

Poziom stopu w piecu 

podgrzewczym [mm] 

Górne granice 

przedziałów 1000 6548,6       

Liczby wystąpień 9397 627       

Poziom wody w strumieniu 

chłodzącym [mm] 

Górne granice 

przedziałów 246 269 298     

Liczby wystąpień 3355 3420 3249     

Czas drugiej fazy wtrysku [ms] 

Górne granice 

przedziałów 88 89 90,0     

Liczby wystąpień 3357 4896 1771     

Profil próżni 1 [mBar] 

Górne granice 

przedziałów 1170 1300 1384     

Liczby wystąpień 8265 1717 42     

Profil próżni 2 [mBar 

Górne granice 

przedziałów 1050 1170 1321     

Liczby wystąpień 1551 2007 6466     

Przepływ chłodzenia tłoka [l] 

Górne granice 

przedziałów 15 20 26     

Liczby wystąpień 335 6855 2834     

Przepływ w obwodzie chłodzenia 1 

[l] 

Górne granice 

przedziałów 24 26 28     
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Liczby wystąpień 992 6222 2810     

Przepływ w obwodzie chłodzenia 

13 [l] 

Górne granice 

przedziałów 15 17 19 20   

Liczby wystąpień 383 5581 2337 1723   

Przepływ w obwodzie chłodzenia 

14 [l] 

Górne granice 

przedziałów 26 27 28 29   

Liczby wystąpień 879 2443 5590 1112   

Przepływ w obwodzie chłodzenia 

15 [l] 

Górne granice 

przedziałów 25 26 27 28   

Liczby wystąpień 2193 4849 2475 507   

Przepływ w obwodzie chłodzenia 

17 [l] 

Górne granice 

przedziałów 23 26 32 33 36 

Liczby wystąpień 2130 2033 2399 1753 1709 

Przepływ w obwodzie chłodzenia 

20 [l] 

Górne granice 

przedziałów 22 23 25     

Liczby wystąpień 1702 5265 3057     

Przepływ w obwodzie chłodzenia 6 

[l] 

Górne granice 

przedziałów 28 29 30 33   

Liczby wystąpień 3012 2328 3227 1457   

Prędkość we wlewach 

doprowadzających [m/s] 

Górne granice 

przedziałów 38,10 38,80 39,43     

Liczby wystąpień 381,00 7053,00 2590,00     

Suw pierwszej fazy wtrysku [mm] 

Górne granice 

przedziałów 536 537 538 539 540 

Liczby wystąpień 232 2649 4411 2399 333 

Suw docisku po multiplikacji [mm] 

Górne granice 

przedziałów 17 18 19 20   

Liczby wystąpień 189 2151 6139 1545   

Temperatura chłodzenia tłoka [°C] 

Górne granice 

przedziałów 32 33 35     

Liczby wystąpień 4881 4016 1127     

Temperatura stopu [°C] 

Górne granice 

przedziałów 674 684 689,2     

Liczby wystąpień 401 8624 999     

Temperatura termoregulatora 2.1 

[°C] 

Górne granice 

przedziałów 68 72 75     

Liczby wystąpień 2784 5774 1466     

Temperatura termoregulatora 2.2 

[°C] 

Górne granice 

przedziałów 71 73 74     

Liczby wystąpień 3267 5787 970     

Temperatura termoregulatora 3.2 

[°C] 

Górne granice 

przedziałów 148 152 156     

Liczby wystąpień 2863 4440 2721     

Temperatura tulei 1 [°C] 

Górne granice 

przedziałów 205 223 242     

Liczby wystąpień 718 8704 602     

Temperatura tulei 2 [°C] 

Górne granice 

przedziałów 215 224 235     

Liczby wystąpień 1153 7637 1234     

Temperatura tulei 3 [°C] 

Górne granice 

przedziałów 212 230 256     

Liczby wystąpień 716 8659 649     

Temperatura tulei 4 [°C] 

Górne granice 

przedziałów 220 239 258     

Liczby wystąpień 714 8596 714     

Temperatura w obwodzie 

chłodzenia 1 [°C] 

Górne granice 

przedziałów 29 33 39     
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Liczby wystąpień 90 9563 371     

Temperatura w obwodzie 

chłodzenia 13 [°C] 

Górne granice 

przedziałów 32 37 40     

Liczby wystąpień 97 9707 220     

Temperatura w obwodzie 

chłodzenia 14 [°C] 

Górne granice 

przedziałów 31 32 33 34   

Liczby wystąpień 546 4465 4152 861   

Temperatura w obwodzie 

chłodzenia 15 [°C] 

Górne granice 

przedziałów 32 33 34 35 36 

Liczby wystąpień 1176 3680 4183 789 196 

Temperatura w obwodzie 

chłodzenia 17 [°C] 

Górne granice 

przedziałów 28 33 35     

Liczby wystąpień 3799 5663 562     

Temperatura w obwodzie 

chłodzenia 7 [°C] 

Górne granice 

przedziałów 27 28 29 30   

Liczby wystąpień 963 5856 2813 392   

Temperatura wody miejskiej [°C] 

Górne granice 

przedziałów 18 25 27     

Liczby wystąpień 209 9662 153     

Temperatura wody w instalacji 

[°C] 

Górne granice 

przedziałów 23 24 25     

Liczby wystąpień 388 4569 5067     

Wartość próżni 1 [mBar] 

Górne granice 

przedziałów 235 435 599     

Liczby wystąpień 1523 7228 1273     

Wartość próżni 2 [mBar] 

Górne granice 

przedziałów 400 500 659     

Liczby wystąpień 3523 6204 297     

Zużycie smaru [l] 

Górne granice 

przedziałów 0 1 2     

Liczby wystąpień 8255 1534 235     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 2CAT 

Górne granice 

przedziałów 2 7,49       

Liczby wystąpień 7985 2039       

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 4CAT 

Górne granice 

przedziałów 1 2 3 7,49   

Liczby wystąpień 1730 6255 980 1059   

 

Tab. 5.63.: Ustalane przedziały i wystąpienia danych wartości w przedziałach dla czwartego 

zbioru danych do badań  

  

Wartość 

zdyskretyzowana 1 2 3 4 

Ciśnienie sprężonego powietrza 

[Bar] 

Górne granice 

przedziałów 5 6     

Liczby wystąpień 46 94     

Ciśnienie wody miejskiej [Bar] 

Górne granice 

przedziałów 3 4 5   

Liczby wystąpień 28 92 20   

Ciśnienie wody obiegowej [Bar] 

Górne granice 

przedziałów 2 3     

Liczby wystąpień 74 66     

Czas pierwszej fazy wtrysku [ms] 

Górne granice 

przedziałów 2240 2280 2330   

Liczby wystąpień 36 63 41   

Czas chłodzenia obwodu 1 [s] 
Górne granice 

przedziałów 31       
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Liczby wystąpień 140       

Czas cyklu [s] 

Górne granice 

przedziałów 100 165,5     

Liczby wystąpień 126 14     

Czas cyklu smarowania [s] 

Górne granice 

przedziałów 23 31,5     

Liczby wystąpień 125 15     

Czas dozowania stopu [s] 

Górne granice 

przedziałów 11,1 33     

Liczby wystąpień 136 4     

Czas dozowania stopu 2 [s] 

Górne granice 

przedziałów 61 80 106,6   

Liczby wystąpień 5 125 10   

Czas krzepnięcia t2 [s] 

Górne granice 

przedziałów 10 11     

Liczby wystąpień 94 46     

Czas przedmuchu [s] 

Górne granice 

przedziałów 8,0 11,7     

Liczby wystąpień 123 17     

Czas smarowania [s] 

Górne granice 

przedziałów 6 9,30     

Liczby wystąpień 129 11     

Dzienny numer wtrysku [j.] 

Górne granice 

przedziałów 100 300 652   

Liczby wystąpień 49 48 43   

Filtr próżni 1 [mBar] 

Górne granice 

przedziałów 1300 1500 1613   

Liczby wystąpień 8 115 17   

Grubość piętki układu wlewowego 

[mm] 

Górne granice 

przedziałów 35,5 45     

Liczby wystąpień 15 125     

Koncentrat [%] 

Górne granice 

przedziałów 2,3 2,7     

Liczby wystąpień 29 111     

Ciśnienie maksymalne [Bar] 

Górne granice 

przedziałów 340 343 345   

Liczby wystąpień 26 101 13   

Prędkość wtrysku maksymalna 

[m/s] 

Górne granice 

przedziałów 5,85 5,9 6   

Liczby wystąpień 13 75 52   

Opóźnienie multiplikacji [ms] 

Górne granice 

przedziałów 171 174 176   

Liczby wystąpień 37 80 23   

Stała temperatura chłodzenia płyty 

[°C] 

Górne granice 

przedziałów 28 32     

Liczby wystąpień 78 62     

Poziom stopu w piecu 

podgrzewczym [mm] 

Górne granice 

przedziałów 500 6533,6     

Liczby wystąpień 40 100     

Poziom wody w strumieniu 

chłodzącym [mm] 

Górne granice 

przedziałów 260 298     

Liczby wystąpień 61 79     

Czas drugiej fazy wtrysku [ms] 

Górne granice 

przedziałów 88 89 90,0   

Liczby wystąpień 51 62 27   

Profil próżni 1 [mBar] 
Górne granice 

przedziałów 1100 1298     
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Liczby wystąpień 36 104     

Profil próżni 2 [mBar 

Górne granice 

przedziałów 1200 1321     

Liczby wystąpień 39 101     

Przepływ chłodzenia tłoka [l] 

Górne granice 

przedziałów 20,6 26     

Liczby wystąpień 73 67     

Przepływ w obwodzie chłodzenia 1 

[l] 

Górne granice 

przedziałów 25 27 28   

Liczby wystąpień 56 77 7   

Przepływ w obwodzie chłodzenia 

13 [l] 

Górne granice 

przedziałów 18 19 20   

Liczby wystąpień 65 52 23   

Przepływ w obwodzie chłodzenia 

14 [l] 

Górne granice 

przedziałów 26 27 29   

Liczby wystąpień 23 45 72   

Przepływ w obwodzie chłodzenia 

15 [l] 

Górne granice 

przedziałów 25 26 27 28 

Liczby wystąpień 33 53 33 21 

Przepływ w obwodzie chłodzenia 

17 [l] 

Górne granice 

przedziałów 20 30 36   

Liczby wystąpień 20 39 81   

Przepływ w obwodzie chłodzenia 

20 [l] 

Górne granice 

przedziałów 22 23 25   

Liczby wystąpień 40 63 37   

Przepływ w obwodzie chłodzenia 6 

[l] 

Górne granice 

przedziałów 29 33     

Liczby wystąpień 72 68     

Prędkość we wlewach 

doprowadzających [m/s] 

Górne granice 

przedziałów 38,4 38,8 39,27   

Liczby wystąpień 30 69 41   

Suw pierwszej fazy wtrysku [mm] 

Górne granice 

przedziałów 537 538 540   

Liczby wystąpień 38 62 40   

Suw docisku po multiplikacji [mm] 

Górne granice 

przedziałów 17 18 19 20 

Liczby wystąpień 8 45 70 17 

Temperatura chłodzenia tłoka [°C] 

Górne granice 

przedziałów 30 33 35   

Liczby wystąpień 18 107 15   

Temperatura stopu [°C] 

Górne granice 

przedziałów 678 688,5     

Liczby wystąpień 60 80     

Temperatura termoregulatora 2.1 

[°C] 

Górne granice 

przedziałów 67 72 75   

Liczby wystąpień 28 93 19   

Temperatura termoregulatora 2.2 

[°C] 

Górne granice 

przedziałów 72 74     

Liczby wystąpień 73 67     

Temperatura termoregulatora 3.2 

[°C] 

Górne granice 

przedziałów 150 156     

Liczby wystąpień 80 60     

Temperatura tulei 1 [°C] 

Górne granice 

przedziałów 208 218 234   

Liczby wystąpień 25 83 32   

Temperatura tulei 2 [°C] 
Górne granice 

przedziałów 218 226 232   
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Liczby wystąpień 48 77 15   

Temperatura tulei 3 [°C] 

Górne granice 

przedziałów 218 228 240   

Liczby wystąpień 37 78 25   

Temperatura tulei 4 [°C] 

Górne granice 

przedziałów 228 236 246   

Liczby wystąpień 49 66 25   

Temperatura w obwodzie 

chłodzenia 1 [°C] 

Górne granice 

przedziałów 30 33 39   

Liczby wystąpień 16 112 12   

Temperatura w obwodzie 

chłodzenia 13 [°C] 

Górne granice 

przedziałów 34 35 39   

Liczby wystąpień 48 60 32   

Temperatura w obwodzie 

chłodzenia 14 [°C] 

Górne granice 

przedziałów 31 32 33 34 

Liczby wystąpień 13 44 62 21 

Temperatura w obwodzie 

chłodzenia 15 [°C] 

Górne granice 

przedziałów 32 34 36   

Liczby wystąpień 15 108 17   

Temperatura w obwodzie 

chłodzenia 17 [°C] 

Górne granice 

przedziałów 28 33 35   

Liczby wystąpień 42 85 13   

Temperatura w obwodzie 

chłodzenia 7 [°C] 

Górne granice 

przedziałów 27 28 29 30 

Liczby wystąpień 15 72 46 7 

Temperatura wody miejskiej [°C] 

Górne granice 

przedziałów 20 22 26   

Liczby wystąpień 38 59 43   

Temperatura wody w instalacji 

[°C] 

Górne granice 

przedziałów 24 25     

Liczby wystąpień 66 74     

Wartość próżni 1 [mBar] 

Górne granice 

przedziałów 300 400 534   

Liczby wystąpień 39 75 26   

Wartość próżni 2 [mBar] 

Górne granice 

przedziałów 450 480 526   

Liczby wystąpień 36 90 14   

Zużycie smaru [l] 

Górne granice 

przedziałów 0 2     

Liczby wystąpień 116 24     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 2CAT 

Górne granice 

przedziałów 7,49 171,86     

Liczby wystąpień 70 70     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] Leakage 4CAT 

Górne granice 

przedziałów 10 25 100 171,86 

Liczby wystąpień 95 27 9 9 

 

Tab. 5.64.: Ustalane przedziały i wystąpienia danych wartości w przedziałach dla piątego 

zbioru danych do badań  

  

Wartość 

zdyskretyzowana 1 2 3 4 

Ciśnienie sprężonego powietrza 

[Bar] 

Górne granice 

przedziałów 5 6     

Liczby wystąpień 37 103     

Ciśnienie wody miejskiej [Bar] 
Górne granice 

przedziałów 3 4 5   
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Liczby wystąpień 30 86 24   

Ciśnienie wody obiegowej [Bar] 

Górne granice 

przedziałów 2 3     

Liczby wystąpień 71 69     

Czas pierwszej fazy wtrysku [ms] 

Górne granice 

przedziałów 2240 2280 2330   

Liczby wystąpień 31 70 39   

Czas chłodzenia obwodu 1 [s] 

Górne granice 

przedziałów 31       

Liczby wystąpień 140       

Czas cyklu [s] 

Górne granice 

przedziałów 100 172,61     

Liczby wystąpień 125 15     

Czas cyklu smarowania [s] 

Górne granice 

przedziałów 23 31,5     

Liczby wystąpień 122 18     

Czas dozowania stopu [s] 

Górne granice 

przedziałów 11,1 33     

Liczby wystąpień 136 4     

Czas dozowania stopu 2 [s] 

Górne granice 

przedziałów 61 80 106,6   

Liczby wystąpień 3 129 8   

Czas krzepnięcia t2 [s] 

Górne granice 

przedziałów 10 11     

Liczby wystąpień 82 58     

Czas przedmuchu [s] 

Górne granice 

przedziałów 8,0 11,7     

Liczby wystąpień 121 19     

Czas smarowania [s] 

Górne granice 

przedziałów 6 9,30     

Liczby wystąpień 126 14     

Dzienny numer wtrysku [j.] 

Górne granice 

przedziałów 100 300 663   

Liczby wystąpień 44 50 46   

Filtr próżni 1 [mBar] 

Górne granice 

przedziałów 1300 1500 1593   

Liczby wystąpień 7 113 20   

Grubość piętki układu wlewowego 

[mm] 

Górne granice 

przedziałów 35,5 45     

Liczby wystąpień 17 123     

Koncentrat [%] 

Górne granice 

przedziałów 2,3 2,7     

Liczby wystąpień 27 113     

Ciśnienie maksymalne [Bar] 

Górne granice 

przedziałów 340 343 345   

Liczby wystąpień 27 97 16   

Prędkość wtrysku maksymalna 

[m/s] 

Górne granice 

przedziałów 5,85 5,9 6   

Liczby wystąpień 13 77 50   

Opóźnienie multiplikacji [ms] 

Górne granice 

przedziałów 171 174 176   

Liczby wystąpień 35 86 19   

Stała temperatura chłodzenia płyty 

[°C] 

Górne granice 

przedziałów 28 32     

Liczby wystąpień 67 73     

Poziom stopu w piecu 

podgrzewczym [mm] 

Górne granice 

przedziałów 500 6543,6     
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Liczby wystąpień 40 100     

Poziom wody w strumieniu 

chłodzącym [mm] 

Górne granice 

przedziałów 260 298     

Liczby wystąpień 68 72     

Czas drugiej fazy wtrysku [ms] 

Górne granice 

przedziałów 88 89 90,0   

Liczby wystąpień 45 65 30   

Profil próżni 1 [mBar] 

Górne granice 

przedziałów 1100 1298     

Liczby wystąpień 35 105     

Profil próżni 2 [mBar 

Górne granice 

przedziałów 1200 1321     

Liczby wystąpień 42 98     

Przepływ chłodzenia tłoka [l] 

Górne granice 

przedziałów 24 26     

Liczby wystąpień 87 53     

Przepływ w obwodzie chłodzenia 1 

[l] 

Górne granice 

przedziałów 25 28     

Liczby wystąpień 65 75     

Przepływ w obwodzie chłodzenia 

13 [l] 

Górne granice 

przedziałów 18 19 20   

Liczby wystąpień 62 54 24   

Przepływ w obwodzie chłodzenia 

14 [l] 

Górne granice 

przedziałów 26 27 29   

Liczby wystąpień 25 46 69   

Przepływ w obwodzie chłodzenia 

15 [l] 

Górne granice 

przedziałów 25 26 27 28 

Liczby wystąpień 30 52 33 25 

Przepływ w obwodzie chłodzenia 

17 [l] 

Górne granice 

przedziałów 20 30 36   

Liczby wystąpień 22 48 70   

Przepływ w obwodzie chłodzenia 

20 [l] 

Górne granice 

przedziałów 22 23 25   

Liczby wystąpień 48 61 31   

Przepływ w obwodzie chłodzenia 6 

[l] 

Górne granice 

przedziałów 29 33     

Liczby wystąpień 76 64     

Prędkość we wlewach 

doprowadzających [m/s] 

Górne granice 

przedziałów 38,4 38,8 39,27   

Liczby wystąpień 35 73 32   

Suw pierwszej fazy wtrysku [mm] 

Górne granice 

przedziałów 537 538 540   

Liczby wystąpień 44 60 36   

Suw docisku po multiplikacji [mm] 

Górne granice 

przedziałów 17 18 19 20 

Liczby wystąpień 7 32 88 13 

Temperatura chłodzenia tłoka [°C] 

Górne granice 

przedziałów 30 33 35   

Liczby wystąpień 17 106 17   

Temperatura stopu [°C] 

Górne granice 

przedziałów 678 689     

Liczby wystąpień 57 83     

Temperatura termoregulatora 2.1 

[°C] 

Górne granice 

przedziałów 67 72 75   

Liczby wystąpień 28 88 24   

Temperatura termoregulatora 2.2 

[°C] 

Górne granice 

przedziałów 72 74     



136 
 

Liczby wystąpień 66 74     

Temperatura termoregulatora 3.2 

[°C] 

Górne granice 

przedziałów 150 156     

Liczby wystąpień 83 57     

Temperatura tulei 1 [°C] 

Górne granice 

przedziałów 208 218 234   

Liczby wystąpień 24 84 32   

Temperatura tulei 2 [°C] 

Górne granice 

przedziałów 218 226 232   

Liczby wystąpień 46 76 18   

Temperatura tulei 3 [°C] 

Górne granice 

przedziałów 218 228 242   

Liczby wystąpień 41 71 28   

Temperatura tulei 4 [°C] 

Górne granice 

przedziałów 228 236 250   

Liczby wystąpień 48 69 23   

Temperatura w obwodzie 

chłodzenia 1 [°C] 

Górne granice 

przedziałów 30 33 39   

Liczby wystąpień 13 117 10   

Temperatura w obwodzie 

chłodzenia 13 [°C] 

Górne granice 

przedziałów 34 35 38   

Liczby wystąpień 50 65 25   

Temperatura w obwodzie 

chłodzenia 14 [°C] 

Górne granice 

przedziałów 31 32 33 34 

Liczby wystąpień 13 50 60 17 

Temperatura w obwodzie 

chłodzenia 15 [°C] 

Górne granice 

przedziałów 32 34 36   

Liczby wystąpień 23 103 14   

Temperatura w obwodzie 

chłodzenia 17 [°C] 

Górne granice 

przedziałów 28 33 35   

Liczby wystąpień 51 75 14   

Temperatura w obwodzie 

chłodzenia 7 [°C] 

Górne granice 

przedziałów 27 28 29 30 

Liczby wystąpień 12 69 53 6 

Temperatura wody miejskiej [°C] 

Górne granice 

przedziałów 20 22 26   

Liczby wystąpień 40 63 37   

Temperatura wody w instalacji 

[°C] 

Górne granice 

przedziałów 24 25     

Liczby wystąpień 71 69     

Wartość próżni 1 [mBar] 

Górne granice 

przedziałów 300 400 552   

Liczby wystąpień 36 79 25   

Wartość próżni 2 [mBar] 

Górne granice 

przedziałów 450 480 526   

Liczby wystąpień 59 68 13   

Zużycie smaru [l] 

Górne granice 

przedziałów 0 2     

Liczby wystąpień 110 30     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] 2CAT 

Górne granice 

przedziałów 7,49 171,86     

Liczby wystąpień 70 70     

Przeciek w obwodzie wysokiego 

ciśnienia [cm3] 4CAT 

Górne granice 

przedziałów 10 25 100 171,86 

Liczby wystąpień 95 27 9 9 
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5.2.2.2. Wnioski 

Opisaną procedurę zastosowano w celu przygotowania danych do dalszej identyfikacji 

ukrytych zależności, które się w nich znajdują. Zastosowana dyskretyzacja umożliwiła zamianę 

atrybutów liczbowych na określone atrybuty symboliczne typu porządkowego [147]. 

Przeprowadzona została poprzez podział dziedziny każdego badanego atrybutu liczbowego na 

zgodną z opracowanym planem badawczym liczbę przedziałów oraz zapisana jako przypisana 

tym przedziałom liczbę porządkową.  

Spośród wielu znanych metod dyskretyzacji takich jak podział równy między przedziałami, 

przedział o równej częstości, czyli zawierający mniej więcej taką samą liczbę obserwacji i 

innych, zdecydowano na zastosowanie podziału w odniesieniu do wizualnej oceny, 

uporządkowanych według wartości przyjmowanych przez dany parametr (wartości typowe, 

podwyższone i obniżone). 

Głównym wnioskiem z przeprowadzonej analizy jest jej waga i wpływ na kolejne etapy 

badań, gdyż decydują ona o jakości wyników dalszych analiz. Wymagała ona poświęcenia jej 

dużej ilości czasu, co jest uzasadnione, ponieważ cały proces modelowania opartego na danych, 

byłby bezcelowy bez właściwego ich przygotowania, stąd przygotowanie może stanowić klucz 

do sukcesu, czyli do osiągnięcia jak najlepszych wyników przewidywania powstawania wady 

w produkcie poprzez prawidłową diagnostykę jej przyczyn.  Niektóre działania mogą być 

określone sztuką, jako, że realizowana jest wizja twórcy w oparciu o jego eksperckie 

doświadczenie niż podążanie za formalnymi procedurami będące niejako rutynowym. 

5.2.3. Analiza istotności zmiennych  

W niniejszym rozdziale zaprezentowane zostaną wyniki statystycznego określenia istotnych 

parametrów procesu dla każdego z utworzonych 5 zbiorów danych do badań. Do oceny 

istotności użyto analizy ANOVA w czterech wariantach.  

Pierwszy wariant to klasyczna jednoczynnikowa ANOVA, którą zastosowano w celu 

określenia wpływu charakterystycznych poziomów parametrów procesu (wartości 

wejściowych) obserwowanych w danych. Drugi wariant to test Kruskala – Wallisa 

(jednoczynnikowa ANOVA w wersji rangowej), stosowany, gdy zmienna zależna ma rozkład 

inny niż normalny. Trzeci wariant to ANOVA klasyczna, odwrócona, wykonana celem 

sprawdzenia, czy w grupach o wysokiej i niskiej wartości zmiennej zależnej – przecieku, 

występuje silne zróżnicowanie któregoś z parametrów procesu, co może potencjalnie 

sugerować jego związek z wadą. Problemem w tym przypadku mogą być różne rozkłady 
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zmiennych niezależnych np. dwupunktowe (np. czas krzepnięcia t2 [s]), dlatego stosowanie 

analizy wariancji w tym przypadku może być problematyczne.  

Krok ten jest niezbędny i wymaga wiedzy o procesie celem przygotowania danych do 

zaawansowanego modelowania procesu. 

5.2.3.1. Metodyka i wyniki badań 

Kolejnym krokiem analizy danych jest wybór zmiennych do zaawansowanego modelowania 

opartego na danych, przeprowadzony poprzez analizę ich istotności, przy zastosowaniu analizy 

ANOVA w czterech wariantach. Idea wspomnianego podejścia statystycznego skupia się na 

tym, że w przypadku gdy w grupach obserwacji zawierających zróżnicowane poziomy 

zmiennej niezależnej, to również wartości zmiennej zależnej są istotnie zróżnicowane, 

wówczas tę zmienną niezależną powinno się uznać za istotną z punktu widzenia jej wpływu na 

wartość zmiennej zależnej.   

Kolejnym wariantem jest zastosowanie wnioskowania odwrotnego zakładającego, że jeżeli 

w danej grupie obserwacji zawarte są zróżnicowane poziomy zmiennej zależnej, to można 

zaobserwować wówczas istotnie różne wartości określonej zmiennej niezależnej, wtedy należy 

uznać tę zmienną za istotną. Należy pamiętać, iż dla pierwszego jak i dla drugiego założenia 

możliwa jest identyfikacja jedynie potencjalnie istotnych zmiennych. W niniejszej analizie nie 

uwzględnia się również jednoczesnego wpływu kilku parametrów procesu czy to 

synergicznego, czy konkurencyjnego, gdyż rozpatrywana jest tylko jedna zmienna niezależna 

w danym momencie. Z uwagi na ten fakt, proces redukcji wymiarowości zbiorów danych 

powinien być przeprowadzony ze szczególną ostrożnością. W konsekwencji w zbiorze 

uczącym mogą znaleźć się dane, które nie mają istotnego wpływu zamiast tych, które wpływają 

na wydajność danego procesu. W związku z tym wykryte zmienne niezależne, które zostaną 

ocenione jako nieistotne z punktu widzenia zmiennej zależnej mogłyby być zmieniane bez 

wpływu na jakość odlewanych produktów, co mogłoby wpłynąć na obniżenie kosztów kontroli 

jakości.  

Analiza mająca na celu zidentyfikowanie najbardziej istotnych zmiennych została 

zaimplementowana dzięki oprogramowaniu Statistica opracowanym przez StatSoft Inc., 

wspomagającym zaawansowaną analizę danych. Jak wspomniano do wyboru istotnych 

zmiennych zastosowano analizę wariancji ANOVA (ang. analysis of variance) w czterech 

wariantach. Pierwszy z nich to jednokierunkowa (jednoczynnikowa) (ang. one-way) ANOVA, 

którą trudno jest jednak zaaplikować do zbiorów danych niemających rozkładów bliskich do 

rozkładu normalnego. Mimo to istnieje możliwość zastosowania tej metody dla zbiorów o 
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większej liczbie punktów [148]. Miarą istotności zmiennej jest obliczona statystyka F, 

obliczana według wzoru (1) poprzez porównanie dwóch wariancji s1 i s2, poprzez ich podział: 

𝐹 =
𝑠1

2

𝑠2
2 

            (5.1) 

Drugi wariant zastosowany w niniejszych badaniach, to test Kruskala-Wallisa, czyli 

jednokierunkowa ANOVA w wersji rangowej, sprawdzająca się w przypadkach kiedy zmienna 

posiada rozkład inny niż normalny. Trzeci wariant to, klasyczna odwrócona ANOVA 

pozwalająca dla badanych przypadków określić, czy występuje znaczące zróżnicowanie 

któregoś parametru procesu w określonych grupach o podwyższonych wartościach przecieku, 

lub niskich wartościach przecieku. Czwartym wariantem jest odwrócona ANOVA w wersji 

rangowej, znana również jako test Kruskala-Wallisa w wersji odwróconej, znajdująca swoje 

zastosowanie dla dowolnych rozkładów zmiennych.  

Procedura wykonywania badań została przeprowadzona zgodnie z opisami z rys.5.2.3.1.-

rys.5.2.3.3. dla wariantu pierwszego i trzeciego, oraz zgodnie z opisami z rys.5.2.3.4. dla 

wariantu drugiego i czwartego. 

 

Rys.5.2.3.1. Okno programu przedstawiające początkowe etapy przeprowadzenia 

analizy ANOVA klasycznej jednoczynnikowej i odwróconej 
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W celu przeprowadzenia testu ANOVA klasycznej i odwróconej należy: 

• w punkcie 1, wybrać zakładkę „Statistics”, 

• w punkcie 2, wybrać test „ANOVA”, 

• w punkcie 3, wybrać typ analizy „One-way ANOVA”, 

• w punkcie 4, wybrać specyfikację metody „Quick specs dialog”, 

• w punkcie 5, zatwierdzić wybrane ustawienia. 

 

 

 

Rys.5.2.3.2. Okno programu przedstawiające dalsze etapy przeprowadzenia analizy 

ANOVA klasycznej jednoczynnikowej i odwróconej 

 

W celu dalszego zatwierdzenia parametrów testu ANOVA klasycznej i odwróconej należy: 

• w punkcie 1, wybrać zmienne do badań „Variables”, 

• w punkcie 2, wybrać zmienne zależne „Dependent variables”, 

• w punkcie 3, wybrać zdyskretyzowane zmienne niezależne 

„Categorical factor”, 

• w punkcie 4, zatwierdzić wybrane ustawienia. 
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Rys.5.2.3.3. Okno programu przedstawiające wyniki przeprowadzenia analizy ANOVA 

klasycznej jednoczynnikowej i odwróconej 

 

W celu pobrania wyników testu ANOVA klasycznej i odwróconej należy: 

• w punkcie 1, wybrać „Effects sizes”, 

• w punkcie 2, zapisać wartości statystyki F i p,  

• w punkcie 3, wybrać wszystkie efekty „All effects/graphs”, 

• w punkcie 4, zatwierdzić wybrane ustawienia. 

• W punkcie 5, zapisać wykres wynikowy 
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Rys.5.2.3.4. Okno programu przedstawiające wyniki przeprowadzenia testu Kruskalla-

Wallisa klasycznego i odwróconego 

 

W celu przeprowadzenia testu Kruskalla-Wallisa klasycznego i odwróconego należy: 

• w punkcie 1, wybrać statystyczny test nieparametryczny „Comparing 

multiple indep. Samples (groups)”, 

• w punkcie 2, zatwierdzić wybrane ustawienia, 

• w punkcie 3, wybrać typ zmienne do badań „Variables”, 

• w punkcie 4, wybrać typ zmienne zależne do badań, 

• w punkcie 5, wybrać typ zmienne niezależne do badań, 

• w punkcie 6, zatwierdzić wybrane ustawienia, 

• w punkcie 7, wybrać specyfikację metody „Multiple comparison of 

mean ranks for all groups”, 

• w punkcie 8, zapisać wartości statystyki H i p 

Wyniki zapisano w postaci tabel i wykresów (tab..). 

 

Tab. 5.65.: Zestawienie obliczonych wartości statystyk F i H dla pierwszego zbioru danych do 

badań  

Statystyka F F F H H H 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 0,255 0,471 0,996 3,298523 0,4173188 2,986752 

Ciśnienie wody 

miejskiej [Bar] 1,068 0,957 3,475 1,79016 0,9569242 10,4145 
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Ciśnienie wody 

obiegowej [Bar] 2,532 0,77 3,492 4,840166 0,7696159 10,46878 

Czas pierwszej fazy 

wtrysku [ms] 2,149 0,584 7,673 32,06576 1,413235 25,78073 

Czas chłodzenia 

obwodu 1 [s] 0,119 1,712 1,223 0,4427263 1,710755 3,664811 

Czas cyklu [s] 4,723 0,95 6,919 31,93778 12,17835 21,35546 

Czas cyklu smarowania 

[s] 5,263 42,4 18,65 44,9433 6,454037 10,61015 

Czas dozowania stopu 

[s] 1,1606 0,443 9,063 26,09323 0,2641669 6,002321 

Czas dozowania stopu 2 

[s] 4,884 4,189 2,184 34,54624 14,61024 37,66653 

Czas krzepnięcia t2 [s] 19,5 24,09 37,03 1,328193 24,03705 109,9057 

Czas przedmuchu [s] 4,632 25,03 10,57 43,84121 4,5 6,70068 

Czas smarowania [s] 10,47 40,85 19,17 34,25 12,88076 20,84521 

Dzienny numer wtrysku 

[j.] 0,981 4,049 1,895 5,072492 4,896076 6,769793 

Filtr próżni 1 [mBar] 3,196 0,582 30,9 66,93572 2,904119 122,7295 

Grubość piętki układu 

wlewowego [mm] 1,163 2,316 5,455 2,119902 3,953699 23,15601 

Koncentrat [%] 0,163 3,036 1,166 22,23257 2,1 2,399743 

Ciśnienie maksymalne 

[Bar] 1,296 7,903 14,95 2,480035 8,627961 52,33013 

Prędkość wtrysku 

maksymalna [m/s] 0,506 12,39 9,987 3,023659 10,34759 24,53073 

Opóźnienie multiplikacji 

[ms] 1,547 11,81 5,591 17,55585 10,37676 16,69106 

Stała temperatura 

chłodzenia płyty [°C] 2,106 68,95 34,82 1,758814 34,5491 77,15074 

Poziom stopu w piecu 

podgrzewczym [mm] 0,947 3,1 2,3 2,0 1,95116 14,44415 

Poziom wody w 

strumieniu chłodzącym 

[mm] 2,673 5,023 4,64 5,461962 4,795089 11,52655 

Czas drugiej fazy 

wtrysku [ms] 1,77 0,249 10,68 10,33658 0,2792746 31,61594 

Profil próżni 1 [mBar] 2,126 6,704 4,543 13,13486 5,381233 5,674093 

Profil próżni 2 [mBar 11,37 8,333 5,608 79,10164 0,4393711 4,852855 

Przepływ chłodzenia 

tłoka [l] 0,141 45,89 19,32 7,29478 41,46279 51,36015 

Przepływ w obwodzie 

chłodzenia 1 [l] 0,243 54,88 27,84 0,4306089 39,64148 60,3091 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,895 28,12 21,71 5,710417 26,45712 58,29693 

Przepływ w obwodzie 

chłodzenia 14 [l] 0,426 37,94 20,96 4,172529 35,96938 57,38471 

Przepływ w obwodzie 

chłodzenia 15 [l] 3,743 15,7 8,844 71,20548 7,317385 19,74998 

Przepływ w obwodzie 

chłodzenia 17 [l] 4,546 20,6 48,09 72,72156 19,78844 157,054 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,007 19,69 14,93 4,211397 21,38843 42,18682 

Przepływ w obwodzie 

chłodzenia 6 [l] 1,291 1,134 4,389 48,99781 0,5933745 11,8638 

Prędkość we wlewach 

doprowadzających 

[m/s] 0,14 0,89 3,87 2,96 1,24 10,56398 

Suw pierwszej fazy 

wtrysku [mm] 1,234 0,002 1,124 8,353043 0,025599 2,994294 

Suw docisku po 

multiplikacji [mm] 5,502 8,47 18,19 134,504 6,780152 48,94325 
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Temperatura chłodzenia 

tłoka [°C] 0,023 6,99 3,838 35,86505 5,586133 7,809001 

Temperatura stopu [°C] 0,855 0,133 1,305 33,63239 0,2 5,258253 

Temperatura 

termoregulatora 2.1 

[°C] 0,793 1,415 0,745 3,720329 1,93713 2,708377 

Temperatura 

termoregulatora 2.2 

[°C] 0,754 0,939 0,477 1,625626 1,169918 1,476165 

Temperatura 

termoregulatora 3.2 

[°C] 0,065 2,466 0,836 6,121683 2,414521 2,421386 

Temperatura tulei 1 

[°C] 0,91 0,231 1,126 0,5409375 0,0750582 3,155166 

Temperatura tulei 2 

[°C] 2,784 21,88 7,369 11,34226 16,9952 17,1783 

Temperatura tulei 3 

[°C] 0,996 4,101 2,025 0,2704595 4,191708 7,157121 

Temperatura tulei 4 

[°C] 0,044 7,125 2,396 0,2727062 9,358098 9,619893 

Temperatura w 

obwodzie chłodzenia 1 

[°C] 7,254 29,39 10,2 66,03428 27,87449 38,42332 

Temperatura w 

obwodzie chłodzenia 13 

[°C] 18,4 2,043 3,732 4,169058 1,008509 10,4492 

Temperatura w 

obwodzie chłodzenia 14 

[°C] 1,709 5,837 3,496 8,690242 6,524176 11,80991 

Temperatura w 

obwodzie chłodzenia 15 

[°C] 3,504 0,317 4,249 71,30156 0,8732053 7,823963 

Temperatura w 

obwodzie chłodzenia 17 

[°C] 6,494 0,482 5,062 39,28297 0,666354 7,479346 

Temperatura w 

obwodzie chłodzenia 7 

[°C] 1,908 5,647 3,329 38,83704 6,123501 15,69997 

Temperatura wody 

miejskiej [°C] 0,502 0,241 7,942 5,995376 0,5539388 28,07293 

Temperatura wody w 

instalacji [°C] 0,986 0,481 0,225 0,5648489 0,4503004 0,8652029 

Wartość próżni 1 

[mBar] 15,04 1,551 80,26 178,4381 2,685226 214,5486 

Wartość próżni 2 

[mBar] 1,197 15,81 8,518 56,47239 43,56863 51,85194 

Zużycie smaru [l] 0,924 0,616 0,728 3,631308 0,5656555 1,824084 

 

Tab. 5.66.: Zestawienie obliczonych wartości p dla pierwszego zbioru danych do badań  

Statystyka p p p p p p 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 0,613 0,518 0,394 0,0693 0,5183 0,3937 

Ciśnienie wody 

miejskiej [Bar] 0,344 0,328 0,015 0,4086 0,328 0,0154 

Ciśnienie wody 

obiegowej [Bar] 0,112 0,38 0,015 0,0278 0,3803 0,015 

Czas pierwszej fazy 

wtrysku [ms] 0,092 0,445 0,00004 0,000001 0,2345 0,000001 
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Czas chłodzenia 

obwodu 1 [s] 0,888 0,191 0,299 0,8014 0,1909 0,3 

Czas cyklu [s] 0,009 0,33 0,00012 0,000001 0,0005 0,0001 

Czas cyklu smarowania 

[s] 0,005 0,000001 0,000001 0,000001 0,0111 0,014 

Czas dozowania stopu 

[s] 0,3133339 0,506 0,00001 0,000001 0,6073 0,1115 

Czas dozowania stopu 2 

[s] 0,008 0,041 0,088 0,000001 0,0001 0,000001 

Czas krzepnięcia t2 [s] 0,00001 0,000001 0,000001 0,2491 0,000001 0,000001 

Czas przedmuchu [s] 0,01 0,000001 0,00001 0,000001 0,0342 0,0821 

Czas smarowania [s] 0,001 0,000001 0,00001 0,000001 0,0003 0,0001 

Dzienny numer wtrysku 

[j.] 0,401 0,044 0,128 0,1666 0,0269 0,0796 

Filtr próżni 1 [mBar] 0,022 0,445 0,000001 0,000001 0,0884 0,000001 

Grubość piętki układu 

wlewowego [mm] 0,313 0,128 0,001 0,3465 0,0468 0,000001 

Koncentrat [%] 0,849 0,081 0,321 0,000001 0,1457 0,4937 

Ciśnienie maksymalne 

[Bar] 0,274 0,005 0,000001 0,2894 0,0033 0,000001 

Prędkość wtrysku 

maksymalna [m/s] 0,477 0,00043 0,000001 0,0821 0,0013 0,000001 

Opóźnienie multiplikacji 

[ms] 0,213 0,001 0,001 0,0002 0,0013 0,0008 

Stała temperatura 

chłodzenia płyty [°C] 0,147 0,000001 0,000001 0,1848 0,000001 0,000001 

Poziom stopu w piecu 

podgrzewczym [mm] 0,33 0,079 0,078 0,1555 0,1625 0,0024 

Poziom wody w 

strumieniu chłodzącym 

[mm] 0,069 0,025 0,003 0,0652 0,0285 0,0092 

Czas drugiej fazy 

wtrysku [ms] 0,17 0,618 0,000001 0,0057 0,5972 0,000001 

Profil próżni 1 [mBar] 0,119 0,01 0,003 0,0014 0,0204 0,1286 

Profil próżni 2 [mBar 0,00001 0,004 0,001 0,000001 0,5074 0,1829 

Przepływ chłodzenia 

tłoka [l] 0,869 0,000001 0,000001 0,0261 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 1 [l] 0,784 0,00001 0,000001 0,8063 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,443 0,000001 0,000001 0,1266 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 14 [l] 0,734 0,000001 0,000001 0,2434 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 15 [l] 0,011 0,00007 0,00001 0,000001 0,0068 0,0002 

Przepływ w obwodzie 

chłodzenia 17 [l] 0,001 0,00001 0,000001 0,000001 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,993 0,00001 0,000001 0,1218 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 6 [l] 0,276 0,287 0,004 0,000001 0,4411 0,0079 

Prędkość we wlewach 

doprowadzających 

[m/s] 0,873 0,346 0,009 0,2275 0,2664 0,0143 

Suw pierwszej fazy 

wtrysku [mm] 0,294 0,963 0,338 0,0795 0,8729 0,3925 

Suw docisku po 

multiplikacji [mm] 0,001 0,004 0,000001 0,000001 0,0092 0,000001 

Temperatura chłodzenia 

tłoka [°C] 0,978 0,008 0,009 0,000001 0,0181 0,0501 

Temperatura stopu [°C] 0,425 0,716 0,271 0,000001 0,6399 0,1538 
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Temperatura 

termoregulatora 2.1 

[°C] 0,453 0,234 0,525 0,1556 0,164 0,4388 

Temperatura 

termoregulatora 2.2 

[°C] 0,471 0,333 0,698 0,4436 0,2794 0,6878 

Temperatura 

termoregulatora 3.2 

[°C] 0,937 0,116 0,474 0,0468 0,1202 0,4897 

Temperatura tulei 1 

[°C] 0,402 0,631 0,337 0,763 0,7841 0,3683 

Temperatura tulei 2 

[°C] 0,062 0,000001 0,000001 0,0034 0,000001 0,0006 

Temperatura tulei 3 

[°C] 0,369 0,043 0,108 0,8735 0,0406 0,0671 

Temperatura tulei 4 

[°C] 0,957 0,008 0,066 0,8725 0,0022 0,0221 

Temperatura w 

obwodzie chłodzenia 1 

[°C] 0,001 0,000001 0,000001 0,000001 0,000001 0,000001 

Temperatura w 

obwodzie chłodzenia 13 

[°C] 0,0000001 0,153 0,011 0,1244 0,3153 0,0151 

Temperatura w 

obwodzie chłodzenia 14 

[°C] 0,163 0,016 0,015 0,0337 0,0106 0,0081 

Temperatura w 

obwodzie chłodzenia 15 

[°C] 0,007 0,573 0,005 0,000001 0,3501 0,0498 

Temperatura w 

obwodzie chłodzenia 17 

[°C] 0,002 0,487 0,002 0,000001 0,4143 0,0581 

Temperatura w 

obwodzie chłodzenia 7 

[°C] 0,126 0,017 0,019 0,000001 0,0133 0,0013 

Temperatura wody 

miejskiej [°C] 0,605 0,624 0,000001 0,0499 0,4567 0,000001 

Temperatura wody w 

instalacji [°C] 0,373 0,488 0,879 0,754 0,5022 0,8338 

Wartość próżni 1 

[mBar] 0,00001 0,213 0,000001 0,000001 0,1013 0,000001 

Wartość próżni 2 

[mBar] 0,302 0,00007 0,00001 0,000001 0,000001 0,000001 

Zużycie smaru [l] 0,397 0,433 0,535 0,1627 0,452 0,6097 

 

Tab. 5.67.: Zestawienie obliczonych wartości statystyk F i H dla drugiego zbioru danych do 

badań  

Statystyka F F F H H H 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 2,429 2,053 0,806 0,3863928 2,021978 2,437339 

Ciśnienie wody 

miejskiej [Bar] 2,948 8,482 2,918 8,301506 7,559942 7,925285 

Ciśnienie wody 

obiegowej [Bar] 2,906 3,361 1,249 2,045285 3,249733 3,705556 

Czas pierwszej fazy 

wtrysku [ms] 0,969 2,197 0,995 0,6265023 1,842936 2,478879 

Czas chłodzenia 

obwodu 1 [s]   2,971 2,396   2,888889 6,777778 
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Czas cyklu [s] 0,149 0,024 0,385 3,362181 0,0877138 6,788323 

Czas cyklu smarowania 

[s] 0,490 0,825 0,636 0,0786859 0,0207027 0,2869239 

Czas dozowania stopu 

[s] 0,958 0,703 1,227 2,31784 1,069005 1,704996 

Czas dozowania stopu 2 

[s] 0,043 0,021 0,1 0,5968615 0,3996987 5,284452 

Czas krzepnięcia t2 [s] 12,710 11,38 7,109 0,9808123 9,894695 16,85154 

Czas przedmuchu [s] 0,124 0,013 1,242 0,0548032 0,2161364 3,325225 

Czas smarowania [s] 0,239 0,20 0,79 0,12 0,0894083 3,644906 

Dzienny numer wtrysku 

[j.] 0,279 0,312 0,198 0,2335092 0,2472141 0,4429671 

Filtr próżni 1 [mBar] 0,717 0,718 3,319 2,317934 0,8229552 9,697436 

Grubość piętki układu 

wlewowego [mm] 9,703 18,89 7,296 8,003095 14,13985 16,46923 

Koncentrat [%] 1,034 0,1 0,3 0,0 0,0705372 0,547445 

Ciśnienie maksymalne 

[Bar] 4,125 0,606 1,813 7,11283 0,8153199 5,900125 

Prędkość wtrysku 

maksymalna [m/s] 2,809 3,453 1,676 2,726713 3,684616 5,522741 

Opóźnienie multiplikacji 

[ms] 2,881 4,656 2,87 7,327664 4,7488 7,89001 

Stała temperatura 

chłodzenia płyty [°C] 14,893 10 8,177 0,9934879 9,417967 19,47438 

Poziom stopu w piecu 

podgrzewczym [mm] 13,154 20 7,939 7,394622 14,88186 15,95878 

Poziom wody w 

strumieniu chłodzącym 

[mm] 3,041 4,367 1,476 0,3780431 3,055332 3,568858 

Czas drugiej fazy 

wtrysku [ms] 1,117 1,925 1,18 5,163424 2,3 3,957894 

Profil próżni 1 [mBar] 3,467 1,369 1,044 0,3534206 2,64466 3,77615 

Profil próżni 2 [mBar 16,691 4,592 1,814 10,93307 0,497994 2,045617 

Przepływ chłodzenia 

tłoka [l] 5,328 19,67 8,776 4,435589 13,16025 15,59664 

Przepływ w obwodzie 

chłodzenia 1 [l] 26,206 16,97 7,969 6,009915 14,06818 18,43844 

Przepływ w obwodzie 

chłodzenia 13 [l] 4,999 11,65 6,609 7,739514 6,767401 11,29007 

Przepływ w obwodzie 

chłodzenia 14 [l] 16,245 23,3 9,087 9,354872 17,98374 20,75701 

Przepływ w obwodzie 

chłodzenia 15 [l] 4,212 0,086 0,814 8,151805 0,0328846 2,541189 

Przepływ w obwodzie 

chłodzenia 17 [l] 6,945 15,58 8,919 1,740659 13,98318 22,47767 

Przepływ w obwodzie 

chłodzenia 20 [l] 4,768 10,58 5,058 7,4201 8,864979 11,82963 

Przepływ w obwodzie 

chłodzenia 6 [l] 4,492 0,467 0,485 4,404203 0,2610893 1,85177 

Prędkość we wlewach 

doprowadzających 

[m/s] 0,508 0,0001 0,304 0,6528721 0,01 0,6771648 

Suw pierwszej fazy 

wtrysku [mm] 0,624 0,928 1,633 1,151713 0,5833311 4,605347 

Suw docisku po 

multiplikacji [mm] 1,665 0,453 0,413 4,267613 0,7023595 1,949635 

Temperatura chłodzenia 

tłoka [°C] 1,120 0,043 3,177 2,578336 0,000197 9,019874 

Temperatura stopu [°C] 5,404 0,296 0,395 4,412921 1,718022 2,396378 
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Temperatura 

termoregulatora 2.1 

[°C] 0,588 0,421 1,513 0,7196514 0,3057236 4,439951 

Temperatura 

termoregulatora 2.2 

[°C] 1,537 0,16 0,257 0,3178095 1,252078 1,900966 

Temperatura 

termoregulatora 3.2 

[°C] 0,583 2,424 1,299 0,2190062 1,951687 2,75312 

Temperatura tulei 1 

[°C] 1,040 2,3 1,445 1,938197 1,999186 3,394205 

Temperatura tulei 2 

[°C] 0,749 2,119 1,529 1,781983 1,953457 4,078415 

Temperatura tulei 3 

[°C] 1,925 1,077 1,447 2,59077 1,390718 3,817435 

Temperatura tulei 4 

[°C] 0,887 1,922 1,172 1,11966 1,48552 2,958913 

Temperatura w 

obwodzie chłodzenia 1 

[°C] 0,437 1,203 1,12 0,5296151 2,842982 9,526812 

Temperatura w 

obwodzie chłodzenia 13 

[°C] 0,634 0,168 0,36 2,666657 0,267625 1,719855 

Temperatura w 

obwodzie chłodzenia 14 

[°C] 2,527 2,657 1,102 5,230465 3,349669 4,195761 

Temperatura w 

obwodzie chłodzenia 15 

[°C] 0,764 0,004 0,13 0,2044889 0,0004549 0,0605263 

Temperatura w 

obwodzie chłodzenia 17 

[°C] 4,580 0,0003 0,479 1,119318 0,0852863 1,001342 

Temperatura w 

obwodzie chłodzenia 7 

[°C] 1,632 0,616 1,609 1,854109 1,032916 5,669752 

Temperatura wody 

miejskiej [°C] 3,585 2,961 1,052 2,115791 4,584456 5,456402 

Temperatura wody w 

instalacji [°C] 2,772 4,578 3,009 0,0200166 4,386218 9,314399 

Wartość próżni 1 

[mBar] 7,531 9,751 12,23 9,692538 3,194784 14,54145 

Wartość próżni 2 

[mBar] 1,963 9,004 3,722 3,193897 3,80062 5,727861 

Zużycie smaru [l] 0,696 0,013 1,247 0,4507437 0,0893758 4,29482 

 

Tab. 5.68.: Zestawienie obliczonych wartości p dla drugiego zbioru danych do badań  

Statystyka p p p p p p 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 0,124 0,157 0,495 0,5342 0,155 0,4867 

Ciśnienie wody 

miejskiej [Bar] 0,059 0,005 0,041 0,0158 0,006 0,0476 

Ciśnienie wody 

obiegowej [Bar] 0,093 0,071 0,229 0,1527 0,0714 0,2951 

Czas pierwszej fazy 

wtrysku [ms] 0,385 0,143 0,401 0,7311 0,1746 0,4791 

Czas chłodzenia 

obwodu 1 [s]   0,089 0,076   0,0892 0,0793 

Czas cyklu [s] 0,701 0,876 0,764 0,0667 0,7671 0,079 
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Czas cyklu smarowania 

[s] 0,486 0,367 0,594 0,7791 0,8856 0,9625 

Czas dozowania stopu 

[s] 0,331 0,405 0,307 0,1279 0,3012 0,6358 

Czas dozowania stopu 2 

[s] 0,958 0,886 0,96 0,742 0,5272 0,1521 

Czas krzepnięcia t2 [s] 0,001 0,001 0,00033 0,322 0,0017 0,0008 

Czas przedmuchu [s] 0,726 0,911 0,302 0,8149 0,642 0,3441 

Czas smarowania [s] 0,627 0,654 0,506 0,7245 0,7649 0,3025 

Dzienny numer wtrysku 

[j.] 0,757 0,578 0,898 0,8898 0,619 0,9312 

Filtr próżni 1 [mBar] 0,492 0,4 0,025 0,3138 0,3643 0,0213 

Grubość piętki układu 

wlewowego [mm] 0,003 0,00005 0,00027 0,0047 0,0002 0,0009 

Koncentrat [%] 0,313 0,715 0,855 0,907 0,7906 0,9084 

Ciśnienie maksymalne 

[Bar] 0,020 0,439 0,153 0,0285 0,3666 0,1166 

Prędkość wtrysku 

maksymalna [m/s] 0,067 0,067 0,181 0,2558 0,0549 0,1373 

Opóźnienie multiplikacji 

[ms] 0,063 0,034 0,043 0,0256 0,0293 0,0483 

Stała temperatura 

chłodzenia płyty [°C] 0,003 0,002 0,0001 0,3189 0,0021 0,0002 

Poziom stopu w piecu 

podgrzewczym [mm] 0,001 0,000001 0,0001 0,0065 0,0001 0,0012 

Poziom wody w 

strumieniu chłodzącym 

[mm] 0,086 0,04 0,229 0,5387 0,0805 0,3119 

Czas drugiej fazy 

wtrysku [ms] 0,333 0,17 0,324 0,0756 0,1256 0,266 

Profil próżni 1 [mBar] 0,067 0,246 0,379 0,5522 0,1039 0,2867 

Profil próżni 2 [mBar 0,000 0,036 0,153 0,0009 0,4804 0,563 

Przepływ chłodzenia 

tłoka [l] 0,024 0,00003 0,00006 0,0352 0,0003 0,0014 

Przepływ w obwodzie 

chłodzenia 1 [l] 0,000 0,00011 0,0001 0,0142 0,0002 0,0004 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,009 0,001 0,001 0,0209 0,0093 0,0103 

Przepływ w obwodzie 

chłodzenia 14 [l] 0,000 0,00001 0,00004 0,0093 0,000001 0,0001 

Przepływ w obwodzie 

chłodzenia 15 [l] 0,009 0,77 0,491 0,043 0,8561 0,4679 

Przepływ w obwodzie 

chłodzenia 17 [l] 0,002 0,00019 0,00005 0,4188 0,0002 0,0001 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,012 0,002 0,003 0,0245 0,0029 0,008 

Przepływ w obwodzie 

chłodzenia 6 [l] 0,038 0,497 0,694 0,0359 0,6094 0,6037 

Prędkość we wlewach 

doprowadzających 

[m/s] 0,604 0,997 0,822 0,7215 0,9088 0,8786 

Suw pierwszej fazy 

wtrysku [mm] 0,539 0,339 0,19 0,5622 0,445 0,2031 

Suw docisku po 

multiplikacji [mm] 0,183 0,503 0,744 0,234 0,402 0,5829 

Temperatura chłodzenia 

tłoka [°C] 0,332 0,836 0,03 0,2755 0,9888 0,029 

Temperatura stopu [°C] 0,023 0,588 0,757 0,0357 0,1899 0,4943 

Temperatura 

termoregulatora 2.1 

[°C] 0,559 0,519 0,219 0,6978 0,5803 0,2177 
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Temperatura 

termoregulatora 2.2 

[°C] 0,219 0,69 0,856 0,5729 0,2632 0,5932 

Temperatura 

termoregulatora 3.2 

[°C] 0,448 0,124 0,282 0,6398 0,1624 0,4313 

Temperatura tulei 1 

[°C] 0,359 0,134 0,238 0,3794 0,1574 0,3347 

Temperatura tulei 2 

[°C] 0,478 0,15 0,215 0,4102 0,1622 0,2531 

Temperatura tulei 3 

[°C] 0,154 0,303 0,237 0,2738 0,2383 0,2819 

Temperatura tulei 4 

[°C] 0,417 0,17 0,327 0,5713 0,2229 0,398 

Temperatura w 

obwodzie chłodzenia 1 

[°C] 0,648 0,277 0,347 0,7674 0,0918 0,023 

Temperatura w 

obwodzie chłodzenia 13 

[°C] 0,534 0,684 0,782 0,2636 0,6049 0,6325 

Temperatura w 

obwodzie chłodzenia 14 

[°C] 0,065 0,108 0,355 0,1557 0,0672 0,2411 

Temperatura w 

obwodzie chłodzenia 15 

[°C] 0,470 0,951 0,942 0,9028 0,983 0,9961 

Temperatura w 

obwodzie chłodzenia 17 

[°C] 0,014 0,986 0,698 0,5714 0,7703 0,8009 

Temperatura w 

obwodzie chłodzenia 7 

[°C] 0,190 0,435 0,196 0,6032 0,3095 0,1288 

Temperatura wody 

miejskiej [°C] 0,033 0,09 0,376 0,3472 0,0323 0,1413 

Temperatura wody w 

instalacji [°C] 0,101 0,036 0,036 0,8875 0,0362 0,0254 

Wartość próżni 1 

[mBar] 0,001 0,003 0,00001 0,0079 0,0739 0,0023 

Wartość próżni 2 

[mBar] 0,148 0,004 0,016 0,2025 0,0512 0,1256 

Zużycie smaru [l] 0,407 0,909 0,3 0,502 0,765 0,2313 

 

Tab. 5.69.: Zestawienie obliczonych wartości statystyk F i H dla trzeciego zbioru danych do 

badań  

Statystyka F F F H H H 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 1,792 0,72 1,951 3,035561 0,7203744 5,851408 

Ciśnienie wody 

miejskiej [Bar] 0,310 2,186 0,797 1,706721 2,184639 2,391282 

Ciśnienie wody 

obiegowej [Bar] 10,020 12,43 4,355 5,520844 12,41152 13,05135 

Czas pierwszej fazy 

wtrysku [ms] 8,981 17,49 8,26 33,5372 18,99336 27,27055 

Czas chłodzenia 

obwodu 1 [s] 1,031 0,004 0,531 0,5181515 0,003991 1,590518 

Czas cyklu [s] 12,560 42,51 15,39 29,24989 0,0465562 30,45096 
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Czas cyklu smarowania 

[s] 10,550 34 15,89 34,1145 2,016532 19,86969 

Czas dozowania stopu 

[s] 11,860 47,63 16,1 25,48414 8,07989 8,23366 

Czas dozowania stopu 2 

[s] 16,230 12,95 5,583 31,72024 4,936527 36,17869 

Czas krzepnięcia t2 [s] 3441,000 31,23 35,92 3,505849 31,13509 106,6525 

Czas przedmuchu [s] 7,595 13,87 7,005 37,59767 0,0 1,71812 

Czas smarowania [s] 2,164 6,11 10,68 25,81 0,4065546 11,31631 

Dzienny numer wtrysku 

[j.] 1,064 0,3 1,554 4,613983 0,2058174 4,415076 

Filtr próżni 1 [mBar] 32,620 72,08 52,22 72,60819 100,9368 195,8961 

Grubość piętki układu 

wlewowego [mm] 0,714 3,553 9,953 2,369938 5,170498 34,2345 

Koncentrat [%] 4,500 3,7 1,617 24,48873 6,0 9,799401 

Ciśnienie maksymalne 

[Bar] 3,489 42,2 25 3,040971 48,7659 79,66612 

Prędkość wtrysku 

maksymalna [m/s] 4,450 12,58 5,436 1,728593 7,707207 10,40386 

Opóźnienie 

multiplikacji [ms] 3,138 0,126 2,916 14,98601 0,0037998 7,568358 

Stała temperatura 

chłodzenia płyty [°C] 33,700 20,5 14,89 4,124605 37,21833 52,54113 

Poziom stopu w piecu 

podgrzewczym [mm] 1,304 3,4 6,0 1,2 24,68 25,24205 

Poziom wody w 

strumieniu chłodzącym 

[mm] 0,942 0,847 3,763 3,898408 0,4041015 9,051005 

Czas drugiej fazy 

wtrysku [ms] 11,280 33,57 16,44 11,16913 33,9 48,23874 

Profil próżni 1 [mBar] 1,661 0,141 9,856 15,1382 4,288953 37,45051 

Profil próżni 2 [mBar 74,340 19,88 6,952 89,9513 15,16766 16,12079 

Przepływ chłodzenia 

tłoka [l] 9,790 5,898 21,5 9,684083 3,5552 56,57148 

Przepływ w obwodzie 

chłodzenia 1 [l] 9,504 15,07 8,75 1,432417 13,10193 20,4231 

Przepływ w obwodzie 

chłodzenia 13 [l] 6,015 41,61 44,86 4,098338 34,01835 131,3819 

Przepływ w obwodzie 

chłodzenia 14 [l] 5,198 25,02 1331 5,914369 24,67757 43,65313 

Przepływ w obwodzie 

chłodzenia 15 [l] 12,940 29,15 12 59,37741 35,87096 43,75868 

Przepływ w obwodzie 

chłodzenia 17 [l] 31,580 68 42,83 79,53131 85,84159 140,3223 

Przepływ w obwodzie 

chłodzenia 20 [l] 3,195 17,14 12,72 5,083908 11,09865 34,80311 

Przepływ w obwodzie 

chłodzenia 6 [l] 15,130 1,0009 15,35 56,7365 0,4951261 45,45323 

Prędkość we wlewach 

doprowadzających 

[m/s] 4,458 10,61 4,55 3,04 10,17 12,34303 

Suw pierwszej fazy 

wtrysku [mm] 2,107 0,518 1,034 7,498708 0,075557 2,128033 

Suw docisku po 

multiplikacji [mm] 34,430 91,39 35,91 126,8225 79,92223 95,23034 

Temperatura chłodzenia 

tłoka [°C] 4,290 26,52 17,86 35,37423 9,825939 52,24249 

Temperatura stopu [°C] 9,200 20,61 12 35,68286 22,4 38,67883 

Temperatura 

termoregulatora 2.1 

[°C] 0,173 0,6 5,357 3,227588 0,5213332 15,25381 
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Temperatura 

termoregulatora 2.2 

[°C] 1,868 2,503 1,013 1,796084 2,039413 3,036168 

Temperatura 

termoregulatora 3.2 

[°C] 0,331 0,048 0,026 7,393445 0,000276 0,0133996 

Temperatura tulei 1 

[°C] 0,826 2,767 1,249 0,2867274 2,748014 3,892204 

Temperatura tulei 2 

[°C] 0,589 1,823 1,736 7,040981 0,1327934 4,254394 

Temperatura tulei 3 

[°C] 0,477 5,138 1,853 0,5497702 5,826163 5,840768 

Temperatura tulei 4 

[°C] 0,415 0,696 0,754 0,4521204 1,60078 1,998403 

Temperatura w 

obwodzie chłodzenia 1 

[°C] 27,830 14,04 8,021 60,53845 3,285278 16,79737 

Temperatura w 

obwodzie chłodzenia 13 

[°C] 0,749 10,94 8,546 3,433127 8,105081 33,33861 

Temperatura w 

obwodzie chłodzenia 14 

[°C] 1,827 5,5 2,075 8,232704 6,951086 7,717977 

Temperatura w 

obwodzie chłodzenia 15 

[°C] 12,180 2,521 3,785 68,15709 0,1281029 8,523747 

Temperatura w 

obwodzie chłodzenia 17 

[°C] 48,800 0,007 10,56 45,97528 2,018874 32,01247 

Temperatura w 

obwodzie chłodzenia 7 

[°C] 15,440 3,289 5,127 38,04194 9,027694 21,36187 

Temperatura wody 

miejskiej [°C] 0,336 19,16 9,049 6,869579 21,50064 32,65863 

Temperatura wody w 

instalacji [°C] 0,639 0,114 0,191 0,6052891 0,4954719 1,322686 

Wartość próżni 1 

[mBar] 138,200 324,8 117,5 186,6402 289,5415 315,9075 

Wartość próżni 2 

[mBar] 22,150 25,92 10,82 66,5259 11,89618 13,05218 

Zużycie smaru [l] 0,652 0,006 0,43 3,394667 0,0007725 0,7395983 

 

Tab. 5.70.: Zestawienie obliczonych wartości p dla trzeciego zbioru danych do badań  

Statystyka p p p p p p 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 0,181 0,396 0,119 0,0815 0,396 0,1191 

Ciśnienie wody 

miejskiej [Bar] 0,734 0,139 0,495 0,426 0,1394 0,4953 

Ciśnienie wody 

obiegowej [Bar] 0,002 0,00043 0,005 0,0188 0,0004 0,0045 

Czas pierwszej fazy 

wtrysku [ms] 0,00001 0,00003 0,00002 0,000001 0,000001 0,000001 

Czas chłodzenia 

obwodu 1 [s] 0,357 0,948 0,661 0,7718 0,9496 0,6615 

Czas cyklu [s] 0,000001 0,000001 0,000001 0,000001 0,8292 0,000001 

Czas cyklu 

smarowania [s] 0,001 0,000001 0,000001 0,000001 0,1556 0,0002 
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Czas dozowania stopu 

[s] 0,00001 0,000001 0,000001 0,000001 0,0045 0,0414 

Czas dozowania stopu 

2 [s] 0,00001 0,00032 0,001 0,000001 0,0263 0,000001 

Czas krzepnięcia t2 [s] 0,00001 0,000001 0,00001 0,0612 0,000001 0,000001 

Czas przedmuchu [s] 0,001 0,0002 0,00011 0,000001 0,9866 0,6329 

Czas smarowania [s] 0,141 0,013 0,000001 0,000001 0,5237 0,0101 

Dzienny numer wtrysku 

[j.] 0,363 0,584 0,198 0,2023 0,6501 0,22 

Filtr próżni 1 [mBar] 0,000001 0,000001 0,000001 0,000001 0,000001 0,000001 

Grubość piętki układu 

wlewowego [mm] 0,49 0,059 0,000001 0,3058 0,023 0,000001 

Koncentrat [%] 0,011 0,054 0,183 0,000001 0,0141 0,0204 

Ciśnienie maksymalne 

[Bar] 0,031 0,000001 0,000001 0,2186 0,000001 0,000001 

Prędkość wtrysku 

maksymalna [m/s] 0,035 0,00038 0,001 0,1886 0,0055 0,0154 

Opóźnienie 

multiplikacji [ms] 0,043 0,723 0,033 0,0006 0,9508 0,0558 

Stała temperatura 

chłodzenia płyty [°C] 0,000001 0,00001 0,000001 0,0423 0,000001 0,000001 

Poziom stopu w piecu 

podgrzewczym [mm] 0,253 0,064 0,00046 0,2636 0,000001 0,000001 

Poziom wody w 

strumieniu chłodzącym 

[mm] 0,39 0,357 0,01 0,1424 0,525 0,0286 

Czas drugiej fazy 

wtrysku [ms] 0,000001 0,000001 0,000001 0,0038 0,000001 0,000001 

Profil próżni 1 [mBar] 0,19 0,707 0,000001 0,0005 0,0384 0,000001 

Profil próżni 2 [mBar 0,000001 0,00001 0,00011 0,000001 0,0001 0,0011 

Przepływ chłodzenia 

tłoka [l] 0,000001 0,015 0,000001 0,0079 0,0594 0,000001 

Przepływ w obwodzie 

chłodzenia 1 [l] 0,00001 0,0001 0,00001 0,4886 0,0003 0,0001 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,000001 0,000001 0,000001 0,251 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 14 [l] 0,001 0,000001 0,000001 0,1159 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 15 [l] 0,000001 0,000001 0,000001 0,000001 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 17 [l] 0,000001 0,000001 0,000001 0,000001 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,041 0,00004 0,000001 0,0787 0,0009 0,000001 

Przepływ w obwodzie 

chłodzenia 6 [l] 0,000001 0,315 0,000001 0,000001 0,4817 0,000001 

Prędkość we wlewach 

doprowadzających 

[m/s] 0,01 0,00 0,003 0,22 0,00 0,0063 

Suw pierwszej fazy 

wtrysku [mm] 0,077 0,472 0,376 0,1118 0,7834 0,5463 

Suw docisku po 

multiplikacji [mm] 0,00001 0,000001 0,000001 0,000001 0,000001 0,000001 

Temperatura 

chłodzenia tłoka [°C] 0,014 0,000001 0,000001 0,000001 0,0017 0,000001 

Temperatura stopu 

[°C] 0,0001 0,00001 0,000001 0,000001 0,000001 0,000001 

Temperatura 

termoregulatora 2.1 

[°C] 0,841 0,438 0,001 0,1991 0,4703 0,0016 
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Temperatura 

termoregulatora 2.2 

[°C] 0,155 0,114 0,386 0,4074 0,1533 0,3861 

Temperatura 

termoregulatora 3.2 

[°C] 0,718 0,826 0,994 0,0248 0,9867 0,9996 

Temperatura tulei 1 

[°C] 0,438 0,096 0,29 0,8664 0,0974 0,2733 

Temperatura tulei 2 

[°C] 0,555 0,177 0,157 0,0296 0,7156 0,2353 

Temperatura tulei 3 

[°C] 0,62 0,023 0,135 0,7597 0,0158 0,1196 

Temperatura tulei 4 

[°C] 0,66 0,404 0,52 0,7977 0,2058 0,5727 

Temperatura w 

obwodzie chłodzenia 1 

[°C] 0,00001 0,00018 0,00002 0,000001 0,0699 0,0008 

Temperatura w 

obwodzie chłodzenia 

13 [°C] 0,473 0,001 0,00001 0,1797 0,0044 0,000001 

Temperatura w 

obwodzie chłodzenia 

14 [°C] 0,14 0,019 0,101 0,0414 0,0084 0,0522 

Temperatura w 

obwodzie chłodzenia 

15 [°C] 0,000001 0,112 0,01 0,000001 0,7204 0,0363 

Temperatura w 

obwodzie chłodzenia 

17 [°C] 0,00001 0,932 0,000001 0,000001 0,1554 0,000001 

Temperatura w 

obwodzie chłodzenia 7 

[°C] 0,00001 0,07 0,002 0,000001 0,0027 0,0001 

Temperatura wody 

miejskiej [°C] 0,715 0,00001 0,00001 0,0322 0,000001 0,000001 

Temperatura wody w 

instalacji [°C] 0,528 0,736 0,903 0,7389 0,4815 0,7238 

Wartość próżni 1 

[mBar] 0,000001 0,000001 0,000001 0,000001 0,000001 0,000001 

Wartość próżni 2 

[mBar] 0,000001 0,000001 0,000001 0,000001 0,0006 0,0045 

Zużycie smaru [l] 0,521 0,941 0,732 0,1832 0,9778 0,8639 

 

Tab. 5.71.: Zestawienie obliczonych wartości statystyk F i H dla czwartego zbioru danych do 

badań  

Statystyka F F F H H H 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 2,835 0,513 0,911 0,7834695 0,5143386 2,736873 

Ciśnienie wody 

miejskiej [Bar] 2,703 0,083 2,445 4,131474 0,1008617 7,056941 

Ciśnienie wody 

obiegowej [Bar] 1,231 1,025 1,251 0,2488755 1,02457 3,734122 

Czas pierwszej fazy 

wtrysku [ms] 1,509 0,041 0,89 5,941498 0,2378208 2,57805 

Czas chłodzenia 

obwodu 1 [s]   3,029 2,33   2,985783 6,737961 

Czas cyklu [s] 0,73 1,43 0,815 2,431958 8,592792 10,96887 
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Czas cyklu 

smarowania [s] 0,049 3,059 1,263 5,079406 1,638048 0,9294497 

Czas dozowania 

stopu [s] 0,45 0,349 0,468 0,1140645 3,519712 0,8183 

Czas dozowania 

stopu 2 [s] 0,088 0,717 0,286 0,1258939 9,275664 11,26972 

Czas krzepnięcia t2 

[s] 0,976 36,27 14,9 19,8626 28,93154 34,37872 

Czas przedmuchu [s] 0,3 6,1 3,2 5,6 3,651647 6,745543 

Czas smarowania [s] 0,328 8,881 3,36 7,58 10,52336 13,75958 

Dzienny numer 

wtrysku [j.] 0,597 0,209 0,281 2,828394 0,6570805 0,7504256 

Filtr próżni 1 [mBar] 0,681 3,949 1,225 0,0531426 6,613457 5,066672 

Grubość piętki 

układu wlewowego 

[mm] 6,463 0,032 3,201 0,5848068 0,3825535 9,568175 

Koncentrat [%] 1,659 3,637 0,6 0,2 1,33476 0,3838552 

Ciśnienie 

maksymalne [Bar] 2,593 4,205 1,412 2,746324 5,574682 4,424322 

Prędkość wtrysku 

maksymalna [m/s] 0,907 4,475 1,376 2,271017 4,034266 4,500321 

Opóźnienie 

multiplikacji [ms] 0,861 4,319 0,409 2,616167 3,876444 1,523556 

Stała temperatura 

chłodzenia płyty [°C] 1,769 35,47 20,19 10,55792 24,71666 40,73381 

Poziom stopu w 

piecu podgrzewczym 

[mm] 1,178 0,631 0,3 5,2 1,944674 8,018786 

Poziom wody w 

strumieniu 

chłodzącym [mm] 2,744 0,63 1,162 0,1446646 0,109834 3,654135 

Czas drugiej fazy 

wtrysku [ms] 1,015 0,214 0,427 1,124651 0,2 1,615829 

Profil próżni 1 

[mBar] 0,542 2,197 1,544 1,971772 2,327164 5,303965 

Profil próżni 2 

[mBar 1,362 6,114 1,005 5,380679 0,4700874 0,3815033 

Przepływ chłodzenia 

tłoka [l] 1,047 26,93 7,679 13,18748 22,39177 18,13231 

Przepływ w obwodzie 

chłodzenia 1 [l] 1,416 33,95 13,63 20,7326 26,44215 32,85413 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,157 24,88 4,676 13,7629 19,91644 10,77292 

Przepływ w obwodzie 

chłodzenia 14 [l] 2,666 19,19 9,4 9,297263 18,33402 26,02779 

Przepływ w obwodzie 

chłodzenia 15 [l] 1,282 6,774 3,203 20,57073 4,313219 6,993207 

Przepływ w obwodzie 

chłodzenia 17 [l] 0,745 34,66 13,65 12,33015 30,11878 34,85915 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,762 16,28 3,934 9,532445 15,57798 10,68363 

Przepływ w obwodzie 

chłodzenia 6 [l] 2,603 0,225 0,369 0,0679111 0,0054715 1,036343 

Prędkość we 

wlewach 

doprowadzających 

[m/s] 0,571 0,91 0,424 2,489704 1,09 1,205155 

Suw pierwszej fazy 

wtrysku [mm] 0,188 0,096 1,651 3,696941 0,430523 5,146186 

Suw docisku po 

multiplikacji [mm] 1,645 0,49 0,246 1,605582 0,0078638 1,379362 
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Temperatura 

chłodzenia tłoka [°C] 0,031 2,914 2,624 1,806434 4,013728 7,005448 

Temperatura stopu 

[°C] 4,413 0,033 0,261 3,105787 0,0604788 1,611166 

Temperatura 

termoregulatora 2.1 

[°C] 1,719 0,261 1,699 3,501986 0,4605649 5,588622 

Temperatura 

termoregulatora 2.2 

[°C] 0,05 3,023 0,746 1,843853 3,570362 2,645593 

Temperatura 

termoregulatora 3.2 

[°C] 0,015 1,155 1,427 1,283173 1,071238 3,539155 

Temperatura tulei 1 

[°C] 0,775 0,214 1,542 2,59253 0,2149453 3,393007 

Temperatura tulei 2 

[°C] 0,583 19,98 5,572 9,924865 18,14212 14,71034 

Temperatura tulei 3 

[°C] 1,758 0,157 1,346 1,153863 0,3824963 3,918823 

Temperatura tulei 4 

[°C] 0,457 2,867 1,721 1,531314 3,020584 5,279776 

Temperatura w 

obwodzie chłodzenia 

1 [°C] 0,102 8,428 3,25 1,229165 15,89497 21,6158 

Temperatura w 

obwodzie chłodzenia 

13 [°C] 0,723 1,84 0,238 0,6815788 1,495767 0,4238257 

Temperatura w 

obwodzie chłodzenia 

14 [°C] 0,86 1,689 1,494 5,087061 2,300353 5,269863 

Temperatura w 

obwodzie chłodzenia 

15 [°C] 0,349 2,426 0,308 5,481624 2,554608 0,8584278 

Temperatura w 

obwodzie chłodzenia 

17 [°C] 0,808 0,748 0,864 6,272395 0,2117827 1,449913 

Temperatura w 

obwodzie chłodzenia 

7 [°C] 0,378 4,945 3,306 5,838863 5,333607 10,71481 

Temperatura wody 

miejskiej [°C] 1,184 0,618 0,863 1,998355 0,7004746 4,668569 

Temperatura wody w 

instalacji [°C] 1,867 0,337 2,758 0,0954355 0,2245267 9,05284 

Wartość próżni 1 

[mBar] 0,79 5,491 5,25 11,98752 5,793035 13,90497 

Wartość próżni 2 

[mBar] 0,658 12,55 2,857 8,174704 30,02427 13,02437 

Zużycie smaru [l] 1,178 0,629 1,326 2,2206 0,774092 4,352095 

 

Tab. 5.72.: Zestawienie obliczonych wartości p dla czwartego zbioru danych do badań  

Statystyka p p p p p p 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 0,094 0,475 0,438 0,3761 0,4733 0,434 

Ciśnienie wody 

miejskiej [Bar] 0,071 0,774 0,067 0,1267 0,7508 0,0701 

Ciśnienie wody 

obiegowej [Bar] 0,269 0,313 0,294 0,6179 0,3114 0,2916 



157 
 

Czas pierwszej fazy 

wtrysku [ms] 0,225 0,839 0,448 0,0513 0,6258 0,4614 

Czas chłodzenia 

obwodu 1 [s]   0,084 0,078   0,084 0,0807 

Czas cyklu [s] 0,394 0,234 0,488 0,1189 0,0034 0,0119 

Czas cyklu 

smarowania [s] 0,825 0,083 0,29 0,0242 0,2006 0,8183 

Czas dozowania 

stopu [s] 0,503 0,556 0,705 0,7356 0,0606 0,9055 

Czas dozowania 

stopu 2 [s] 0,916 0,399 0,835 0,939 0,0023 0,0104 

Czas krzepnięcia t2 

[s] 0,325 0,000001 0,000001 0,000001 0,000001 0,000001 

Czas przedmuchu [s] 0,57 0,015 0,024 0,0179 0,056 0,0805 

Czas smarowania [s] 0,568 0,003 0,021 0,0059 0,0012 0,0033 

Dzienny numer 

wtrysku [j.] 0,552 0,648 0,839 0,2431 0,4176 0,8613 

Filtr próżni 1 [mBar] 0,508 0,049 0,303 0,9738 0,0101 0,167 

Grubość piętki 

układu wlewowego 

[mm] 0,012 0,859 0,025 0,4444 0,5362 0,0226 

Koncentrat [%] 0,2 0,059 0,588 0,6639 0,248 0,9436 

Ciśnienie 

maksymalne [Bar] 0,078 0,042 0,242 0,2533 0,0182 0,2191 

Prędkość wtrysku 

maksymalna [m/s] 0,406 0,036 0,253 0,3213 0,0446 0,2123 

Opóźnienie 

multiplikacji [ms] 0,425 0,04 0,747 0,2703 0,049 0,6768 

Stała temperatura 

chłodzenia płyty [°C] 0,186 0,000001 0,000001 0,0012 0,000001 0,000001 

Poziom stopu w 

piecu podgrzewczym 

[mm] 0,28 0,428 0,849 0,023 0,1632 0,0456 

Poziom wody w 

strumieniu 

chłodzącym [mm] 0,1 0,429 0,327 0,7037 0,7403 0,3013 

Czas drugiej fazy 

wtrysku [ms] 0,365 0,645 0,734 0,5699 0,669 0,6558 

Profil próżni 1 

[mBar] 0,463 0,141 0,206 0,1603 0,1271 0,1508 

Profil próżni 2 

[mBar 0,245 0,015 0,393 0,0204 0,4929 0,944 

Przepływ chłodzenia 

tłoka [l] 0,308 0,000001 0,00009 0,0003 0,000001 0,0004 

Przepływ w obwodzie 

chłodzenia 1 [l] 0,246 0,000001 0,000001 0,000001 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,855 0,000001 0,004 0,001 0,000001 0,013 

Przepływ w obwodzie 

chłodzenia 14 [l] 0,073 0,00002 0,00001 0,0096 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 15 [l] 0,283 0,01 0,025 0,0001 0,0378 0,0721 

Przepływ w obwodzie 

chłodzenia 17 [l] 0,477 0,000001 0,000001 0,0021 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,469 0,00009 0,01 0,0085 0,0001 0,0136 

Przepływ w obwodzie 

chłodzenia 6 [l] 0,109 0,636 0,776 0,7944 0,941 0,7925 

Prędkość we 

wlewach 0,566 0,342 0,736 0,288 0,2973 0,7518 
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doprowadzających 

[m/s] 

Suw pierwszej fazy 

wtrysku [mm] 0,829 0,758 0,181 0,1575 0,5117 0,1614 

Suw docisku po 

multiplikacji [mm] 0,182 0,825 0,864 0,6581 0,9293 0,7104 

Temperatura 

chłodzenia tłoka 

[°C] 0,969 0,09 0,053 0,4053 0,0451 0,0717 

Temperatura stopu 

[°C] 0,037 0,857 0,853 0,078 0,8057 0,6569 

Temperatura 

termoregulatora 2.1 

[°C] 0,183 0,61 0,17 0,1736 0,4974 0,1334 

Temperatura 

termoregulatora 2.2 

[°C] 0,824 0,084 0,526 0,1745 0,0588 0,4496 

Temperatura 

termoregulatora 3.2 

[°C] 0,902 0,284 0,238 0,2573 0,3007 0,3157 

Temperatura tulei 1 

[°C] 0,463 0,644 0,206 0,2736 0,6429 0,3349 

Temperatura tulei 2 

[°C] 0,56 0,000001 0,001 0,007 0,000001 0,0021 

Temperatura tulei 3 

[°C] 0,176 0,693 0,262 0,5616 0,5363 0,2704 

Temperatura tulei 4 

[°C] 0,634 0,093 0,166 0,465 0,0822 0,1524 

Temperatura w 

obwodzie chłodzenia 

1 [°C] 0,903 0,004 0,024 0,5409 0,0001 0,0001 

Temperatura w 

obwodzie chłodzenia 

13 [°C] 0,487 0,177 0,87 0,7112 0,2213 0,9353 

Temperatura w 

obwodzie chłodzenia 

14 [°C] 0,463 0,196 0,219 0,1655 0,1293 0,1531 

Temperatura w 

obwodzie chłodzenia 

15 [°C] 0,706 0,122 0,82 0,0645 0,11 0,8354 

Temperatura w 

obwodzie chłodzenia 

17 [°C] 0,448 0,3889 0,461 0,0434 0,6454 0,6939 

Temperatura w 

obwodzie chłodzenia 

7 [°C] 0,769 0,028 0,022 0,1197 0,0209 0,0134 

Temperatura wody 

miejskiej [°C] 0,309 0,433 0,462 0,3682 0,7004746 0,1977 

Temperatura wody w 

instalacji [°C] 0,174 0,563 0,045 0,7574 0,6356 0,0286 

Wartość próżni 1 

[mBar] 0,456 0,021 0,002 0,0025 0,0161 0,003 

Wartość próżni 2 

[mBar] 0,519 0,001 0,039 0,0168 0,000001 0,0046 

Zużycie smaru [l] 0,28 0,429 0,269 0,1362 0,379 0,2259 
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Tab. 5.73.: Zestawienie obliczonych wartości statystyk F i H dla piątego zbioru danych do 

badań  

Statystyka F F F H H H 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie 

sprężonego 

powietrza [Bar] 0,944 0,911 0,924 0,0503866 0,9118342 2,777024 

Ciśnienie wody 

miejskiej [Bar] 1,626 0,294 2,023 0,0890776 0,2943874 5,956018 

Ciśnienie wody 

obiegowej [Bar] 0,543 2,32 1,395 0,5504266 2,298224 4,148285 

Czas pierwszej fazy 

wtrysku [ms] 1,0009 0,004 0,873 4,079714 0,0478864 2,384806 

Czas chłodzenia 

obwodu 1 [s]   0 2,246   6,57E-16 6,561827 

Czas cyklu [s] 0,655 0,169 0,398 2,963108 5,928097 9,758347 

Czas cyklu 

smarowania [s] 0,001 4,826 1,769 2,783583 0,7801886 0,6004655 

Czas dozowania 

stopu [s] 0,32 2,075 0,307 0,0901136 3,581989 0,5703893 

Czas dozowania 

stopu 2 [s] 0,775 0,821 0,348 3,672993 6,490876 9,835997 

Czas krzepnięcia t2 

[s] 2,235 10,09 8,844 5,452594 9,469302 22,69118 

Czas przedmuchu 

[s] 0,2 3,5 2,6 3,3 1,369927 4,757867 

Czas smarowania 

[s] 0,086 3,10 1,87 2,73 5,410804 9,245659 

Dzienny numer 

wtrysku [j.] 0,839 2,055 0,605 2,573865 2,641864 1,709794 

Filtr próżni 1 

[mBar] 0,901 0,788 1,394 0,8693439 2,849304 4,986875 

Grubość piętki 

układu wlewowego 

[mm] 3,97 1,488 2,533 0,0354207 2,504638 7,950731 

Koncentrat [%] 1,404 2,6 0,5 0,7 1,516144 0,4460746 

Ciśnienie 

maksymalne [Bar] 4,816 6,994 1,386 6,009481 7,520637 4,442243 

Prędkość wtrysku 

maksymalna [m/s] 0,922 3,704 1,329 0,8477555 3,635032 4,319043 

Opóźnienie 

multiplikacji [ms] 0,453 5,611 0,38 1,26139 5,158934 1,58911 

Stała temperatura 

chłodzenia płyty 

[°C] 3,399 14,78 13,5 2,350087 11,37724 31,95404 

Poziom stopu w 

piecu 

podgrzewczym 

[mm] 0,617 6,6 1,1 2,8 1,585974 7,104122 

Poziom wody w 

strumieniu 

chłodzącym [mm] 1,143 7,864 1,8 0,1044068 5,636161 4,898486 

Czas drugiej fazy 

wtrysku [ms] 0,57 2,308 0,161 1,274115 2,3 0,6223239 

Profil próżni 1 

[mBar] 0,143 4,818 1,748 5,847654 2,977529 5,166851 

Profil próżni 2 

[mBar 0,284 12,77 1,558 5,655811 2,800459 0,4166995 
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Przepływ 

chłodzenia tłoka 

[l] 0,097 23,36 8,704 3,990963 20,55694 19,21435 

Przepływ w 

obwodzie 

chłodzenia 1 [l] 2,919 20,78 10,68 7,467028 18,4824 26,65535 

Przepływ w 

obwodzie 

chłodzenia 13 [l] 0,092 17,21 4,474 9,212144 14,66517 9,770117 

Przepływ w 

obwodzie 

chłodzenia 14 [l] 2,215 18,06 7,756 5,633901 16,52528 22,22218 

Przepływ w 

obwodzie 

chłodzenia 15 [l] 0,93 2,535 1,948 12,37044 1,609391 4,488112 

Przepływ w 

obwodzie 

chłodzenia 17 [l] 1,261 12,08 9,734 6,621948 12,32556 27,86023 

Przepływ w 

obwodzie 

chłodzenia 20 [l] 1,094 3,874 2,963 1,457155 4,968896 8,435272 

Przepływ w 

obwodzie 

chłodzenia 6 [l] 3,427 0,623 0,483 0,2866773 0,3784252 1,667609 

Prędkość we 

wlewach 

doprowadzających 

[m/s] 1,815 2,993 0,688 4,157246 4,11 2,181754 

Suw pierwszej fazy 

wtrysku [mm] 0,534 0,136 1,082 0,4914757 0,0956472 3,358416 

Suw docisku po 

multiplikacji [mm] 0,303 2,602 0,241 3,246834 2,773835 1,328445 

Temperatura 

chłodzenia tłoka 

[°C] 0,037 4,36 3,053 2,281547 4,101859 7,333137 

Temperatura stopu 

[°C] 5,362 0,002 0,296 3,272292 0,0022977 1,56048 

Temperatura 

termoregulatora 

2.1 [°C] 1,097 0,29 1,645 2,981599 0,5149762 5,304476 

Temperatura 

termoregulatora 

2.2 [°C] 0,353 0,595 0,351 0,3588352 0,5922079 1,571942 

Temperatura 

termoregulatora 

3.2 [°C] 0,37 0,681 1,396 0,0121608 0,737045 3,373475 

Temperatura tulei 

1 [°C] 0,913 0,007 1,738 2,997863 0,0369491 3,332422 

Temperatura tulei 

2 [°C] 0,735 15,05 4,578 7,178407 13,50697 11,83992 

Temperatura tulei 

3 [°C] 0,875 0,297 1,241 0,8708797 0,6531865 3,779984 

Temperatura tulei 

4 [°C] 0,763 2,47 1,803 4,652167 3,385899 5,718656 

Temperatura w 

obwodzie 

chłodzenia 1 [°C] 0,435 9,532 3,749 4,552694 12,77461 21,3636 

Temperatura w 

obwodzie 

chłodzenia 13 [°C] 0,287 0,224 0,293 0,0930829 0,1108883 0,8945695 

Temperatura w 

obwodzie 

chłodzenia 14 [°C] 0,442 5,771 2,177 10,23894 6,62236 7,039525 

Temperatura w 

obwodzie 

chłodzenia 15 [°C] 0,679 0,127 0,191 0,1979463 0,0009502 0,0642518 
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Temperatura w 

obwodzie 

chłodzenia 17 [°C] 1,29 0,014 0,495 2,660881 0,00007167 0,8022779 

Temperatura w 

obwodzie 

chłodzenia 7 [°C] 0,685 1,752 2,554 3,938162 1,806585 8,342331 

Temperatura wody 

miejskiej [°C] 2,015 0,003 0,907 0,0575995 0,0248817 4,757703 

Temperatura wody 

w instalacji [°C] 0,793 1,733 3,237 0,6639769 1,622968 10,47092 

Wartość próżni 1 

[mBar] 0,792 2,622 5,367 5,072948 2,176712 13,08863 

Wartość próżni 2 

[mBar] 0,842 16,33 3,095 16,34794 35,55467 15,17886 

Zużycie smaru [l] 2,592 3,124 1,894 4,441699 3,967396 5,712921 

 

Tab. 5.74.: Zestawienie obliczonych wartości p dla piątego zbioru danych do badań  

Statystyka p p p p p p 

Test 

Jedno-

czynnikowa 

ANOVA 

ANOVA 

odwrócona 

przeciek 

2CAT 

ANOVA 

odwrócona 

przeciek 

4CAT 

Test 

Kruskala-

Wallisa 

Kruskal-

Wallis 

odwrócony 

przeciek 

2CAT 

Kruskal-

Wallis 

odwrócony 

przeciek 

4CAT 

Ciśnienie sprężonego 

powietrza [Bar] 0,333 0,341 0,431 0,8224 0,3396 0,4273 

Ciśnienie wody 

miejskiej [Bar] 0,2 0,588 0,114 0,9564 0,5874 0,1138 

Ciśnienie wody 

obiegowej [Bar] 0,462 0,13 0,247 0,4581 0,1295 0,2459 

Czas pierwszej fazy 

wtrysku [ms] 0,367 0,948 0,457 0,13 0,8268 0,4965 

Czas chłodzenia 

obwodu 1 [s]   1 0,086   1 0,0873 

Czas cyklu [s] 0,42 0,682 0,755 0,0852 0,0149 0,0207 

Czas cyklu 

smarowania [s] 0,982 0,03 0,156 0,0952 0,3771 0,8963 

Czas dozowania 

stopu [s] 0,573 0,154 0,82 0,764 0,0584 0,9032 

Czas dozowania 

stopu 2 [s] 0,462 0,366 0,791 0,1594 0,0108 0,02 

Czas krzepnięcia t2 

[s] 0,137 0,002 0,00002 0,0195 0,0021 0,000001 

Czas przedmuchu [s] 0,633 0,065 0,055 0,0712 0,2418 0,1904 

Czas smarowania [s] 0,77 0,08 0,138 0,0983 0,02 0,0262 

Dzienny numer 

wtrysku [j.] 0,435 0,154 0,613 0,2761 0,1041 0,6348 

Filtr próżni 1 [mBar] 0,408 0,376 0,247 0,6475 0,0914 0,1728 

Grubość piętki 

układu wlewowego 

[mm] 0,048 0,225 0,06 0,8507 0,1135 0,047 

Koncentrat [%] 0,238 0,106 0,672 0,407 0,2182 0,9306 

Ciśnienie 

maksymalne [Bar] 0,011 0,009 0,25 0,0496 0,0061 0,2175 

Prędkość wtrysku 

maksymalna [m/s] 0,4 0,056 0,268 0,6545 0,0566 0,229 

Opóźnienie 

multiplikacji [ms] 0,637 0,019 0,768 0,5322 0,0231 0,6619 

Stała temperatura 

chłodzenia płyty [°C] 0,067 0,00018 0,000001 0,1253 0,0007 0,000001 
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Poziom stopu w 

piecu podgrzewczym 

[mm] 0,433 0,011 0,336 0,0931 0,2079 0,0687 

Poziom wody w 

strumieniu 

chłodzącym [mm] 0,287 0,006 0,15 0,7466 0,0176 0,1794 

Czas drugiej fazy 

wtrysku [ms] 0,567 0,131 0,923 0,5288 0,1315 0,8913 

Profil próżni 1 

[mBar] 0,706 0,03 0,16 0,0156 0,0844 0,16 

Profil próżni 2 

[mBar 0,595 0,00049 0,203 0,0174 0,0942 0,9368 

Przepływ chłodzenia 

tłoka [l] 0,756 0,000001 0,00003 0,0457 0,000001 0,0002 

Przepływ w obwodzie 

chłodzenia 1 [l] 0,09 0,00001 0,000001 0,0063 0,000001 0,000001 

Przepływ w obwodzie 

chłodzenia 13 [l] 0,913 0,00006 0,005 0,01 0,0001 0,0206 

Przepływ w obwodzie 

chłodzenia 14 [l] 0,113 0,00004 0,00008 0,0598 0,000001 0,0001 

Przepływ w obwodzie 

chłodzenia 15 [l] 0,428 0,114 0,125 0,0062 0,2046 0,2134 

Przepływ w obwodzie 

chłodzenia 17 [l] 0,287 0,001 0,00001 0,0365 0,0004 0,000001 

Przepływ w obwodzie 

chłodzenia 20 [l] 0,338 0,051 0,034 0,4826 0,0258 0,0378 

Przepływ w obwodzie 

chłodzenia 6 [l] 0,066 0,431 0,695 0,5924 0,5384 0,6442 

Prędkość we 

wlewach 

doprowadzających 

[m/s] 0,167 0,086 0,561 0,1251 0,0427 0,5356 

Suw pierwszej fazy 

wtrysku [mm] 0,587 0,713 0,359 0,7821 0,7571 0,3396 

Suw docisku po 

multiplikacji [mm] 0,823 0,109 0,868 0,3551 0,0958 0,7224 

Temperatura 

chłodzenia tłoka 

[°C] 0,963 0,039 0,031 0,3196 0,0428 0,062 

Temperatura stopu 

[°C] 0,022 0,968 0,828 0,0705 0,9618 0,6684 

Temperatura 

termoregulatora 2.1 

[°C] 0,337 0,591 0,182 0,2252 0,473 0,1508 

Temperatura 

termoregulatora 2.2 

[°C] 0,554 0,442 0,789 0,5492 0,4416 0,6658 

Temperatura 

termoregulatora 3.2 

[°C] 0,792 0,411 0,247 0,9122 0,3906 0,3375 

Temperatura tulei 1 

[°C] 0,404 0,936 0,162 0,2234 0,8476 0,3432 

Temperatura tulei 2 

[°C] 0,482 0,00016 0,004 0,0276 0,0002 0,008 

Temperatura tulei 3 

[°C] 0,419 0,587 0,297 0,647 0,419 0,2862 

Temperatura tulei 4 

[°C] 0,468 0,118 0,149 0,0977 0,0658 0,1261 

Temperatura w 

obwodzie chłodzenia 

1 [°C] 0,648 0,002 0,013 0,1027 0,0004 0,0001 

Temperatura w 

obwodzie chłodzenia 

13 [°C] 0,751 0,637 0,831 0,9545 0,7391 0,8267 
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Temperatura w 

obwodzie chłodzenia 

14 [°C] 0,723 0,018 0,094 0,0166 0,0101 0,0707 

Temperatura w 

obwodzie chłodzenia 

15 [°C] 0,509 0,722 0,902 0,9058 0,9754 0,9958 

Temperatura w 

obwodzie chłodzenia 

17 [°C] 0,279 906 0,687 0,2644 0,9932 0,8489 

Temperatura w 

obwodzie chłodzenia 

7 [°C] 0,563 0,118 0,058 0,2682 0,1789 0,0394 

Temperatura wody 

miejskiej [°C] 0,137 0,96 0,44 0,9716 0,8747 0,1904 

Temperatura wody w 

instalacji [°C] 0,375 0,19 0,024 0,4152 0,2027 0,015 

Wartość próżni 1 

[mBar] 0,455 0,108 0,002 0,0791 0,1401 0,0044 

Wartość próżni 2 

[mBar] 0,433 0,00009 0,029 0,0003 0,000001 0,0017 

Zużycie smaru [l] 0,11 0,079 0,134 0,0351 0,0464 0,1264 

 

Wykonano więc 1680 obliczeń, gdyż utworzono 6 modeli dla pięciu zbiorów danych, 

zawierających 56 zmiennych. W wyniku uzyskano dwa parametry statystyczne: dla analizy 

ANOVA klasycznej i odwróconej była to statystyka F i p, a w przypadku testu Kruskala-

Wallisa statystyka H i p. Następnie określono maksymalne i średnie wartości obliczonych 

statystyk F i H dla każdego wariantu analizy (tab.5.75.) 

 

Tab. 5.75.: Zestawienie maksymalnych i średnich wartości statystyk F i H  

 Statystyka  Test Zbiór Max F lub H Średnie F lub H 

F Jednoczynnikowa ANOVA 1 19,500 3,034 

F ANOVA odwrócona przeciek 2CAT 1 68,950 11,034 

F ANOVA odwrócona przeciek 4CAT 1 80,260 10,537 

H Test Kruskala-Wallisa  1 178,438 25,321 

H Kruskal-Wallis odwrócony przeciek 2CAT 1 43,569 9,005 

H Kruskal-Wallis odwrócony przeciek 4CAT 1 214,549 29,047 

F Jednoczynnikowa ANOVA 2 26,206 3,906 

F ANOVA odwrócona przeciek 2CAT 2 23,300 4,369 

F ANOVA odwrócona przeciek 4CAT 2 12,230 2,630 

H Test Kruskala-Wallisa  2 10,933 3,089 

H Kruskal-Wallis odwrócony przeciek 2CAT 2 17,984 3,550 

H Kruskal-Wallis odwrócony przeciek 4CAT 2 22,478 6,513 

F Jednoczynnikowa ANOVA 3 3441,000 73,547 

F ANOVA odwrócona przeciek 2CAT 3 324,800 21,544 

F ANOVA odwrócona przeciek 4CAT 3 1331,000 36,205 

H Test Kruskala-Wallisa  3 186,640 25,368 

H Kruskal-Wallis odwrócony przeciek 2CAT 3 289,542 18,968 
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H Kruskal-Wallis odwrócony przeciek 4CAT 3 315,908 36,248 

F Jednoczynnikowa ANOVA 4 6,463 1,189 

F ANOVA odwrócona przeciek 2CAT 4 36,270 6,469 

F ANOVA odwrócona przeciek 4CAT 4 20,190 2,922 

H Test Kruskala-Wallisa  4 20,733 4,921 

H Kruskal-Wallis odwrócony przeciek 2CAT 4 30,119 6,394 

H Kruskal-Wallis odwrócony przeciek 4CAT 4 40,734 8,389 

F Jednoczynnikowa ANOVA 5 5,362 1,162 

F ANOVA odwrócona przeciek 2CAT 5 23,360 4,817 

F ANOVA odwrócona przeciek 4CAT 5 13,500 2,508 

H Test Kruskala-Wallisa  5 16,348 3,343 

H Kruskal-Wallis odwrócony przeciek 2CAT 5 35,555 4,888 

H Kruskal-Wallis odwrócony przeciek 4CAT 5 31,954 7,386 

 

Następnie na podstawie obliczonych wyników dla każdego zbioru danych do badań 

utworzono trzy kryteria zmiennych wybierając te, dla których wartość p była mniejsza niż 0,05 

(rys.5.2.3.5).  

 

Rys.5.2.3.5. Kryterium wyboru statystycznie ważnych zmiennych, na podstawie testu 

Kruskala-Wallisa dla pierwszego zbioru danych 

 

Podsumowując, zastosowano w pracy trzy kryteria istotności zmiennych wejściowych, 

nazwane dalej: kryterium K-W, gdyż w jego zakres wchodziły zmienne wyznaczone na 

podstawie testu Kruskala-Wallisa, kryterium odwróconego K-W, na podstawie testu Kruskala-

Wallisa odwróconego dla przecieku podzielonego na 2 i 4 kategorie oraz kryterium ANOVA, 

obejmującego wyniki analizy ANOVA klasycznej jednoczynnikowej i odwróconej dla 

przecieku podzielonego na 2 i 4 kategorie.  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

20

40

60

80

100

120

140

160

180

200

Sk
al

a 
d

la
 w

ar
to

śc
i p

Sk
al

a 
d

la
 s

ta
ty

st
yk

i H
(t

es
t 

K
ru

sk
al

a-
W

al
lis

a)

Zmienne niezależne posortowane rosnąco według statystyki H

H p p limit = 0,05



165 
 

Kolejnym krokiem przygotowania danych była identyfikacja danych silnie oraz bardzo 

silnie skorelowanych. Analiza ta jest bardzo ważnym punktem badań wielowymiarowych, 

ponieważ jest w stanie na podstawie wizualnej reprezentacji, umożliwić identyfikację 

wzajemnych korelacji między różnymi składnikami wektora losowego. Wykonano więc 

analizę współczynników korelacji liniowej Pearsona i nieparametrycznej Spearmana. Przykład 

otrzymanych wyników obliczeń zestawiono w tab.5.76.. 

 

Tab. 5.76.: Zestawienie wyników analizy korelacji dla zbioru piątego według kryterium K-W 

 

Tab. 5.77.: Interpretacja wysokości współczynnika korelacji 

Wartość korelacji (wartość bezwzględna) Interpretacja 

0,0-0,3 Brak korelacji 

0,3-0,5 Umiarkowanie skorelowane 

0,5-0,7 Wysoko skorelowane 

0,7-1,0 Bardzo wysoko skorelowane 

 

Numer 
zmiennej 

 Zmienna 

Korelacje (Dane do modelowania) 
Oznaczone wsp. korelacji są istotne z p < ,05000 
N=140 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Czas krzepnięcia t2 [s] 1,0 -0,1 0,1 -0,2 0,3 -0,6 0,1 0,5 -0,9 0,4 0,0 0,0 -0,1 

2 
Ciśnienie maksymalne 
[Bar] 

-0,1 1,0 -0,1 -0,2 -0,4 0,3 -0,5 0,2 0,0 0,0 -0,1 -0,2 0,1 

3 Profil próżni 1 [mBar] 0,1 -0,1 1,0 -0,5 -0,2 0,3 -0,2 -0,2 0,0 -0,1 -0,3 -0,6 0,0 

4 Profil próżni 2 [mBar] -0,2 -0,2 -0,5 1,0 0,4 -0,3 0,6 -0,1 0,0 0,0 0,3 0,8 0,0 

5 
Przepływ chłodzenia 
tłoka [l] 

0,3 -0,4 -0,2 0,4 1,0 -0,5 0,7 0,1 -0,3 0,3 0,3 0,5 -0,2 

6 
Przepływ w obwodzie 
chłodzenia 1 [l] 

-0,6 0,3 0,3 -0,3 -0,5 1,0 -0,4 -0,2 0,6 -0,3 -0,3 -0,4 0,1 

7 
Przepływ w obwodzie 
chłodzenia 13 [l] 

0,1 -0,5 -0,2 0,6 0,7 -0,4 1,0 -0,1 -0,1 0,1 0,3 0,6 0,0 

8 
Przepływ w obwodzie 
chłodzenia 15 [l] 

0,5 0,2 -0,2 -0,1 0,1 -0,2 -0,1 1,0 -0,4 0,4 -0,2 0,0 0,0 

9 
Przepływ w obwodzie 
chłodzenia 17 [l] 

-0,9 0,0 0,0 0,0 -0,3 0,6 -0,1 -0,4 1,0 -0,3 -0,1 -0,1 0,0 

10 Temperatura tulei 2 [°C] 0,4 0,0 -0,1 0,0 0,3 -0,3 0,1 0,4 -0,3 1,0 0,0 0,1 -0,1 

11 
Temperatura w obwodzie 
chłodzenia 14 [°C] 

0,0 -0,1 -0,3 0,3 0,3 -0,3 0,3 -0,2 -0,1 0,0 1,0 0,3 0,1 

12 Wartość próżni 2 [mBar] 0,0 -0,2 -0,6 0,8 0,5 -0,4 0,6 0,0 -0,1 0,1 0,3 1,0 0,1 

13 Zużycie smaru [l] -0,1 0,1 0,0 0,0 -0,2 0,1 0,0 0,0 0,0 -0,1 0,1 0,1 1,0 
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Następnie wybrano wysoko i bardzo wysoko skorelowane zmienne ze wszystkich zbiorów 

danych ustalonych według trzech kryteriów i zredukowano ponownie zmienne zastępując dwie 

jedną ważniejszą z punktu widzenia wartości wyjściowej. W tym celu wykonano wykresy 

zależności zmiennych oraz obliczono kwadrat współczynnika korelacji Pearsona (rys.5.2.3.6.-

rys.5.2.3.7.)  

 

Rys.5.2.3.6. Wykres zależności zmiennych: profil próżni 2 i wartość próżni 2, w piątym 

zbiorze, według kryterium K-W 

 

 

Rys.5.2.3.7. Wykres zależności zmiennych: czas krzepnięcia i przepływ w obwodzie 

chłodzenia 17, w zbiorze piątym według kryterium K-W 

 

y = 0,9101x - 693,4
R² = 0,6971

0

100

200

300

400

500

600

800 900 1000 1100 1200 1300 1400

W
ar

to
ść

 p
ró

żn
i 2

 [
m

B
ar

]

Profil próżni 2 [mBar]

y = -9,9382x + 131,41
R² = 0,818

0

5

10

15

20

25

30

35

40

9,8 10 10,2 10,4 10,6 10,8 11 11,2

P
rz

ep
ły

w
 w

 o
b

w
o

d
zi

e 
ch

ło
d

ze
n

ia
 1

7
 [

l]

Czas krzepnięcia t2 [s]



167 
 

W wyniku przeprowadzonej analizy wariancji i korelacji oraz podziału zbiorów według 

kryteriów zredukowano ilość parametrów opisujących proces do istotnych z punktu widzenia 

zmiennej zależnej (rys.5.2.3.8.). 

 

Rys.5.2.3.8. Liczba zmiennych wejściowych w etapie redukcji wymiarowości danych 

 

5.2.3.1. Wnioski 

W wyniku przeprowadzonej redukcji wymiarowości danych, celem przygotowania ich do 

dalszego zaawansowanego modelowania, można z pewnością potwierdzić skuteczność i 

niezawodność zastosowanych metod. Należy zauważyć, iż przykładowo dla piątego zbioru 

danych liczba istotnych zmiennych została zredukowana, zoptymalizowana aż o 81% w 

odniesieniu do początkowej liczby zmiennych niezależnych. 

Uzupełniając charakterystykę wspomnianej cechy danych przemysłowych jaką są korelacje 

pomiędzy parametrami procesu, których występowanie i rodzaje zostały zidentyfikowane przez 

współpracującą odlewnię i przedstawione między innymi na World Foundry Congress w 

Krakowie i potwierdzone w niniejszej pracy poprzez analizę współczynników korelacji dla 

wszystkich zmiennych wejściowych. Głównym wnioskiem pochodzącym z przeprowadzonej 

analizy korelacji była ilość bardzo wysoko i wysoko skorelowanych zmiennych niezależnych, 

których ilość wyniosła aż 25, co stanowi aż 44% ilości wszystkich parametrów procesu. Analiza 

korelacji doprowadziła nas do potwierdzenia występowania głównych rodzajów źródeł 

powstawania korelacji [149], czyli korelacje naturalne występujące pomiędzy wynikającymi z 

siebie parametrów procesu, na przykład pomiędzy temperaturą wody a jej przepływem. Tego 

typu korelację można zastąpić jedną zmienną, określoną jako ważniejszą z punktu widzenia 
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jakości produktu. Drugi typ korelacji, to korelacje celowe, będące zależne od czynnika 

ludzkiego. Tego typu korelacje należy wykluczyć z badanego zbioru danych. Dzieje się tak, 

dlatego, że wartości określonych zmiennych niezależnych mogą być celowo manipulowane 

przez personel obsługujący proces jako ich reakcja na odczyty wartości innych zmiennych lub 

na podstawie indywidualnego doświadczenia. Tego typu zmiany mogą prowadzić do lokalnych 

korelacji ze zmienną zależną. W wyniku model wejście-wyjście danego procesu może z 

łatwością pokazać nieistniejące korelacje. Przeprowadzona analiza przyczyniła się do 

powstania wniosku, iż rzeczywiste relacje w badanych procesach mogą być przesłaniane przez 

sztucznie wprowadzone relacje lub przypadkowo wprowadzone zmiany, co wpłynie na efekt 

modelu pokazujący te relacje jako równie ważne. Praca nad identyfikacją takich zmiennych jest 

trudna, dlatego podzielono zbiory na pięć podzbiorów o różnych zakresach zmiennej 

wyjściowej. Ostatnie, to korelacje losowe mogące być spowodowane przez występowanie 

pewnych wartości w podobnym czasie, należy również ich unikać i koniecznie wykonać ich 

pogłębioną analizę.  

Wnioski z analizy również potwierdziły skuteczność i niezawodność metod. Szczególną 

uwagę należy poświęcić analizie ANOVA, która wciąż stanowi nowoczesne i wciąż jeszcze 

mało rozpowszechnione narzędzie do stosowania w przemyśle. Pozwala ona m. in. na ocenę 

znaczenia zmiennych procesu (wejścia X) z punktu widzenia jego efektów (wyście Y), może 

być bardzo użytecznym narzędziem do wykrywania przyczyn powstawania wad w wyrobach 

[5]. Dobra znajomość analizy wariancji pozwala zrozumieć zmienność, która jest nieodłączną 

cechą niemal wszystkich procesów zachodzących w otaczającym nas świecie. Ponadto metoda 

ta jest podstawą wielu innych analiz statystycznych, do których przejdziemy w kolejnych 

rozdziałach niniejszej rozprawy. 

5.2.4. Zaawansowane modelowanie oparte na danych metodą SSN 

5.2.4.1. Metodyka i wyniki badań 

Założeniem niniejszej rozprawy było opracowanie modelu będącego w stanie w  jak 

najlepszy sposób przewidzieć powstawanie wady w produkcie, a więc przewidzieć wartość 

zmiennej wyjściowej, czyli przecieku w obwodzie wysokiego ciśnienia. Określono, że w tym 

przypadku zastosowanie metody Sztucznych Sieci Neuronowych (SSN), zdolnych do 

uwidoczniania ukrytych i złożonych zależności występujących w wyjątkowo 

skomplikowanych danych produkcyjnych jest uzasadnione. Założono, że istnieje taka sztuczna 

sieć neuronowa, która na podstawie przedstawionych wartości zmiennych wejściowych 
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opisujących proces potrafi skutecznie odwzorować dynamikę zmiany wartości zmiennej 

wyjściowej zachodzącej podczas tego procesu. Mając tak sprecyzowaną istotę problemu 

przystąpiono do projektowania architektury sztucznych sieci neuronowych. Analizując proces 

wytwarzania odlewów utworzono na podstawie wcześniej prezentowanych badań listę 

istotnych parametrów procesu, które zdefiniowano i użyto do niniejszego badania. 

Podsumowując wykonano identyfikację istoty problemu i określono listy zmiennych 

opisujących badany proces.  

Następnie przygotowano wzorce uczące, testujące i walidacyjne na podstawie posiadanych 

zbiorów danych do badań, bazujących na rzeczywistych danych produkcyjnych. Analizę 

przeprowadzono w oparciu o specjalnie utworzoną i zaproponowaną metodykę. Opracowano 

dedykowane plany badań dla każdego z piętnastu zbiorów danych (pięć zbiorów ustalonych 

według trzech kryteriów) (tab.5.78-tab.5.89). Dla każdego z planowanych ustawień 

parametrów sieci, powtórzono obliczenia pięć razy zakładając 200 SSN i 200 zachowywanych, 

w wyniku stworzono 590 modeli neuronowych.  

Kolejnym krokiem był wybór typu sieci. Podczas tego etapu rozpatrywano sieć CP, sieć 

Kohenena, sieć RBF, sieć GRNN i sieć MLP. Zdecydowano iż do niniejszej analizy 

zastosowany będzie perceptron wielowarstwowy (MLP), tworząc sieć jednokierunkową, 

posiadającą warstwę wejściową, wyjściową i co najmniej jedną warstwę ukrytą [47]. Uczenie 

perceptronu wielowarstwowego odbywało się poprzez przedstawienie zbiorów danych 

podzielonych w różnych proporcjach na zbiór uczący, testujący i walidacyjny. Zbiory zawierały 

zestawy wejść dla kolejnych obserwacji uczących i odpowiadające tym wejściom przykłady 

wyjść jakimi powinna odpowiedzieć modelowana sztuczne sieć neuronowa. Podczas badań 

bardzo ważnym punktem było wyspecyfikowanie zbioru testującego równego 0, 10, 15 lub 

20%. Jednak często dla danych rzeczywistych pochodzących z odlewni pomija się w procesie 

uczenia sieci tworzenie zbiorów testowych i walidacyjnych (całkowicie niezależnych), gdyż 

dane rzeczywiste mogą posiadać braki i być niezrównoważone co wpływa na trudność wyboru 

takich zbiorów. Jednakże w prezentowanej pracy sprawdzono również jakość sieci dla modeli 

posiadających zbiory testujące i walidacyjne. 

Kolejnym krokiem było określenie architektury sieci czyli liczby warstw, liczby neuronów 

w warstwach. Podczas tego kroku należało mieć na uwadze fakt, iż określenie odpowiedniej 

liczby neuronów ukrytych i warstw ukrytych jest swoistym wyzwaniem dla projektanta SSN. 

W niniejszej rozprawie liczby neuronów były niewielkie, aby nie dopuszczać do przeuczenia 

się modelu i wynosiły od 7 do 23 dla dużych zbiorów danych (czyli pierwszego i trzeciego) 

oraz od 2 do 5 dla małych zbiorów danych (czyli drugiego, czwartego i piątego). Stwierdzono, 
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że nie ma powodu tworzyć więcej niż jednej warstwy ukrytej, gdyż nie wpłynie to na 

zwiększenie jakości wyniku a jedynie skomplikuje model neuronowy. Ostatnim krokiem było 

uczenie sieci, podczas którego użyto funkcję aktywacji w warstwie ukrytej tangensoidalną i w 

warstwie wyjściowej funkcje tangensoidalną i liniową. Ocenę przyjętego rozwiązania, czyli 

działania SSN sprawdzano obliczając wartość RMSE - średniej kwadratowej błędów. 

 

Tab. 5.78.: Plan badań pierwszego zbioru ustalonego według kryterium K-W 

% wartości 

w zbiorze 

uczącym 

% wartości 

w zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby neuronów ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 Losowo (wg sugestii Statistica) tangensoidalna liniowa 

80 20 0 Losowo (wg sugestii Statistica) tangensoidalna liniowa 

70 15 15 Losowo (wg sugestii Statistica) tangensoidalna liniowa 

70 15 15 Losowo (wg sugestii Statistica) tangensoidalna liniowa 

100 0 0 Losowo (wg sugestii Statistica) tangensoidalna tangensoidalna 

80 20 0 Losowo (wg sugestii Statistica) tangensoidalna tangensoidalna 

70 15 15 Losowo (wg sugestii Statistica) tangensoidalna tangensoidalna 

70 15 15 Losowo (wg sugestii Statistica) tangensoidalna tangensoidalna 

 

Tab. 5.79.: Plan badań drugiego zbioru ustalonego według kryterium K-W 

% wartości 

w zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja aktywacji 

w warstwie ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

100 0 0 3 tangensoidalna liniowa 

90 10 0 2 tangensoidalna liniowa 

90 10 0 3 tangensoidalna liniowa 

80 20 0 2 tangensoidalna liniowa 

80 20 0 3 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 3 tangensoidalna tangensoidalna 

90 10 0 2 tangensoidalna tangensoidalna 

90 10 0 3 tangensoidalna tangensoidalna 

80 20 0 2 tangensoidalna tangensoidalna 

80 20 0 3 tangensoidalna tangensoidalna 

 

Tab. 5.80.: Plan badań trzeciego zbioru ustalonego według kryterium K-W 

% wartości 

w zbiorze 

uczącym 

% 

wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby neuronów ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 
Losowo (wg sugestii 

Statistica) 

tangensoidalna 
liniowa 

70 15 15 
Losowo (wg sugestii 

Statistica) 

tangensoidalna 
liniowa 

100 0 0 
Losowo (wg sugestii 

Statistica) 

tangensoidalna tangensoidalna 

70 15 15 
Losowo (wg sugestii 

Statistica) 

tangensoidalna tangensoidalna 
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Tab. 5.81.: Plan badań czwartego zbioru ustalonego według kryterium K-W 

% wartości w 

zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

100 0 0 3 tangensoidalna liniowa 

100 0 0 4 tangensoidalna liniowa 

100 0 0 5 tangensoidalna liniowa 

90 10 0 2 tangensoidalna liniowa 

90 10 0 3 tangensoidalna liniowa 

90 10 0 4 tangensoidalna liniowa 

90 10 0 5 tangensoidalna liniowa 

80 20 0 2 tangensoidalna liniowa 

80 20 0 3 tangensoidalna liniowa 

80 20 0 4 tangensoidalna liniowa 

80 20 0 5 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 3 tangensoidalna tangensoidalna 

100 0 0 4 tangensoidalna tangensoidalna 

100 0 0 5 tangensoidalna tangensoidalna 

90 10 0 2 tangensoidalna tangensoidalna 

90 10 0 3 tangensoidalna tangensoidalna 

90 10 0 4 tangensoidalna tangensoidalna 

90 10 0 5 tangensoidalna tangensoidalna 

80 20 0 2 tangensoidalna tangensoidalna 

80 20 0 3 tangensoidalna tangensoidalna 

80 20 0 4 tangensoidalna tangensoidalna 

80 20 0 5 tangensoidalna tangensoidalna 

 

Tab. 5.82.: Plan badań piątego zbioru ustalonego według kryterium K-W 

% wartości w 

zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna  liniowa 

100 0 0 3 tangensoidalna  liniowa 

100 0 0 4 tangensoidalna  liniowa 

100 0 0 5 tangensoidalna  liniowa 

90 10 0 2 tangensoidalna  liniowa 

90 10 0 3 tangensoidalna  liniowa 

90 10 0 4 tangensoidalna  liniowa 

90 10 0 5 tangensoidalna  liniowa 

80 20 0 2 tangensoidalna  liniowa 

80 20 0 3 tangensoidalna  liniowa 

80 20 0 4 tangensoidalna  liniowa 

80 20 0 5 tangensoidalna  liniowa 

100 0 0 2 tangensoidalna  tangensoidalna  

100 0 0 3 tangensoidalna  tangensoidalna  

100 0 0 4 tangensoidalna  tangensoidalna  

100 0 0 5 tangensoidalna  tangensoidalna  

90 10 0 2 tangensoidalna  tangensoidalna  

90 10 0 3 tangensoidalna  tangensoidalna  

90 10 0 4 tangensoidalna  tangensoidalna  

90 10 0 5 tangensoidalna  tangensoidalna  

80 20 0 2 tangensoidalna  tangensoidalna  
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80 20 0 3 tangensoidalna  tangensoidalna  

80 20 0 4 tangensoidalna  tangensoidalna  

80 20 0 5 tangensoidalna  tangensoidalna  

 

 

Tab. 5.83.: Plan badań pierwszego zbioru ustalonego według kryterium odwróconego K-W i 

ANOVA 

% wartości 
w zbiorze 
uczącym 

% wartości w 
zbiorze 

testującym 

% wartości w 
zbiorze 

walidacyjnym 

Liczby 
neuronów 
ukrytych: 

Funkcja 
aktywacji w 

warstwie ukrytej 

Funkcja 
aktywacji na 

wyjściu 

100 0 0 21 tangensoidalna liniowa 

100 0 0 22 tangensoidalna liniowa 

70 15 15 7 tangensoidalna liniowa 

70 15 15 7 tangensoidalna liniowa 

100 0 0 19 tangensoidalna tangensoidalna 

100 0 0 22 tangensoidalna tangensoidalna 

 

Tab. 5.84.: Plan badań drugiego zbioru ustalonego według kryterium odwróconego K-W i 

ANOVA 

% wartości 

w zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

100 0 0 3 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 3 tangensoidalna tangensoidalna 

 

Tab. 5.85.: Plan badań trzeciego zbioru ustalonego według kryterium odwróconego K-W i 

ANOVA 

% wartości 

w zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 23 tangensoidalna liniowa 

100 0 0 21 tangensoidalna tangensoidalna 

70 15 15 7 tangensoidalna tangensoidalna 

70 15 15 14 tangensoidalna tangensoidalna 

 

Tab. 5.86.: Plan badań czwartego zbioru ustalonego według kryterium odwróconego K-W 

% 

wartości w 

zbiorze 

uczącym 

% wartości 

w zbiorze 

testującym 

% wartości w zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

100 0 0 3 tangensoidalna liniowa 

100 0 0 4 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 4 tangensoidalna tangensoidalna 
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100 0 0 5 tangensoidalna tangensoidalna 

90 10 0 3 tangensoidalna tangensoidalna 

90 10 0 4 tangensoidalna tangensoidalna 

 

Tab. 5.87.: Plan badań piątego zbioru ustalonego według kryterium odwróconego K-W 

% wartości 

w zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

90 10 0 2 tangensoidalna liniowa 

90 10 0 5 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 3 tangensoidalna tangensoidalna 

90 10 0 3 tangensoidalna tangensoidalna 

 

Tab. 5.88.: Plan badań czwartego zbioru ustalonego według kryterium ANOVA 

% 

wartości w 

zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

100 0 0 3 tangensoidalna liniowa 

100 0 0 4 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 4 tangensoidalna tangensoidalna 

100 0 0 5 tangensoidalna tangensoidalna 

90 10 0 3 tangensoidalna tangensoidalna 

90 10 0 4 tangensoidalna tangensoidalna 

 

Tab. 5.89.: Plan badań piątego zbioru ustalonego według kryterium ANOVA 

 

 

 

 

 

 

 

Zaawansowane modelowanie oparte na dużych zbiorów danych było możliwe dzięki 

oprogramowaniu Statistica opracowanym przez StatSoft Inc.. Dzięki automatycznie 

tworzonymi SSN istnieje możliwość przeprowadzania badań zadając różne typy sieci oraz 

różne ich architektury. Od wyboru zależy jakość otrzymanych modeli i szybkość ich tworzenia. 

Uczenie przeprowadzono przy użyciu algorytmu uczącego BFGS, który jest w stanie osiągnąć 

zbieżność zazwyczaj szybciej niż inne algorytmy takie jak metoda najszybszego spadku [60]. 

Zastosowaną funkcją błędu była wartość entropii krzyżowej.  

% wartości w 

zbiorze 

uczącym 

% wartości w 

zbiorze 

testującym 

% wartości w 

zbiorze 

walidacyjnym 

Liczby 

neuronów 

ukrytych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

100 0 0 2 tangensoidalna liniowa 

90 10 0 2 tangensoidalna liniowa 

90 10 0 5 tangensoidalna liniowa 

100 0 0 2 tangensoidalna tangensoidalna 

100 0 0 3 tangensoidalna tangensoidalna 

90 10 0 3 tangensoidalna tangensoidalna 
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Rys.5.2.4.1. Wybór badań metodą sztucznych sieci neuronowych 

 

W celu przeprowadzenia zaawansowanego modelowania opartego na danych, przy pomocy 

metody Sztucznych Sieci Neuronowych (SSN) należy (rys 5.2.4.1.): 

• w punkcie 1, wybrać zakładkę „Data Mining”, 

• w punkcie 2, wybrać uczenie „Neural Networks”, 

• w punkcie 3, wybrać typ analizy „Regression”, 

• w punkcie 4, zatwierdzić wybrane ustawienia. 

Następnie należy (rys 5.2.4.2.): 

• w punkcie 5, wybrać zakładkę „Quick”, 

• w punkcie 6, wybrać zmienne poprzez „Variables”, 

• w punkcie 7, zatwierdzić wybór, 

• w punkcie 8, wybrać zmienne zależne „Continuous targets”, 

• w punkcie 9, wybrać zmienne niezależne „Continuous inputs” 

• w punkcie 10, wybrać zatwierdzić wybrane zmienne, 

• w punkcie 11, wybrać zakładkę „Sampling CNN and ANN”, 

• w punkcie 12, wybrać procent wartości w zbiorze uczącym, 

testowym i walidacyjnym, 

• w punkcie 13, zatwierdzić wybrane ustawienia. 
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Rys.5.2.4.2. Wybór parametrów do metody sztucznych sieci neuronowych 

 

 

Rys.5.2.4.3. Określenie parametrów programowanej sieci neuronowej 

 

W celu określenia parametrów programowanej sieci neuronowej należy (rys 5.2.4.3.): 

• w punkcie 1, wybrać zakładkę „Quick”, 

• w punkcie 2, wybrać typ sieci MLP i określić minimalną i 

maksymalną ilość neuronów w warstwie ukrytej, 

• w punkcie 3, określić ilość sieci do przetrenowania, 

• w punkcie 4, wybrać zakładkę wyboru funkcji aktywacji „MLP 

activation function”. 
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• W punkcie 5, wybrać funkcję aktywacji w warstwie ukrytej, 

• W punkcje 6, wybrać funkcję aktywacji na wyjściu, 

• W punkcje 7, zatwierdzić wybrane parametry. 

 

 

Rys.5.2.4.4. Proces budowania sztucznych sieci neuronowych 

 

Rys.5.2.4.5. Otrzymane wyniki modelowania opartego na danych, metodą sztucznych 

sieci neuronowych 

 

W celu zapisu wyników zaawansowanego modelowania opartego na danych, przy pomocy 

metody Sztucznych Sieci Neuronowych (SSN) należy (rys 5.2.4.5.): 

• w punkcie 1, otworzyć szczegóły stworzonych modeli SSN, 

• w punkcie 2, wybrać sieć neuronową wytypowaną przy użyciu 

arkusza stworzonego w programie Microsoft Office Excel (rys. 

5.2.4.6.), 

• w punkcie 3, zatwierdzić wybór. 

Dla każdej serii badań wybrana została jedna najlepsza sieć, zidentyfikowana na podstawie 

wyników analizy arkusza, stworzonego w programie Microsoft Excel. Ponadto dla sieci 

zawierających zbiór walidacyjny wybrano dodatkową drugą najlepszą sieć na podstawie 



177 
 

najwyższej wartości jakości walidacji. Do arkusza wprowadzane były wyniki podsumowujące 

przeprowadzone modelowanie (punkt 1, rys 5.2.4.6.), następnie arkusz obliczał wartość 

maksymalną z wartości kolumny przedstawiające wyniki jakości uczenia (punkt 2, rys. 

5.2.4.6.), oraz jakości testowania (punkt 3, rys. 5.2.4.6.), na końcu obliczając maksymalną 

wartość wydajności obliczonej z iloczynu wartości jakości uczenia i jakości testowania (punkt 

4, rys. 5.2.4.6.). Każdą utworzoną SSN z najwyższą wydajnością wybierano do dalszych analiz. 

 

Rys.5.2.4.6. Identyfikacja najbardziej wydajnej SSN 

 

W tym celu zapisywane były szczegóły przewidywanych wartości zmiennej wyjściowej 

pobierane z zakładki „Przewidywania” (rys. 5.2.4.7.). Pobrane wyniki zapisywane były w 

dedykowanych plikach programu Microsoft Excel (rys. 5.2.4.8.). 

 

Rys.5.2.4.7. Zapisywanie wyników sztucznych sieci neuronowych 
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Rys.5.2.4.8. Zapisywanie wyników w arkuszu Excel 

 

W pliku zapisywano parametry SSN, takie jak jej jakość oraz błąd uczenia, testowania i 

walidacji, algorytm uczenia, funkcję błędu oraz wybraną funkcję aktywacji w warstwie ukrytej 

i wyjściowej (punkt 1, rys. 5.2.4.8.). Dodatkowo zestawiono wartości zmierzone z wartościami 

modelowanymi (punkt 2, rys. 5.2.4.8.) celem obliczenia średniej kwadratowej błędów - RMSE 

(ang. root-mean-square error) (punkt 3, rys. 5.2.4.8.). Jest to jedna z najczęściej stosowanych 

miar błędu stosowanych w ocenie danej SSN. 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−ℎ𝑖)2𝑛

𝑖=1

𝑛
    (5.2.) 

 

gdzie: 𝑦𝑖 – zmierzona wartość przecieku (zmiennej wyjściowej) 

ℎ𝑖  -  przewidziana wartość przecieku (zmiennej wyjściowej) 

𝑛 – ilość obserwacji 

 

Celem dodatkowej wizualnej oceny wspomagającej klasyfikację najlepszych modeli 

wykonano również wykresy zależności zmiennej wyjściowej zmierzonej i przewidzianej.  

 



179 
 

 

Rys.5.2.4.9. Wykres zależności zmiennej wyjściowej zmierzonej i przewidzianej na 

przykładzie wyników zbioru 1, wg. kryterium K-W, zawierającego 100% wartości w 

zbiorze uczącym, 22 neurony ukryte, funkcję aktywacji w warstwie ukrytej i funkcję 

aktywacji na wyjściu tangensoidalna 

 

Spośród wszystkich uzyskanych wyników zebrano najlepsze modele (tab. 5.90. – tab.5.92), 

jednocześnie przeanalizowano wpływ zmian parametrów modelu na wyniki modelowania 

zgodnie z jednym z założonych celów rozprawy.  Zauważono, że w dużych zbiorach danych tj. 

pierwszym i trzecim uzyskano niższe wartości RMSE niż w małych zbiorach danych tj. w 

drugim, czwartym i piątym. Im więcej zmiennych wejściowych opisujących proces biorących 

w modelowaniu tym również uzyskano niższe wartości RMSE. Najniższą wartość równą 0,85 

uzyskano dla dużego zbioru danych (trzeciego) ustalonego według kryterium odwróconego K-

W - niezawierającego zbioru testującego, posiadającego 23 neurony w warstwie ukrytej i 

funkcję aktywacji liniową (lin) na wyjściu. Dla małych zbiorów danych najniższą wartość 

RMSE równe 0,9 otrzymano dla zbioru czwartego według kryterium ANOVA – 

niezawierającego zbioru testującego, posiadającego 5 neuronów i funkcję aktywacji 

tangensoidalną (tanh) na wyjściu (rys.5.2.4.10.). Natomiast jeszcze dokładniejszy wynik 

uzyskano dla czwartego zbioru danych, według kryterium ANOVA – niezawierającego zbioru 

testującego, posiadającego 4 neurony i funkcję tangensoidalną na wyjściu (rys. 5.2.4.11). 
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Rys.5.2.4.10. Wykres zależności zmiennej wyjściowej zmierzonej i przewidzianej na 

przykładzie wyników zbioru 4, wg. kryterium ANOVA, zawierającego 100% wartości 

w zbiorze uczącym, 5 neuronów ukrytych, funkcję aktywacji w warstwie ukrytej i 

funkcję aktywacji na wyjściu tangensoidalna 

 

 

Rys.5.2.4.11. Wykres zależności zmiennej wyjściowej zmierzonej i przewidzianej na 

przykładzie wyników zbioru 4, wg. kryterium ANOVA, zawierającego 100% wartości 

w zbiorze uczącym, 4 neuronów ukrytych, funkcję aktywacji w warstwie ukrytej i 

funkcję aktywacji na wyjściu tangensoidalna 
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Tab. 5.90.: Wybrane wyniki modelowania z najniższą wartością RMSE dla pięciu zbiorów 

ustalonych według kryterium K-W, z oznaczeniem RMSE, od najniższych wartości (od 

zielonego koloru) do najwyższych wartości (do czerwonego koloru) 

 

Tab. 5.91.: Wybrane wyniki modelowania z najniższą wartością RMSE dla pięciu zbiorów 

ustalonych według kryterium odwróconego K-W, z oznaczeniem RMSE, od najniższych 

wartości (od zielonego koloru) do najwyższych wartości (do czerwonego koloru) 

Numer 

zbioru 
Zbiory według kryterium K-W 

1 % wartości w zbiorze testowym 0 0 0 0 0 15       

1 Liczba neuronów w warstwie ukrytej 20 19 22 22 21 7       

1 Funkcja aktywacji na wyjściu tanh tanh lin tanh lin lin       

1 RMSE 1,53 1,59 1,77 1,81 2,5 5,31       

2 % wartości w zbiorze testowym 0 0 0 0 0 0       

2 Liczba neuronów w warstwie ukrytej 3 3 2 3 2 2       

2 Funkcja aktywacji na wyjściu tanh tanh tanh lin tanh lin       

2 RMSE 15,5 15,6 20,8 20,9 21,2 23,5       

3 % wartości w zbiorze testowym 0 0 15 15         

3 Liczba neuronów w warstwie ukrytej 23 21 14 7         

3 Funkcja aktywacji na wyjściu lin tanh tanh tanh         

3 RMSE 0,93 0,96 1,28 1,28         

4 % wartości w zbiorze testowym 0 0 0 0 0 0 0 10 0 0 10 

4 Liczba neuronów w warstwie ukrytej 5 5 4 4 2 2 4 3 2 3 4 

4 Funkcja aktywacji na wyjściu tanh tanh tanh tanh tanh tanh lin tanh lin lin tanh 

4 RMSE 4,4 4,9 5,2 7,0 12,5 13,5 14,0 15,9 16,6 16,9 17,7 

5 % wartości w zbiorze testowym 0 0 0 0 0 10 10 10 10    

5 Liczba neuronów w warstwie ukrytej 3 2 2 2 2 5 2 2 3    

5 Funkcja aktywacji na wyjściu tanh tanh tanh lin lin lin lin lin tanh    

5 RMSE 11,8 15,1 15,5 16,7 17,5 18,1 19,2 19,8 24,0     

Numer 

zbioru Zbiory według kryterium odwróconego K-W 

1 % wartości w zbiorze testowym 0 0 2 0 15   

1 Liczba neuronów w warstwie ukrytej 19 22 20 22 7   

1 Funkcja aktywacji na wyjściu tanh lin tanh tanh lin   

1 RMSE 1,36 1,53 1,61 1,76 4,28   

2 % wartości w zbiorze testowym 0 0 0     

2 Liczba neuronów w warstwie ukrytej 3 3 2     

2 Funkcja aktywacji na wyjściu tanh lin tanh     

2 RMSE 21,5 21,6 21,7     

3 % wartości w zbiorze testowym 0 0      

3 Liczba neuronów w warstwie ukrytej 23 21      

3 Funkcja aktywacji na wyjściu lin tanh      
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Tab. 5.92.: Wybrane wyniki modelowania z najniższą wartością RMSE dla pięciu zbiorów 

ustalonych według kryterium ANOVA, z oznaczeniem RMSE, od najniższych wartości (od 

zielonego koloru) do najwyższych wartości (do czerwonego koloru) 

 

Numer 

zbioru 
Zbiory według kryterium ANOVA 

1 % wartości w zbiorze testowym 0 0 0 15    

1 Liczba neuronów w warstwie ukrytej 19 22 22 7    

1 Funkcja aktywacji na wyjściu tanh lin tanh lin    

1 RMSE 1,36 1,53 1,76 4,28    

2 % wartości w zbiorze testowym 0 0 0     

2 Liczba neuronów w warstwie ukrytej 3 3 2     

2 Funkcja aktywacji na wyjściu tanh lin tanh     

2 RMSE 21,5 21,6 21,7     

3 % wartości w zbiorze testowym 0 0      

3 Liczba neuronów w warstwie ukrytej 23 21      

3 Funkcja aktywacji na wyjściu lin tanh      

3 RMSE 0,86 0,9      

4 % wartości w zbiorze testowym 0 0 0 0 0 0 

4 Liczba neuronów w warstwie ukrytej 5 4 4 3 2 2 

4 Funkcja aktywacji na wyjściu tanh tanh lin lin tanh lin 

4 RMSE 0,9 2,1 2,4 3,7 3,9 6,5 

5 % wartości w zbiorze testowym 0 0 0 10    

5 Liczba neuronów w warstwie ukrytej 3 2 2 5    

5 Funkcja aktywacji na wyjściu tanh tanh lin lin    

5 RMSE 3,8 6 6 17,8     

 

Jednym z efektów badań jest wynik modelowania sieci zawierającej pięć neuronów oraz 

całym zbiorem wykorzystanym do uczenia, zestawiony z wynikiem modelowania dla sieci 

zawierającej również pięć neuronów, ale z zadanym zatrzymaniem uczenia wskutek wzrostu 

błędu dla zbioru testującego, gdzie można zauważyć wzrost błędu uczenia się sieci. Wynik 

średniej kwadratowej błędów – RMSE dla zbioru w całości wykorzystanego do uczenia wynosi 

3 RMSE 0,86 0,9      

4 % wartości w zbiorze testowym 0 0 0 0 0 0 

4 Liczba neuronów w warstwie ukrytej 4 5 4 3 2 2 

4 Funkcja aktywacji na wyjściu tanh tanh lin lin tanh lin 

4 RMSE 2,5 0,9 4,3 4,5 5,1 14 

5 % wartości w zbiorze testowym 0 0 0 10    

5 Liczba neuronów w warstwie ukrytej 3 2 2 2    

5 Funkcja aktywacji na wyjściu tanh tanh lin lin    

5 RMSE 3,5 7,2 11,7 19     
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7,8 (rys.5.2.4.12.), natomiast dla zbioru z wydzielonym zbiorem testującym na poziomie 20% 

rekordówwynosi 24,9 (rys.5.2.4.13.).  

Na podstawie zestawionych wyników, przykładowo otrzymanych podczas modelowania w 

oparciu o dane z pierwszego zbioru według kryterium K-W o największej liczbie obserwacji, 

gdzie najniszą uzyskaną wartością RMSE było 1,53 dla modelu bez zatrzymania uczenia się, 

zawierającego 20 neuronów oraz funkcje aktywacji tangensoidalne, można stwierdzić, że w 

przypadku kiedy mamy 0% wartości w zbiorze testującym, wówczas otrzymujemy najlepsze 

wyniki z najmniejszą wartością średniej kwadratowej błędów – RMSE (rys.5.2.4.14.). 

Prawdopodobnie są to modele wykazujące nadmierne dopasowanie się. Dla porównania 

najniszą wartość RMSE równą 1,77, dla tego samego zbioru jednak z funkcjami aktywacji w 

warstwie ukrytej tangensoidalną (tanh) i funkcją aktywacji na wyściu liniową (lin) uzyskano 

dla modelu zawierającego 22 neurony w warstwie ukrytej, również z 0% wartości w zbiorze 

testującym (rys. 5.2.4.15.). Można na tej podstawie stwierdzić, że wyniki otrzymane z 

funkcjami tanh-lin i tanh-tanh są porównywalnie dobre.  

 

 

Rys.5.2.4.12. Wykres zależności zmiennej wyjściowej zmierzonej i przewidzianej na 

przykładzie wyników zbioru 5, wg. kryterium K-W, model bez zatrzymania uczenia 
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Rys.5.2.4.13. Wykres zależności zmiennej wyjściowej zmierzonej i przewidzianej na 

przykładzie wyników zbioru 5, wg. kryterium K-W, model z zatrzymaniem uczenia 

wskutek wzrostu błędu dla zbioru testującego 

 

 

Rys.5.2.4.14. Wyniki modelowania w oparciu o dane ze zbioru 1, według kryterium K-

W, funkcja aktywacji tanh-tanh 

R² = 0,4067
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Rys.5.2.4.15. Wyniki modelowania opartego na danych ze zbioru 1, według kryterium 

K-W, funkcja aktywacji tanh-lin 

5.2.4.2. Wnioski 

Ogólne wnioski przywołują stwierdzenie, iż poszukiwania optymalnej architektury 

powoduje w przypadku niniejszych badań największą trudność, ponieważ obecnie nie istnieje 

żaden wzrór lub reguła, mówiąca jaki typ architektury powinien być zastosowany celem 

rozwiązania określonego problemu, dlatego kluczem do sukcesu jest stworzenie 

odpowiedniego procesu uczenia sieci dostosowanej do określonego problemu. Literatura 

podaje jedynie proponowane rozwiązania opierające się o aktualne trendy, co wzięto pod uwagę 

w tworzeniu planu badań opisanych w niniejszym rozdziale. Przetestowano kilkadziesiąt 

różnych architektur w różnych zbiorach danych posiadających zróżnicowane zakresy zmiennej 

zależnej. Przeprowadzone badania prowadzą do następujących wniosków: w bardzo niewielu 

przypadkach sieć jest w stanie się uczyć, jeśli wydzielimy zbiór testowy, lub testowy i 

walidacyjny, jednak czasami sieć jest w stanie to zrobić, co widać na rys. 5.2.4.16.  
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Rys.5.2.4.16. Wyniki modelowania opartego na danych ze zbioru 1, według kryterium 

K-W, funkcja aktywacji tanh-lin, 7 neuronów w warstwie ukrytej, z 20% wartości w 

zbiorze testującym 

 

Nasuwa się pytanie, które modele są najlepsze do dalszej analizy, polegającej na 

wielowymiarowej optymalizacji parametrów procesu - czy użyć tych, które mają lepszą 

zdolność generalizacji, ponieważ sieć została zatrzymana na wzrost błędu dla nowych danych, 

czy też użyć tych modeli, które dały lepsze wyniki, ale ich zdolność generalizacji była słaba, 

ponieważ nie zastosowano zatrzymania uczenia.    

Kluczowe jednak jest wydobywanie informacji z modelu opartego na danych np. 

neuronowego. Wskazano, możliwość zastosowania sztucznych sieci neuronowych do 

projektowania procesów wytwarzania w aspekcie praktycznym. Tym samym wykazano, że 

stosowanie metod sztucznej inteligencji, czyli między innymi sztucznych sieci neuronowych 

jest sposobem rozważania zjawisk powstawania wad w wyrobach, co może w przyszłości 

zastąpić tworzenie skomplikowanych modeli matematycznych lub dochodzenie do właściwych 

parametrów procesu metodami doświadczalnymi oraz uniknąć kosztownych badań jakości 

wyrobu.  

Stwierdzono jednak, że przez brak jednoznacznej powtarzalności wyników potrzebne 

byłoby opracowanie innych metod analizy modeli miękkich, odfiltrowujących te przysłaniające 

zależności. Dlatego w kolejnych rozdziałach przeprowadzono sprawdzenie alternatywnych 

rodzajów modeli opartych na danych: drzew decyzyjnych (z uwagi na ich diametralnie inny 
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charakter oraz rozpowszechnienie w zastosowaniach przemysłowych i innych), oraz maszyn 

wektorów wspierających (SVM) z uwagi na aktualne trendy. 

Ostatecznie dokonano wyboru metody wykazującej najwyższą skuteczność i zastosowano 

jej wyniki modelowania do opracowania wielowymiarowej optymalizacji parametrów procesu 

dla minimalnej i maksymalnej wartości wady w produkcie, dla której opracowano stategię 

odpytywania modeli z wykorzystaniem metod gradientowych (z multistatrem) i ewolucyjnych. 

5.2.5. Zaawansowane modelowanie oparte na danych metodą DT 

5.2.5.1. Metodyka i wyniki badań 

Zdecydowano się na zastosowanie metody drzew regresyjnych, z uwagi na ich 

powszechność w zastosowaniach przemysłowych, możliwość aplikacji nawet w przypadku 

braku znajomości natury związku między zmienną zależną a jej predyktorami (czy jest on 

liniowy, czy nieliniowy) oraz  diametralnie inny charakter względem sprawdzonej metody 

sztucznych sieci neuronowych, celem właściwego diagnozowania przyczyn powstawania wad 

wyrobów. Model regresyjny ogólnie stosowany jest w przypadku zagadnień, których celem jest 

określenie wartości zmiennej zależnej typu ciągłego, w oparciu o znane wartości zmiennych 

niezależnych typu ciągłego. W tego rodzaju analizach metoda ta potrafi odkryć ukryte 

zależności (pomiędzy parametrami procesu), które mogły zostać pominięte poprzez inne 

metody zaawansowanej analizy danych, dlatego zdcydowano się na zastosowanie jej w 

niniejszej rozprawie.   

Do badań wykorzystano algorytm klasyfikacyjnych i regresyjnych drzew decyzyjnych 

(CART – ang. classification and reggresion trees) z pakietu Statistica, ponieważ umożliwia on 

manualne zadanie parametrów (przedstawionych w tab.5.93.)  drzew decyzyjnych użytych do 

badań. Celem jest znalezienie odpowiedniego i logicznego zbioru warunków podziału, aby 

właściwie zaklasyfikować wszystkie analizowane obserwacje. Właściwy dobór założeń i 

parametrów tworzonego drzewa decyzyjnego, a więc określenie odpowiedniego rozmiaru 

drzewa, poprzez dobór wartości minimalnej liczności oraz odpowiedniego kryterium stopu jest 

kluczowy dla jakości uzyskanych wyników predykcji. W teorii możliwe byłoby kontunuowanie 

podziałów celem uzyskania doskonałego dopasowania modelu do danych, jednak 

skutkowałoby to stworzeniem bardzo złożonej struktury drzewa z  najprawdopodobniej wręcz 

nadmiernym dopasowaniem, co wpłynęło by na brak zdolności modelu do prawidłowej 

predykcji dla nowych obserwacji. Dodatkowo decyzja o wyborze kryterium stopu podziału jest 

kluczowa dla danych rzeczywistych zawierających szumy występujące losowo. W tym celu 
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zastosowano kryterium stopu oparte na minimalnej liczności, a więc podziały były prowadzone 

do momentu osiągnięcia we wszystkich jednorodnych węzłach nie większej niż określonej 

minimalnej liczności przypadków. Sprawdzono różne zadane wartości minimalnych liczności, 

celem uzyskania wniosków o wpływie tego parametru na otrzymaną jakość modelu [150]. 

Dodatkowo sprawdzono dwa typy ustawień wielokrotnej walidacji krzyżowej, umożliwiającej 

wybór najlepszego modelu regresyjnego dającego najlepszą prognozę dla badanych zbiorów 

danych na podstawie różnych zbiorów testowych i uczących.  

 

Tab. 5.93.: Założenia przyjęte w CART 

Parametr Model ogólny drzewa regresyjnego 

Wielokrotna walidacja krzyżowa dwa typy ustawień (z walidacją, lub bez) 

Minimalna liczność 5, 10, 20, 50 

Maksymalna liczba węzłów 1000 

 

Analizie poddano dane z piętnastu zbiorów danych (pięciu zbiorów głównych ustalonych 

dodatkowo według trzech kryteriów, opisanych w poprzednich rozdziałach). Zbiory te 

zawierały zmienne niezależne oraz zmienną zależną typu ciągłego, a więc dane przygotowane 

do analizy metodą drzew regresyjnych. Ostatecznie wykonano 120 obliczeń, których wyniki 

zgromadzono w przygotowanych arkuszach oprogramowania Microsoft Excel. 

 

Rys.5.2.5.1. Proces przeprowadzania badań metodą drzew regresyjnych  
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W celu przeprowadzenia modelowania opartego na danych, metodą drzew regresyjnych 

należy (rys.5.2.5.1): 

• w punkcie 1, wybrać w zakładce „Data Mining” metodę „C&RT”, 

• w punkcie 2, wybrać specyfikację metody „Quick specs dialog”, 

• w punkcie 3,  wybrać zmienne wejściowe i wyjściowe, 

• w punkcie 4, ustalić minimalną liczność i maksymalną liczbę węzłów, 

• w punkcie 5, ustalić czy analiza ma zawierać wielokrotną walidację 

krzyżową. 

Następnie, aby zapisać wyniki modeowania należy (rys.5.2.5.1) wybrać przycisk z 

przewidzianymi wartościami (punkt 1) i skopiować wyniki modelowania do utworzonych 

arkuszy excel (punkt 2). 

  

Rys.5.2.5.2. Zapisywanie wyników modelowania metodą drzew regresyjnych 

 

Ważnym punktem podczas zapisywania wyników było obliczenie dla każdego modelu 

wyniku obliczeń wartości RMSE, która służyła ocenie modelu. Wyniki modelowania 

zestawiono w tab.5.94 – tab.5.96.. 

 

Tab. 5.94.: Wyniki modelowania metodą drzew regresyjnych zbiorów według kryterium K-W, 

z oznaczeniem RMSE, od najniższych wartości (od zielonego koloru) do najwyższych wartości 

(do czerwonego koloru) 

Numer 

zbioru 
Zbiory według kryterium K-W 

1 Minimalna liczność 5 10 20 50 

1 RMSE z wielokrotną walidacją krzyżową 4,3 4,3 4,3 4,3 

1 RMSE bez wielokrotnej walidacji krzyżowej 3,8 3,8 3,9 4,1 
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2 Minimalna liczność 5 10 20 50 

2 RMSE z wielokrotną walidacją krzyżową 40 40 40 40 

2 RMSE bez wielokrotnej walidacji krzyżowej 7,1 10,1 26,1 31,6 

3 Minimalna liczność 5 10 20 50 

3 RMSE z wielokrotną walidacją krzyżową 1,1 1,1 1,1 1,1 

3 RMSE bez wielokrotnej walidacji krzyżowej 0,99 0,97 0,95 0,95 

4 Minimalna liczność 5 10 20 50 

4 RMSE z wielokrotną walidacją krzyżową 31 31 31 31 

4 RMSE bez wielokrotnej walidacji krzyżowej 12 24,2 26,7 27,3 

5 Minimalna liczność 5 10 20 50 

5 RMSE z wielokrotną walidacją krzyżową 32,2 32,2 32,2 32,2 

5 RMSE bez wielokrotnej walidacji krzyżowej 18,9 22,7 26,7 28,5 

 

Tab. 5.95.: Wyniki modelowania metodą drzew regresyjnych zbiorów według kryterium 

odwróconego K-W, z oznaczeniem RMSE, od najniższych wartości (od zielonego koloru) do 

najwyższych wartości (do czerwonego koloru) 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 5.96.: Wyniki modelowania metodą drzew regresyjnych zbiorów według kryterium 

ANOVA, z oznaczeniem RMSE, od najniższych wartości (od zielonego koloru) do 

najwyższych wartości (do czerwonego koloru) 

Numer 

zbioru 
Zbiory według kryterium ANOVA 

1 Minimalna liczność 5 10 20 50 

1 RMSE z wielokrotną walidacją krzyżową 4,3 4,3 4,3 4,3 

1 RMSE bez wielokrotnej walidacji krzyżowej 3,4 3,4 3,5 3,7 

2 Minimalna liczność 5 10 20 50 

2 RMSE z wielokrotną walidacją krzyżową 40 40 40 40 

2 RMSE bez wielokrotnej walidacji krzyżowej 14,7 16,3 26,1 31,6 

3 Minimalna liczność 5 10 20 50 

3 RMSE z wielokrotną walidacją krzyżową 1,1 1,1 1,1 1,1 

3 RMSE bez wielokrotnej walidacji krzyżowej 0,99 0,96 0,94 0,93 

4 Minimalna liczność 5 10 20 50 

4 RMSE z wielokrotną walidacją krzyżową 31 31 31 31 

Numer 

zbioru 
Zbiory według kryterium odwróconego K-W 

1 Minimalna liczność 5 10 20 50 

1 RMSE z wielokrotną walidacją krzyżową 4,3 4,3 4,3 4,3 

1 RMSE bez wielokrotnej walidacji krzyżowej 3,4 3,4 3,5 3,7 

2 Minimalna liczność 5 10 20 50 

2 RMSE z wielokrotną walidacją krzyżową 40 40 40 40 

2 RMSE bez wielokrotnej walidacji krzyżowej 14,7 16,3 26,1 31,6 

3 Minimalna liczność 5 10 20 50 

3 RMSE z wielokrotną walidacją krzyżową 1,1 1,1 1,1 1,1 

3 RMSE bez wielokrotnej walidacji krzyżowej 0,99 0,96 0,94 0,93 

4 Minimalna liczność 5 10 20 50 

4 RMSE z wielokrotną walidacją krzyżową 31 31 31 31 

4 RMSE bez wielokrotnej walidacji krzyżowej 12,2 21,1 25,5 27,9 

5 Minimalna liczność 5 10 20 50 

5 RMSE z wielokrotną walidacją krzyżową 32,2 32,2 32,2 32,2 

5 RMSE bez wielokrotnej walidacji krzyżowej 16 19,3 24,9 25,7 
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4 RMSE bez wielokrotnej walidacji krzyżowej 10,2 14 22,8 25,5 

5 Minimalna liczność 5 10 20 50 

5 RMSE z wielokrotną walidacją krzyżową 32,2 32,2 32,2 32,2 

5 RMSE bez wielokrotnej walidacji krzyżowej 16,4 19 23,2 24,9 

 

Najlepsze wyniki o najmniejszej wartości RMSE równej 7,1 dla małych zbiorów danych 

(czyli drugiego, czwartego i piątego) uzyskano w zbiorze drugim ustalonym według kryterium 

K-W z minimalną licznością równą 5, bez zastosowania walidacji krzyżowej (rys.5.2.5.3.). 

Natomiast pośród dużych zbiorów danych (pierwszego i trzeciego) najniższą wartość RMSE 

równe 0,93 otrzymano w trzecim zbiorze danych ustalonym według kryterium odwróconego 

K-W i ANOVA z minimalną licznością równą 50 (rys.5.2.5.4.). 

 

Rys.5.2.5.3. Wyniki modelowania opartego na danych ze zbioru drugiego wg. kryterium 

K-W, z minimalną licznością równą 5  

 

 

Rys.5.2.5.4. Wyniki modelowania opartego na danych ze zbioru trzeciego według 

kryterium odwróconego K-W i ANOVA  
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5.2.5.2. Wnioski 

Przeprowadzone badania umożliwiły sprawdzenie skuteczności metody drzew regresyjnych 

jako nieparametrycznej metody dyskryminacji do rozwiązania problemu związanego z 

właściwą predykcją wartości wyjściowej na podstawie określonych wartości zmiennych 

wejściowych.  

Zauważono, że zwiększenie wartości minimalnej liczności generalnie degraduje jakość 

badanego modelu drzew regresyjnych w szczególności w małych zbiorach danych 

(rys.5.2.5.5.). Na podstawie dwóch ustawień modeli, czyli zawierających wielokrotną 

walidację krzyżową, lub jej niezawierających można podsumować, że jej zastosowanie 

spowodowało uzyskanie jako wynikowych wartości zmiennej zależnej równych średniej z jej 

wszystkich wartości obserwacji. Stwierdzono, że drzewa regresyjne z zastosowaną wielokrotną 

walidacją krzyżową, nie są w stanie prawidłowo przewidzieć wartości zmiennej zależnej, a 

więc nie są w stanie przeprowadzić skutecznego procesu uczenia się (tab.5.94. – tab.5.96.). 

 

Rys.5.2.5.5. Wynikowe wartości średnie RMSE w odniesieniu do wartości minimalnej 

liczności dla małych i dużych zbiorów danych, bez walidacji krzyżowej  

 

Wyniki modelowania opartego na danych z małych zbiorów danych w oparciu o obliczone 

wartości RMSE, w porównaniu z metodą sztucznych sieci neuronowych były znacznie gorsze. 

W przypadku dużych zbiorów danych wartości RMSE były zbliżone w obu metodach, jednak 

metoda drzew decyzyjnych nie dała lepszych wyników niż modelowanie SSN. Niewątpliwą 

zaletą metody jest czytelna i graficzna reprezentacja wyników.  
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5.2.6. Zaawansowane modelowanie oparte na danych metodą SVM 

5.2.6.1. Metodyka i wyniki badań 

W kolejnym etapie badań, opisywanym w niniejszym rozdziale zdecydowano o 

konieczności zastosowania metody maszyn wektorów wspierających (SVM), z uwagi na 

aktualne trendy analizy modeli miękkich w zagadnieniach przemysłowych. Zaawansowane 

modelowanie oparte na danych, metodą SVM stało się w pewnym momencie dość 

konkurencyjne względem metody sztucznych sieci neuronowych [151] z uwagi na jej skuteczne 

radzenie sobie z rozwiązywanymi problemami oraz poprawę jakości modeli. Celem badań jest 

więc stworzenie modelu opartego na metodzie SVM, skutecznie określającego zmianę wartości 

zmiennej wyjściowej na podstawie zmienych wartości parametrów wejściowych opisujących 

proces wytwarzania, aby właściwie wskazać przyczyny powstawania wad w wyrobach. 

W celu realizacji badań opracowane dedykowane plany badawcze oparte o modele regresji. 

Zbiory danych przygotowane do badań zawierały inne zakresy zmiennej wyjściowej. Celem 

budowy optymalnej hiperpłaszczyzny, która będzie w stanie odseparować badane obiekty o 

różnej przynależności klasowej, budowanej w iteracyjnym algorytmie uczącym, zastosowano 

dwie minimalizujące funkcje błędu regresyjną typu pierwszego i regresyjną typu drugiego. 

Podczas badań zastosowano osiem różnych metod próbkowania danych, czyli w oparciu o 

cztery funkcje jądrowe i dwie różne funkcje błędu, w każdym z piętnastu opracowanych 

wcześniej zbiorów danych (pięć zbiorów ustalonych według trzech kryteriów).W celu 

nauczenia SVM stworzono ostatecznie 120 modeli opartych o model regresyjny z różną ilością 

próbek.  

W celu przeprowadzenia modelowania metodą drzew regresyjnych należy (rys.5.2.6.1. – 

rys.5.2.6.2.): 

• w punkcie 1, wybrać w zakładce „Data Mining” - „Uczenie Maszynowe”, 

• w punkcie 2, wybrać metodę „Maszyny wektorów wspierających”, 

• w punkcie 3 i 4,  wybrać zmienne wejściowe i wyjściowe, 

• w punkcie 5, ustalić typ regresji SVM, 

• w punkcje 6, wybrać funkcję jądrową, 

• w punkcie 7, ustalić czy analiza ma zawierać wielokrotną walidację 

krzyżową. 
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Rys.5.2.6.1. Proces przeprowadzania badań metodą SVM 

 

 

Rys.5.2.6.2. Proces ustawiania parametrów do badań metodą SVM 

 

Następnie, aby zapisać wyniki modeowania należy (rys.5.2.6.3.) wybrać wszystkie próbki 

(punkt 1), następnie przycisk z przewidzianymi wartościami (punkt 2) i skopiować wyniki 

modelowania do utworzonych arkuszy excel (punkt 3). 
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Rys.5.2.6.3. Zapisywanie wyników modelowania metodą SVM  

 

Metodą użytą do oceny jakości stworzonych modeli była obliczona wartość RMSE dla 

każdego z otrzymanych wyników badań (tab.5.97.-5.-99.). Wartość obliczonego RMSE 

pomogła podjąć decyzję, czy dany model może zostać użyty do dalszych etapów badań 

mających na celu diagnostykę przyczyn powstawania wad w wyrobach. Tego typu podejście 

zastosowane już w badaniach opartach o dwie opisywane wcześniej metody pozwala na 

obiektywne i praktycznie automatyczne testowanie modeli oraz ich ocenę.  

 

Tab. 5.97.: Wyniki modelowania metodą SVM, zbiorów według kryterium K-W, z 

oznaczeniem RMSE, od najniższych wartości (od zielonego koloru) do najwyższych wartości 

(do czerwonego koloru) 

Numer 

zbioru 
Zbiory według kryterium K-W 

1 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

1 RMSE dla SVM typu 1 8 8,1 7,9 6,4 

1 RMSE dla SVM typu 2 5,2 4,5 4,5 23,7 

2 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

2 RMSE dla SVM typu 1 36,9 40,7 31,4 38,2 

2 RMSE dla SVM typu 2 44,8 55,4 31,7 34,9 

3 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

3 RMSE dla SVM typu 1 1,6 1,1 1,4 1,6 

3 RMSE dla SVM typu 2 1,6 1,2 1,3 1,4 

4 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

4 RMSE dla SVM typu 1 40,7 30,7 30,8 30,9 

4 RMSE dla SVM typu 2 31,6 31,5 31,5 31,4 

5 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

5 RMSE dla SVM typu 1 41,2 32,1 41,7 32,1 

5 RMSE dla SVM typu 2 32,8 32,7 32,6 32,8 
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Tab. 5.98.: Wyniki modelowania metodą SVM, zbiorów według kryterium odwróconego K-W, 

z oznaczeniem RMSE, od najniższych wartości (od zielonego koloru) do najwyższych wartości 

(do czerwonego koloru) 

Numer 

zbioru 
Zbiory według kryterium odwróconego K-W 

1 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna 

1 RMSE dla SVM typu 1 6,9 7,9 7,1 6,9 

1 RMSE dla SVM typu 2 5,7 4,4 4,5 12,8 

2 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

2 RMSE dla SVM typu 1 32,9 31,7 38,3 32,2 

2 RMSE dla SVM typu 2 34,8 33 29,2 31,9 

3 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

3 RMSE dla SVM typu 1 1,8 1,1 1,4 1,4 

3 RMSE dla SVM typu 2 1,6 1,2 1,3 1,3 

4 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

4 RMSE dla SVM typu 1 34,1 30,6 30,4 30,2 

4 RMSE dla SVM typu 2 37,1 31,5 31,3 31,3 

5 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

5 RMSE dla SVM typu 1 33,9 41,8 41,5 41,7 

5 RMSE dla SVM typu 2 31,9 32,6 32,5 32,5 

 

Tab. 5.99.: Wyniki modelowania metodą SVM, zbiorów według kryterium ANOVA, z 

oznaczeniem RMSE, od najniższych wartości (od zielonego koloru) do najwyższych wartości 

(do czerwonego koloru) 

Numer 

zbioru 
Zbiory według kryterium ANOVA 

1 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna 

1 RMSE dla SVM typu 1 6,9 7,9 7,1 6,9 

1 RMSE dla SVM typu 2 5,7 4,4 4,5 12,8 

2 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

2 RMSE dla SVM typu 1 32,9 31,7 38,3 32,2 

2 RMSE dla SVM typu 2 34,8 33 29,2 31,9 

3 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

3 RMSE dla SVM typu 1 1,8 1,1 1,4 1,4 

3 RMSE dla SVM typu 2 1,6 1,2 1,3 1,3 

4 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

4 RMSE dla SVM typu 1 34,3 30,5 30,2 30,5 

4 RMSE dla SVM typu 2 37,1 31,5 31,3 31,3 

5 Funkcje jądrowe Liniowa  Wielomian RBF Sigmoidalna  

5 RMSE dla SVM typu 1 32,3 41,8 41,6 41,7 

5 RMSE dla SVM typu 2 35,8 32,6 32,5 32,5 

 

Najniszą wartość RMSE równą 29,2 spośród stosunkowo małych zbiorów danych uzyskano 

w drugim zbiorze ustalonym według odwórconego K-W i kryterium ANOVA, z SVM typu 2 i 

funkcją jądrową RBF (rys.5.2.6.4.). Spośród dużych zbiorów najlepszy wynik RMSE równe 
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1,1 otrzymano w 3 zbiorze ustalonym według kryterium K-W i odwórconego K-W z SVM typu 

1 i funkcją jądrową wielomianową (rys. 5.2.6.5.).  

 

Rys.5.2.6.4. Wyniki modelowania opartego na danych ze zbioru 2, wg kryterium 

odwróconego K-W i ANOVA, z funkcją jądrową RBF i SVM typu drugiego 

 

 

Rys.5.2.6.5. Wyniki modelowania opartego na danych ze zbioru 3, wg kryterium K-W 

 

5.2.6.2. Wnioski 

Podczas przeprowadzonych analiz zbadano wpływ czterech funkcji jądrowych i dwóch 

typów regresji SVM na jakość utworzonego modelu (rys. 5.2.6.6.). W dużych zbiorach danych 

lepszą czyli niższą wartość RMSE otrzymano dla większości przypadków dla SVM typu 

drugiego.  
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Rys.5.2.6.6. Wyniki RMSE w podziale na rodzaj funkcji jądrowej i typ funkcji błędu 

 

W małych zbiorach danych można było również zauważyć lepsze wyniki dla SVM typu 

drugiego. Jeżeli weźmiemy pod uwagę wyniki w podziale na rodzaj zastosowanej funkcji 

jądrowej, wówczas należy zauważyć, iż najlepsze wyniki otrzymano dla funkcji jądrowej RBF 

w dużych i małych zbiorach danych. 

 

Rys.5.2.6.7. Średnie RMSE według numeru zbioru danych i kryterium 

 

Generalnie najwyższe wartości RMSE otrzymano w drugim zbiorze danych ustalonym 

według kryterium K-W (rys.5.2.6.7.). Zbiór ten zawierał najmniejszą liczbę obserwacji. 

Najlepsze wyniki otrzymano natomiast w dużym zbiorze danych numer trzy w każdym z trzech 

kryteriów,zbiór ten zawierał tylko wartości przecieku w obwodzie wysokiego ciśnienia < 7,5 

cm3 (było ich ponad 10000). W zbiorze tym można było zaobserwować znaczącą zmienność 

wartości zmiennej wyjściowej, której rozkład był zbliżony do normalnego, ale zaznaczało się 

zwiększone występowanie wartości podwyższonych. Modelowanie oparte na danych w tym 

zbiorze, może uwidaczniać trendy występujące w danych powszechnie. Zbiór ten nie 

obejmował podwyższonych wartości zmiennej zależnej a więc informacji o produktach z wadą. 
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5.2.7. Badanie modelu w celu wielowymiarowej optymalizacji parametrów 

procesu 

5.2.7.1. Cel, metodyka i wyniki badań 

Ostatni krok badań zrealizowano poprzez opracowanie planu badań zmierzających do 

wydobycia z modeli, wybranych jako najlepsze spośród zastosowanych metod 

zaawansowanego modelowania opartego na danych, a więc sztucznych sieci neuronowych, 

informacji o przyczynach powstawania wad wyrobów. Głównym celem było określenie, jaka 

wartość określonych parametrów wpływa na formowanie się wady w badanym odlewie lub jej 

brak. Informacje z modelu neuronowego można wydobywać w różny sposób, najlepiej przez 

odpowiednio zaplanowane odpytywanie sieci [151]. Ten sposób, nazywany „pedagogicznym”, 

polega na traktowaniu modelu, jako czarnej skrzynki, wykorzystując odpowiednio 

zaprojektowaną procedurę odpytywania sieci, celem uzyskania szukanych informacji [151]. 

Istnieje również drugi sposób, nazywany „dekompozycyjnym”, polega na analizie wag 

stworzonych sztucznych sieci neuronowych, lub ogólniej poszczególnych parametrów modelu 

[151]. Jednak podejście oparte na analizie wag sieci okazało się być niewystarczające [152], 

[153]. Dzieje się tak, ponieważ każdy proces uczenia się sieci generuje różne wagi, które są 

źródłem znacznych różnic w wartościach współczynników istotności [151]. Z tego powodu 

opracowana w ramach niniejszej rozprawy strategia zakładała pierwsze podejście - 

„pedagogiczne” i zawierała wielowariantową optymalizację wszystkich parametrów procesu 

dla maksymalnych i minimalnych wartości wad (wycieku). Idea takiego podejścia polegała na 

założeniu, że w warunkach możliwych zmian wszystkich parametrów procesu, zachodzących 

losowo, powtarzalne wartości sprzyjające wadzie i jej zapobiegające przyjmować będą te z 

nich, które rzeczywiście odgrywają istotną rolę. Wyniki takiej optymalizacji powinny także 

pozwolić na określenie kierunku wywoływanych zmian. 

Badania prowadzące do optymalizacji były rozpoczęte od ponownego zbudowania 

sztucznych sieci neuronowych w programie Statistica, zgodnie z modelami wybranymi podczas 

zaawansowanej analizy z ponownym obliczeniem wartości RMSE. Ważnym punktem był fakt, 

iż wybrano nie tylko bezwzględnie najlepsze modele, które charakteryzowały się brakiem 

zdolności do generalizacji (zazwyczaj uzyskane bez zbioru testującego) ale również modele, 

które miały wyższy błąd średniokwadratowy predykcji, jednak posiadały lepszą zdolność do 

generalizacji (zazwyczaj zawierały zbiór testujący). Opis wybranych modeli zestawiono w 

tabeli (5.100).  
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Tab. 5.100.: Charakterystyka wybranych modeli do wielowymiarowej optymalizacji 

parametrów procesu 

 

Kryterium Zbiór 

% 

warto-

ści w 

zbiorze 

uczą-

cym 

% wartości 

w zbiorze 

testują-cym 

% 

wartości 

w 

zbiorze 

walida-

cyjnym 

Liczby 

neu-

ronów 

ukry-

tych: 

Funkcja 

aktywacji w 

warstwie 

ukrytej 

Funkcja 

aktywacji na 

wyjściu 

RMSE 

Licz-

ba 

zmie-

nnych 

K-W 1 100 0 0 19 tangensoidalna tangensoidalna 1,50 30 

K-W 1 100 0 0 22 tangensoidalna liniowa 1,85 30 

K-W 1 100 0 0 22 tangensoidalna tangensoidalna 1,52 30 

K-W 1 100 0 0 21 tangensoidalna liniowa 1,56 30 

K-W 1 70 15 15 7 tangensoidalna liniowa 5,69 30 

odwróconego 

K-W i 

ANOVA 1 100 0 0 19 tangensoidalna tangensoidalna 1,78 47 

odwróconego 

K-W i 

ANOVA 1 100 0 0 22 tangensoidalna liniowa 1,60 47 

odwróconego 

K-W i 

ANOVA 1 100 0 0 22 tangensoidalna tangensoidalna 1,46 47 

odwróconego 

K-W i 

ANOVA 1 100 0 0 20 tangensoidalna tangensoidalna 1,61 47 

odwróconego 

K-W i 

ANOVA 1 70 15 15 7 tangensoidalna liniowa 4,03 47 

K-W 2 100 0 0 2 tangensoidalna tangensoidalna 21,50 13 

K-W 2 100 0 0 3 tangensoidalna tangensoidalna 21,50 13 

K-W 2 100 0 0 2 tangensoidalna liniowa 22,70 13 

K-W 2 100 0 0 3 tangensoidalna liniowa 22,70 13 

odwróconego 

K-W i 

ANOVA 2 100 0 0 2 tangensoidalna tangensoidalna 21,80 19 

odwróconego 

K-W i 

ANOVA 2 100 0 0 3 tangensoidalna tangensoidalna 21,50 19 

odwróconego 

K-W i 

ANOVA 2 100 0 0 3 tangensoidalna liniowa 21,60 19 

K-W 3 100 0 0 23 tangensoidalna liniowa 0,92 31 

K-W 3 100 0 0 21 tangensoidalna tangensoidalna 0,96 31 

K-W 3 70 15 15 14 tangensoidalna tangensoidalna 1,28 31 

K-W 3 70 15 15 7 tangensoidalna tangensoidalna 1,28 31 

odwróconego 

K-W i 

ANOVA 3 100 0 0 23 tangensoidalna liniowa 0,85 45 

odwróconego 

K-W i 

ANOVA 3 100 0 0 21 tangensoidalna tangensoidalna 0,90 45 

K-W 4 100 0 0 2 tangensoidalna tangensoidalna 11,20 16 

K-W 4 100 0 0 4 tangensoidalna tangensoidalna 5,40 16 

K-W 4 100 0 0 5 tangensoidalna tangensoidalna 4,40 16 

K-W 4 90 10 0 3 tangensoidalna tangensoidalna 12,70 16 

K-W 4 90 10 0 4 tangensoidalna tangensoidalna 15,10 16 

K-W 4 100 0 0 2 tangensoidalna liniowa 16,90 16 

K-W 4 100 0 0 3 tangensoidalna liniowa 15,40 16 

K-W 4 100 0 0 4 tangensoidalna liniowa 14,70 16 
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odwróconego 

K-W 4 100 0 0 2 tangensoidalna tangensoidalna 6,30 25 

odwróconego 

K-W 4 100 0 0 4 tangensoidalna tangensoidalna 2,10 25 

odwróconego 

K-W 4 100 0 0 5 tangensoidalna tangensoidalna 0,70 25 

odwróconego 

K-W 4 100 0 0 2 tangensoidalna liniowa 5,30 25 

odwróconego 

K-W 4 100 0 0 3 tangensoidalna liniowa 6,20 25 

odwróconego 

K-W 4 100 0 0 4 tangensoidalna liniowa 4,10 25 

ANOVA 4 100 0 0 2 tangensoidalna tangensoidalna 6,40 26 

ANOVA 4 100 0 0 4 tangensoidalna tangensoidalna 2,10 26 

ANOVA 4 100 0 0 5 tangensoidalna tangensoidalna 1,30 26 

ANOVA 4 90 10 0 3 tangensoidalna tangensoidalna 23,20 26 

ANOVA 4 90 10 0 4 tangensoidalna tangensoidalna 12,10 26 

ANOVA 4 100 0 0 2 tangensoidalna liniowa 7,00 26 

ANOVA 4 100 0 0 3 tangensoidalna liniowa 4,20 26 

ANOVA 4 100 0 0 4 tangensoidalna liniowa 2,30 26 

K-W 5 100 0 0 2 tangensoidalna tangensoidalna 15,30 11 

K-W 5 100 0 0 3 tangensoidalna tangensoidalna 12,70 11 

K-W 5 90 10 0 3 tangensoidalna tangensoidalna 22,00 11 

K-W 5 100 0 0 2 tangensoidalna liniowa 19,20 11 

K-W 5 90 10 0 2 tangensoidalna liniowa 20,40 11 

K-W 5 90 10 0 5 tangensoidalna liniowa 17,80 11 

odwróconego 

K-W 5 100 0 0 2 tangensoidalna tangensoidalna 6,30 26 

odwróconego 

K-W 5 100 0 0 3 tangensoidalna tangensoidalna 4,70 26 

odwróconego 

K-W 5 100 0 0 2 tangensoidalna liniowa 12,10 26 

odwróconego 

K-W 5 90 10 0 2 tangensoidalna liniowa 23,10 26 

ANOVA 5 100 0 0 2 tangensoidalna tangensoidalna 5,90 27 

ANOVA 5 100 0 0 3 tangensoidalna tangensoidalna 3,60 27 

ANOVA 5 100 0 0 2 tangensoidalna liniowa 5,80 27 

ANOVA 5 90 10 0 5 tangensoidalna liniowa 31,20 27 

 

 

Dokonano takiego wyboru, aby jednoznacznie określić co wpływa na powstawanie wady w 

produkcie. Podczas badań jednocześnie zapisywano obliczone wagi i programowano 

odpowiedź modelu (rys.5.2.7.1.). Dzięki temu możliwa była optymalizacja parametrów procesu 

dla minimalnej wartości wycieku, a więc odlewu bez wady, oraz maksymalnej wartości 

wycieku, a więc odlewu z wadą.  
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Rys.5.2.7.1. Zapisywanie obliczonych wartości wag parametrów sztucznej sieci 

neuronowej 

 

W celu zapisania wag obliczonych podczas zaawansowanego modelowania sztucznych sieci 

neuronowych należy (rys.5.2.7.1.): 

• w punkcie 1, po ukończeniu obliczeń wybrać w zakładce szczegóły 

przycisk „Wagi” 

• w punkcie 2, skopiować wynikowe wartości wag do stworzonego 

pliku. 

Celem zapisu wag zaprojektowano specjalny zaprogramowany arkusz programu Microsoft 

Excel z wbudowanym dodatkiem Solver, umożliwiającym nie tylko dowolne odpytywanie 

zapisanej sieci ale także np. optymalizację parametrów procesu dla uzyskania określonego 

wyniku (rys. 5.2.7.2.). Dzięki czemu możliwa będzie analiza i zbadanie, jakie parametry dają 

niebezpieczne, czyli podwyższone wartości przecieku w obwodzie wysokiego ciśnienia, a jakie 

bezpieczne czyli małe wartości przecieku w obwodzie wysokiego ciśnienia. 
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Rys.5.2.7.2. Struktura zaprogramowanego arkusza do optymalizacji parametrów 

procesu  

 

W celu przeprowadzenia wielowymiarowej optymalizacji parametrów procesu należy 

(rys.5.2.7.2.): 

• w punkcie 1, wpisać ilość neuronów ukrytych, 

• w punkcie 2, wpisać minimalną i maksymalną wartość zmiennej 

wyjściowej, 

•  punkcie 3, wpisać minimalne i maksymalne wartości każdej 

zmiennej z punktu 4,  

• w punkcie 5, wybrać przycisk uruchamiający makro przygotowujące 

dane, a dokładniej kopiuje wartości wag z punktu 8, do innych 

obszarów arkusza w innym układzie niż dostępne w programie 

Statistica, 

• w punkcie 6 i w punkcie 7 otrzymywany jest wynik obliczeń po 

uruchomieniu analizy przy użyciu wbudowanego w oprogramowaniu 

Microsoft Excel dodatku Solver (rys. 5.2.7.3.). 
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Rys.5.2.7.3. Prowadzenie badań przy użyciu dodatku Solver  

 

Dzięki wbudowanemu dodatkowi Solver, do oprogramowania Microsoft Excel istnieje 

możliwość prowadzenia automatycznych obliczeń optymalizacji parametrów procesu. Dodatek 

ten został stworzony w celu wykonywania analiz typu „co jeżeli”. Funkcjonowanie tego 

dodatku daje możliwość obliczenia optymalnej, czyli minimalnej lub maksymalnej wartości 

formuły w jednej z komórek wybieranej jako komórka celu, biorąc jednocześnie pod uwagę 

ograniczenia i limity zadane w innych komórkach. Dodatek Solver analizuje grupę komórek, 

określanych jako zmienne decyzyjne, używanych do obliczeń wynikowych komórek celu i 

ograniczeń. Dodatek ten dostosowuje wartości komórek zmiennych decyzyjnych celem 

dopasowania się do zadanych ograniczeń i uzyskania określonego wyniku dla celu komórki. W 

oknie dialogowym można wybrać metodę rozwiązywania problemu bazującą na jednym z 

trzech algorytmów, a dokładniej na metodzie nieliniowej GRG, LP simplex i ewolucyjnej.  

Pierwsza z nich znajduje swoje zastosowanie w przypadku gładkich nieliniowych 

problemów, druga metoda jest dedykowana dla problemów liniowych, trzecia natomiast dla 

problemów, które nie są gładkie. Wybrana metoda nieliniowa GRG analizuje problem poprzez 

analizę gradientu lub nachylenia funkcji celu, gdy zmienne decyzyjne zmieniają się, określa 

osiągnięcie optymalnego rozwiązania, gdy uzyska zero w wartości pochodnych cząstkowych. 

W matematyce programowanie nieliniowe (NLP) jest procesem podczas którego 

rozwiązywany jest problem optymalizacyjny, zawierający nieliniową funkcję celu lub 

nieliniowe ograniczenia. Jest to ogólnie mówiąc dziedzina matematycznej optymalizacji 
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dedykowana do rozwiązywania problemów nieliniowych. Druga z wybranych metod, to 

metoda ewolucyjna. Dla tych dwóch metod przeprowadzono następnie badania i zapisano 

wyniki w tabelach dedykowanych dwóm algorytmom w oddzielnych tabelach dla minimalnej 

wartości zmiennej wyjściowej, maksymalnej wartości zmiennej wyjściowej.  

Poniżej przedstawiono przykład utworzonych tabel na podstawie optymalizacji wyników 

modelowania opartego na danych ze zbioru pierwszego, ustalonego według kryterium K-W, 

dla którego ustalono 30 zmiennych wejściowych. Sieć zawierała 100% wartości w zbiorze 

uczącym, 19 neuronów w warstwie ukrytej i funkcję aktywacji w warstwie ukrytej i na wyjściu 

tangensoidalną, dla której RMSE wyniosło 1,5.  

 

Tab. 5.101.: Wyniki wielowymiarowej optymalizacji metodą nieliniową GRG, z wielostartem 

dla minimalnej wartości zmiennej wyjściowej 

    Numer wykonanej optymalizacji 

No. 

MIN, metoda nieliniowa GRG z 

wielostartem Max MIN 1 2 3 4 5 

1 Ciśnienie wody obiegowej [Bar] 3,0 2,0 2,2 2,6 2,5 2,4 2,9 

2 Czas pierwszej fazy wtrysku [ms] 2333,0 2186,0 2333,0 2333,0 2190,1 2193,7 2216,4 

3 Czas cyklu [s] 172,6 78,2 170,8 112,5 169,3 172,4 116,9 

4 Czas cyklu smarowania [s] 31,5 22,4 23,9 24,7 30,4 31,5 26,2 

5 Czas dozowania stopu [s] 33,0 10,9 14,8 31,3 29,7 17,8 31,7 

6 Czas dozowania stopu 2 [s] 106,6 53,8 64,1 64,4 65,3 65,0 71,8 

7 Czas przedmuchu [s] 11,7 6,3 9,9 7,7 6,3 8,0 9,1 

8 Czas smarowania [s] 9,3 5,1 5,9 7,0 8,5 8,0 8,1 

9 Filtr próżni 1 [mBar] 1613,0 1259,0 1583,2 1570,0 1259,0 1259,0 1367,9 

10 Koncentrat [%] 2,7 1,9 2,6 2,0 2,0 2,6 2,1 

11 Opóźnienie multiplikacji [ms] 176,0 168,0 169,4 168,0 168,0 168,0 169,3 

12 Czas drugiej fazy wtrysku [ms] 90,0 88,0 89,9 88,6 88,0 88,0 88,0 

13 Profil próżni 1 [mBar] 1384,0 1037,0 1259,5 1119,5 1116,6 1260,8 1303,9 

14 V2xVp2 870539,0 75900,0 753407,5 822676,1 580134,6 626539,5 495750,5 

15 Przepływ chłodzenia tłoka [l] 26,0 14,0 21,0 21,2 14,0 14,3 23,5 

16 

Przepływ w obwodzie chłodzenia 

15 [l] 28,0 25,0 27,2 27,6 25,1 26,4 27,4 

17 

Przepływ w obwodzie chłodzenia 

17 [l] 36,0 20,0 23,7 33,1 28,5 20,4 25,5 

18 

Przepływ w obwodzie chłodzenia 6 

[l] 33,0 26,0 31,6 28,8 26,0 31,0 31,3 

19 Suw pierwszej fazy wtrysku [mm] 20,0 17,0 17,5 18,1 17,0 17,7 19,2 

20 Temperatura chłodzenia tłoka [°C] 35,0 27,0 32,1 33,2 27,0 32,1 32,0 

21 Temperatura stopu [°C] 689,2 669,9 677,1 670,9 686,1 675,3 685,3 

22 

Temperatura termoregulatora 3.2 

[°C] 156,0 144,0 154,3 145,4 149,7 145,9 154,8 

23 Temperatura tulei 2 [°C] 235,0 205,0 224,5 222,8 219,9 211,7 230,6 

24 

Temperatura w obwodzie 

chłodzenia 1 [°C] 39,0 29,0 29,8 31,7 32,4 32,4 35,1 
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Tab. 5.102.: Wyniki wielowymiarowej optymalizacji metodą nieliniową GRG, z wielostartem 

dla maksymalnej wartości zmiennej wyjściowej 

  Numer wykonanej optymalizacji 

No. 

MAX, metoda nieliniowa GRG z 

wielostartem 1 2 3 4 5 

1 Ciśnienie wody obiegowej [Bar] 2,9 2,8 2,8 2,9 3,0 

2 Czas pierwszej fazy wtrysku [ms] 2186,0 2333,0 2333,0 2292,6 2186,0 

3 Czas cyklu [s] 140,2 132,2 144,9 137,4 89,9 

4 Czas cyklu smarowania [s] 23,2 24,7 28,2 30,5 31,0 

5 Czas dozowania stopu [s] 13,7 24,6 12,9 23,4 13,9 

6 Czas dozowania stopu 2 [s] 76,0 74,1 60,6 66,6 63,4 

7 Czas przedmuchu [s] 9,2 9,9 8,9 10,4 6,8 

8 Czas smarowania [s] 8,4 8,8 7,1 9,0 7,4 

9 Filtr próżni 1 [mBar] 1425,5 1568,8 1279,8 1445,9 1562,7 

10 Koncentrat [%] 1,9 2,2 2,2 2,3 2,5 

11 Opóźnienie multiplikacji [ms] 174,9 173,6 171,8 171,0 172,2 

12 Czas drugiej fazy wtrysku [ms] 88,6 90,0 89,3 89,7 88,0 

13 Profil próżni 1 [mBar] 1319,7 1359,8 1158,3 1229,0 1246,5 

14 V2xVp2 543127,9 640109,6 113305,5 119170,3 692154,5 

15 Przepływ chłodzenia tłoka [l] 23,5 24,6 23,6 20,9 15,2 

16 Przepływ w obwodzie chłodzenia 15 [l] 25,8 26,1 26,1 26,6 27,3 

17 Przepływ w obwodzie chłodzenia 17 [l] 28,9 35,7 28,8 32,6 28,2 

18 Przepływ w obwodzie chłodzenia 6 [l] 32,1 32,8 26,4 28,8 32,8 

19 Suw pierwszej fazy wtrysku [mm] 17,1 19,1 18,9 17,9 17,8 

20 Temperatura chłodzenia tłoka [°C] 30,2 33,8 34,6 27,7 33,9 

21 Temperatura stopu [°C] 685,4 671,6 672,8 674,6 683,1 

22 Temperatura termoregulatora 3.2 [°C] 149,6 146,2 148,9 155,5 145,8 

23 Temperatura tulei 2 [°C] 228,2 205,5 230,4 226,2 229,6 

24 

Temperatura w obwodzie chłodzenia 1 

[°C] 34,3 29,8 36,9 30,0 30,8 

25 

Temperatura w obwodzie chłodzenia 14 

[°C] 33,9 33,0 32,1 32,1 31,8 

26 

Temperatura w obwodzie chłodzenia 15 

[°C] 35,2 34,6 35,9 33,2 32,9 

27 

Temperatura w obwodzie chłodzenia 17 

[°C] 30,3 26,6 28,5 27,1 32,7 

28 

Temperatura w obwodzie chłodzenia 7 

[°C] 29,4 27,9 29,6 27,2 28,7 

29 Temperatura wody miejskiej [°C] 26,8 22,9 23,7 18,9 22,3 

30 Wartość próżni 1 [mBar] 489,2 420,9 546,9 528,4 186,7 

 

25 

Temperatura w obwodzie 

chłodzenia 14 [°C] 34,0 31,0 34,0 33,1 31,3 31,3 33,1 

26 

Temperatura w obwodzie 

chłodzenia 15 [°C] 36,0 32,0 34,5 32,4 35,8 33,2 33,1 

27 

Temperatura w obwodzie 

chłodzenia 17 [°C] 35,0 25,0 27,9 34,8 27,5 32,6 25,5 

28 

Temperatura w obwodzie 

chłodzenia 7 [°C] 30,0 27,0 27,1 28,0 29,9 28,0 29,0 

29 Temperatura wody miejskiej [°C] 27,0 18,0 24,5 25,0 18,1 19,9 21,9 

30 Wartość próżni 1 [mBar] 599,0 138,0 140,2 413,7 451,2 262,4 599,0 
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Tab. 5.103.: Wyniki wielowymiarowej optymalizacji metodą ewolucyjną, dla minimalnej 

wartości zmiennej wyjściowej 

 

Tab. 5.104.: Wyniki wielowymiarowej optymalizacji metodą ewolucyjną, dla maksymalnej 

wartości zmiennej wyjściowej 

  Numer wykonanej optymalizacji 

No. MIN, metoda ewolucyjna 1 2 3 4 5 

1 Ciśnienie wody obiegowej [Bar] 2,1 2,9 2,5 2,1 2,3 

2 Czas pierwszej fazy wtrysku [ms] 2238,4 2321,6 2250,5 2229,2 2270,3 

3 Czas cyklu [s] 103,4 154,6 119,8 146,0 160,9 

4 Czas cyklu smarowania [s] 24,0 22,5 25,0 29,9 23,6 

5 Czas dozowania stopu [s] 19,8 20,0 20,5 22,7 16,1 

6 Czas dozowania stopu 2 [s] 59,9 70,6 87,8 63,3 92,6 

7 Czas przedmuchu [s] 7,2 8,4 10,2 7,9 9,9 

8 Czas smarowania [s] 8,6 5,9 5,3 7,8 7,0 

9 Filtr próżni 1 [mBar] 1268,1 1332,6 1587,3 1421,2 1459,4 

10 Koncentrat [%] 2,4 2,5 1,9 2,3 2,7 

11 Opóźnienie multiplikacji [ms] 170,4 168,3 168,6 169,6 170,9 

12 Czas drugiej fazy wtrysku [ms] 89,5 89,7 89,7 89,3 88,7 

13 Profil próżni 1 [mBar] 1310,3 1355,1 1093,0 1222,9 1317,5 

14 V2xVp2 187138,8 698137,1 528601,0 649724,3 620248,5 

15 Przepływ chłodzenia tłoka [l] 16,3 21,4 21,8 14,9 24,9 

16 Przepływ w obwodzie chłodzenia 15 [l] 26,4 27,0 26,5 27,2 27,3 

17 Przepływ w obwodzie chłodzenia 17 [l] 20,6 35,9 20,8 35,9 20,9 

18 Przepływ w obwodzie chłodzenia 6 [l] 31,3 29,0 29,0 31,9 29,9 

19 Suw pierwszej fazy wtrysku [mm] 17,1 18,5 17,9 17,5 20,0 

20 Temperatura chłodzenia tłoka [°C] 27,9 33,0 33,3 32,3 35,0 

21 Temperatura stopu [°C] 682,5 687,5 675,6 677,7 685,7 

22 Temperatura termoregulatora 3.2 [°C] 153,8 148,0 152,5 146,6 149,2 

23 Temperatura tulei 2 [°C] 221,9 209,7 231,1 232,9 226,6 

24 Temperatura w obwodzie chłodzenia 1 [°C] 33,3 32,4 29,1 32,9 33,1 

25 Temperatura w obwodzie chłodzenia 14 [°C] 33,3 31,0 33,7 32,1 33,9 

26 Temperatura w obwodzie chłodzenia 15 [°C] 33,2 34,6 35,8 33,4 34,1 

27 Temperatura w obwodzie chłodzenia 17 [°C] 31,0 28,4 28,0 32,9 31,7 

28 Temperatura w obwodzie chłodzenia 7 [°C] 29,1 28,9 28,4 27,8 29,7 

29 Temperatura wody miejskiej [°C] 19,1 23,8 26,2 23,9 26,2 

30 Wartość próżni 1 [mBar] 177,2 383,7 225,6 431,3 514,6 

  Numer wykonanej optymalizacji 

No. MAX, metoda ewolucyjna 1 2 3 4 5 

1 Ciśnienie wody obiegowej [Bar] 2,5 2,5 2,7 2,7 2,9 

2 Czas pierwszej fazy wtrysku [ms] 2251,1 2230,0 2224,7 2331,3 2239,4 

3 Czas cyklu [s] 128,8 116,6 139,4 111,7 123,7 

4 Czas cyklu smarowania [s] 26,2 30,1 23,5 26,4 28,8 
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Celem dalszej analizy dla wszystkich modeli policzono średnie z pięciu przeprowadzonych 

optymalizacji. Dodatkowo wyniki oznaczono kolorami, aby sprawdzić wpływ określonych 

wartości danych parametrów na niskie i podwyższone wartości zmiennej zależnej – przecieku.  

 

Tab. 5.105.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, 19 neuronami w warstwie ukrytej i funkcją aktywacji 

tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Ciśnienie wody obiegowej [Bar] 2,5 2,9 2,4 2,7 2 3 

Czas pierwszej fazy wtrysku [ms] 2253,2 2266,1 2262,0 2255,3 2186 2333 

Czas cyklu [s] 148,4 128,9 136,9 124,0 78,2 172,6 

Czas cyklu smarowania [s] 27,3 27,5 25,0 27,0 22,4 31,5 

Czas dozowania stopu [s] 25,1 17,7 19,8 23,3 10,9 33 

Czas dozowania stopu 2 [s] 66,1 68,1 74,8 91,4 53,8 106,6 

5 Czas dozowania stopu [s] 17,4 30,0 31,0 22,2 15,7 

6 Czas dozowania stopu 2 [s] 88,0 96,8 103,7 77,9 90,6 

7 Czas przedmuchu [s] 10,9 7,1 10,7 8,0 8,7 

8 Czas smarowania [s] 5,6 8,4 6,0 5,4 6,1 

9 Filtr próżni 1 [mBar] 1385,9 1304,0 1386,2 1329,6 1446,0 

10 Koncentrat [%] 2,3 1,9 2,4 2,2 2,4 

11 Opóźnienie multiplikacji [ms] 172,9 174,7 170,6 172,3 173,2 

12 Czas drugiej fazy wtrysku [ms] 88,8 88,6 88,7 88,8 88,9 

13 Profil próżni 1 [mBar] 1107,6 1171,9 1261,9 1211,1 1295,3 

14 V2xVp2 619061,9 530198,8 275586,1 696663,2 549261,3 

15 Przepływ chłodzenia tłoka [l] 16,0 18,0 14,5 17,8 17,1 

16 Przepływ w obwodzie chłodzenia 15 [l] 27,7 26,7 25,5 27,9 25,8 

17 Przepływ w obwodzie chłodzenia 17 [l] 27,7 23,8 20,2 34,7 27,4 

18 Przepływ w obwodzie chłodzenia 6 [l] 28,3 31,6 27,5 29,3 27,3 

19 Suw pierwszej fazy wtrysku [mm] 18,9 19,2 18,2 17,4 18,5 

20 Temperatura chłodzenia tłoka [°C] 28,5 34,3 32,4 35,0 29,9 

21 Temperatura stopu [°C] 677,5 683,8 678,6 669,9 676,5 

22 Temperatura termoregulatora 3.2 [°C] 150,1 149,5 148,0 146,9 154,4 

23 Temperatura tulei 2 [°C] 233,3 214,7 210,1 212,9 211,8 

24 Temperatura w obwodzie chłodzenia 1 [°C] 31,3 30,7 31,5 34,3 35,4 

25 Temperatura w obwodzie chłodzenia 14 [°C] 34,0 32,5 32,7 31,3 31,7 

26 Temperatura w obwodzie chłodzenia 15 [°C] 33,1 34,4 34,6 32,4 34,3 

27 Temperatura w obwodzie chłodzenia 17 [°C] 31,2 25,9 27,2 28,0 28,3 

28 Temperatura w obwodzie chłodzenia 7 [°C] 28,3 28,4 29,1 27,9 29,0 

29 Temperatura wody miejskiej [°C] 26,6 24,0 24,6 23,1 21,5 

30 Wartość próżni 1 [mBar] 302,0 493,4 333,7 273,1 170,0 



209 
 

Czas przedmuchu [s] 8,2 9,1 8,7 9,1 6,3 11,7 

Czas smarowania [s] 7,5 8,2 6,9 6,3 5,1 9,3 

Filtr próżni 1 [mBar] 1407,8 1456,5 1413,7 1370,3 1259 1613 

Koncentrat [%] 2,3 2,2 2,4 2,2 1,9 2,7 

Opóźnienie multiplikacji [ms] 168,5 172,7 169,6 172,7 168 176 

Czas drugiej fazy wtrysku [ms] 88,5 89,1 89,4 88,7 87,92 89,92 

Profil próżni 1 [mBar] 1212,1 1262,7 1259,7 1209,5 1037 1384 

V2xVp2 655701,7 421573,6 536770,0 534154,3 75900 870539 

Przepływ chłodzenia tłoka [l] 18,8 21,6 19,9 16,7 14 26 

Przepływ w obwodzie chłodzenia 
15 [l] 26,7 26,4 26,9 26,7 25 28 

Przepływ w obwodzie chłodzenia 

17 [l] 26,3 30,9 26,8 26,8 20 36 

Przepływ w obwodzie chłodzenia 
6 [l] 29,7 30,6 30,2 28,8 26 33 

Suw pierwszej fazy wtrysku [mm] 17,9 18,2 18,2 18,4 17 20 

Temperatura chłodzenia tłoka 
[°C] 31,3 32,0 32,3 32,0 27 35 

Temperatura stopu [°C] 678,9 677,5 681,8 677,3 669,9 689,2 

Temperatura termoregulatora 3.2 
[°C] 150,0 149,2 150,0 149,8 144 156 

Temperatura tulei 2 [°C] 221,9 224,0 224,4 216,6 205 235 

Temperatura w obwodzie 
chłodzenia 1 [°C] 32,3 32,4 32,2 32,6 29 39 

Temperatura w obwodzie 

chłodzenia 14 [°C] 32,6 32,6 32,8 32,4 31 34 

Temperatura w obwodzie 
chłodzenia 15 [°C] 33,8 34,4 34,2 33,7 32 36 

Temperatura w obwodzie 

chłodzenia 17 [°C] 29,7 29,0 30,4 28,1 25 35 

Temperatura w obwodzie 
chłodzenia 7 [°C] 28,4 28,5 28,8 28,5 27 30 

Temperatura wody miejskiej [°C] 21,9 22,9 23,8 24,0 18 27 

Wartość próżni 1 [mBar] 373,3 434,4 346,5 314,4 138 599 

  

Tab. 5.106.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, 22 neuronami w warstwie ukrytej i funkcją aktywacji 

tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Ciśnienie wody obiegowej [Bar] 2,6 2,4 2,5 2,4 2 3 

Czas pierwszej fazy wtrysku 
[ms] 2228,3 2228,9 2262,8 2226,9 2186 2333 

Czas cyklu [s] 129,4 123,9 107,8 140,3 78,2 172,6 

Czas cyklu smarowania [s] 25,7 26,4 25,3 27,9 22,4 31,5 

Czas dozowania stopu [s] 21,8 21,5 19,1 20,5 10,9 33 

Czas dozowania stopu 2 [s] 74,1 82,3 72,7 78,0 53,8 106,6 

Czas przedmuchu [s] 8,6 9,7 10,0 8,3 6,3 11,7 

Czas smarowania [s] 8,0 8,0 8,5 6,7 5,1 9,3 

Filtr próżni 1 [mBar] 1336,2 1458,6 1421,1 1342,1 1259 1613 

Koncentrat [%] 2,4 2,3 2,2 2,4 1,9 2,7 

Opóźnienie multiplikacji [ms] 169,7 174,5 172,0 173,7 168 176 

Czas drugiej fazy wtrysku [ms] 88,7 89,4 88,3 89,1 87,92 89,92 

Profil próżni 1 [mBar] 1244,0 1198,6 1204,8 1279,0 1037 1384 

V2xVp2 694416,6 612577,5 561287,8 530365,0 75900 870539 

Przepływ chłodzenia tłoka [l] 19,3 20,6 19,8 18,7 14 26 

Przepływ w obwodzie 

chłodzenia 15 [l] 26,5 26,2 26,3 26,5 25 28 
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W przypadku wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. K-W Solver nie 

mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 70% wartości w zbiorze uczącym, 15% w zbiorze walidacyjnym i 

15% w zbiorze testującym, z 7 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, 22 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu 

• dla sieci z 100% wartości w zbiorze uczącym, 21 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu. 

 

Tab. 5.107.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwróconego 

K-W i ANOVA, dla sieci z 100% wartości w zbiorze uczącym, 19 neuronami w warstwie 

ukrytej i funkcją aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 

niezależnej 

MAX 

wartość 

zmiennej 

niezależnej 

Ciśnienie wody miejskiej [Bar] 4,1 3,9 4,4 3,3 3 5 

Ciśnienie wody obiegowej [Bar] 2,4 2,7 2,3 2,3 2 3 

Czas pierwszej fazy wtrysku [ms] 2255,0 2289,6 2296,7 2275,8 2186 2333 

Czas cyklu [s] 110,0 118,3 115,8 114,4 78,2 172,6 

Czas cyklu smarowania [s] 27,0 26,4 27,2 26,7 22,4 31,5 

Czas dozowania stopu [s] 22,8 26,2 20,7 18,2 10,9 33 

Czas dozowania stopu 2 [s] 79,4 67,7 65,5 94,2 53,8 106,6 

Czas krzepnięcia t2 [s] 10,1 10,8 10,3 10,3 10 11 

Czas przedmuchu [s] 8,9 9,7 9,5 9,2 6,3 11,7 

Czas smarowania [s] 6,6 5,8 8,3 7,8 5,1 9,3 

Dzienny numer wtrysku [j.] 342,3 487,3 267,8 310,1 1 663 

Przepływ w obwodzie 

chłodzenia 17 [l] 27,8 29,2 27,8 29,8 20 36 

Przepływ w obwodzie 
chłodzenia 6 [l] 31,1 29,7 29,8 31,1 26 33 

Suw pierwszej fazy wtrysku 

[mm] 18,6 18,3 18,0 18,4 17 20 

Temperatura chłodzenia tłoka 
[°C] 31,4 30,9 31,4 31,0 27 35 

Temperatura stopu [°C] 680,4 681,3 676,4 676,6 669,9 689,2 

Temperatura termoregulatora 

3.2 [°C] 151,8 150,7 154,3 149,2 144 156 

Temperatura tulei 2 [°C] 221,7 220,0 218,6 222,7 205 235 

Temperatura w obwodzie 

chłodzenia 1 [°C] 35,1 36,5 37,1 34,2 29 39 

Temperatura w obwodzie 
chłodzenia 14 [°C] 32,5 32,6 32,1 32,1 31 34 

Temperatura w obwodzie 

chłodzenia 15 [°C] 34,1 34,1 34,1 33,5 32 36 

Temperatura w obwodzie 
chłodzenia 17 [°C] 32,2 30,9 28,9 32,1 25 35 

Temperatura w obwodzie 

chłodzenia 7 [°C] 29,0 28,0 28,8 28,4 27 30 

Temperatura wody miejskiej 
[°C] 19,2 24,2 18,5 25,0 18 27 

Wartość próżni 1 [mBar] 341,2 360,4 304,9 538,4 138 599 
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Filtr próżni 1 [mBar] 1493,1 1425,6 1421,8 1388,3 1259 1613 

Grubość piętki układu wlewowego [mm] 37,1 38,3 38,2 40,2 32 45 

Koncentrat [%] 2,3 2,3 2,3 2,6 1,9 2,7 

Ciśnienie maksymalne [Bar] 344,0 339,4 341,7 341,6 339 346 

Prędkość wtrysku maksymalna [m/s] 5,8 5,8 5,9 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 175,1 169,5 172,6 173,3 168 176 

Stała temperatura chłodzenia płyty [°C] 28,1 30,2 31,1 30,6 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 202,0 260,7 288,9 330,1 0 600 

Poziom wody w strumieniu chłodzącym 
[mm] 246,1 260,8 265,0 276,3 200 298 

Czas drugiej fazy wtrysku [ms] 89,0 88,9 89,1 88,7 87,9 89,9 

Profil próżni 1 [mBar] 1345,6 1149,1 1160,5 1224,5 1037 1384 

V2xVp2 335167,5 658526,8 442790,1 416407,0 75900 870539 

Przepływ chłodzenia tłoka [l] 20,2 19,8 22,5 19,4 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 26,1 24,4 25,4 25,2 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 18,0 17,6 16,9 18,0 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,8 27,3 27,8 27,4 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,9 26,3 26,7 26,1 25 28 

Przepływ w obwodzie chłodzenia 17 [l] 32,6 24,6 30,4 25,6 20 36 

Przepływ w obwodzie chłodzenia 20 [l] 23,5 23,4 23,6 23,1 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 30,5 27,8 30,4 30,0 26 33 

Prędkość we wlewach 

doprowadzających [m/s] 38,4 38,6 38,4 38,8 37,69 39,43 

Suw pierwszej fazy wtrysku [mm] 18,3 18,2 18,9 19,0 17 20 

Temperatura chłodzenia tłoka [°C] 31,5 30,8 31,4 32,0 27 35 

Temperatura stopu [°C] 678,8 677,6 677,8 677,0 669,9 689,2 

Temperatura termoregulatora 3.2 [°C] 147,9 148,8 150,2 150,7 144 156 

Temperatura tulei 2 [°C] 225,4 218,3 213,5 219,9 205 235 

Temperatura tulei 3 [°C] 217,5 229,4 220,8 204,7 182 256 

Temperatura tulei 4 [°C] 234,3 232,6 225,9 233,8 208 258 

Temperatura w obwodzie chłodzenia 1 
[°C] 33,1 35,3 34,9 35,4 29 39 

Temperatura w obwodzie chłodzenia 13 

[°C] 36,3 34,6 35,4 34,5 32 40 

Temperatura w obwodzie chłodzenia 14 
[°C] 32,0 32,8 32,9 32,5 31 34 

Temperatura w obwodzie chłodzenia 15 

[°C] 33,7 34,4 33,3 34,4 32 36 

Temperatura w obwodzie chłodzenia 17 
[°C] 27,3 31,9 31,7 32,2 25 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 27,9 28,1 28,4 28,7 27 30 

Temperatura wody miejskiej [°C] 21,2 20,7 22,4 20,5 18 27 

Wartość próżni 1 [mBar] 474,8 369,6 350,2 388,9 138 599 

 

Tab. 5.108.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwróconego 

K-W i ANOVA, dla sieci z 100% wartości w zbiorze uczącym, 22 neuronami w warstwie 

ukrytej i funkcją aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Ciśnienie wody miejskiej [Bar] 4,3 3,8 3,8 3,7 3 5 

Ciśnienie wody obiegowej [Bar] 2,4 2,2 2,7 2,6 2 3 

Czas pierwszej fazy wtrysku [ms] 2289,7 2239,0 2251,9 2251,5 2186 2333 

Czas cyklu [s] 144,3 124,8 138,2 112,1 78,2 172,6 

Czas cyklu smarowania [s] 29,2 25,9 28,5 26,7 22,4 31,5 

Czas dozowania stopu [s] 18,1 24,5 19,0 21,1 10,9 33 

Czas dozowania stopu 2 [s] 63,8 89,0 62,2 84,9 53,8 106,6 

Czas krzepnięcia t2 [s] 10,4 10,4 10,2 10,3 10 11 
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Czas przedmuchu [s] 10,4 9,0 10,1 10,2 6,3 11,7 

Czas smarowania [s] 6,0 7,7 7,7 8,1 5,1 9,3 

Dzienny numer wtrysku [j.] 434,6 415,7 469,7 267,4 1 663 

Filtr próżni 1 [mBar] 1371,4 1361,1 1403,9 1452,8 1259 1613 

Grubość piętki układu wlewowego [mm] 38,8 36,8 38,8 38,5 32 45 

Koncentrat [%] 2,5 2,2 2,1 2,3 1,9 2,7 

Ciśnienie maksymalne [Bar] 341,5 342,6 341,0 340,6 339 346 

Prędkość wtrysku maksymalna [m/s] 5,8 5,9 5,9 5,8 5,8 6 

Opóźnienie multiplikacji [ms] 171,6 170,4 171,5 171,8 168 176 

Stała temperatura chłodzenia płyty [°C] 30,1 28,2 28,8 29,5 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 367,0 365,2 268,1 359,2 0 600 

Poziom wody w strumieniu chłodzącym 
[mm] 264,8 238,1 242,2 223,0 200 298 

Czas drugiej fazy wtrysku [ms] 88,8 88,9 89,4 89,3 87,9 89,9 

Profil próżni 1 [mBar] 1233,2 1203,1 1175,4 1203,1 1037 1384 

V2xVp2 361523,6 413018,7 407079,5 517808,4 75900 870539 

Przepływ chłodzenia tłoka [l] 19,3 21,2 21,7 18,3 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,4 25,5 25,8 24,6 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,3 16,4 17,9 17,8 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,6 27,3 27,3 27,5 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,1 25,9 26,3 26,4 25 28 

Przepływ w obwodzie chłodzenia 17 [l] 28,7 27,0 32,0 27,6 20 36 

Przepływ w obwodzie chłodzenia 20 [l] 22,5 23,8 22,5 23,0 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 30,6 30,4 29,1 28,8 26 33 

Prędkość we wlewach doprowadzających 

[m/s] 38,2 39,0 38,6 38,3 37,69 39,43 

Suw pierwszej fazy wtrysku [mm] 17,4 18,9 18,5 18,5 17 20 

Temperatura chłodzenia tłoka [°C] 31,1 30,3 32,0 31,3 27 35 

Temperatura stopu [°C] 678,6 677,1 679,8 679,7 669,9 689,2 

Temperatura termoregulatora 3.2 [°C] 151,2 151,9 149,3 150,6 144 156 

Temperatura tulei 2 [°C] 217,7 216,5 226,0 222,7 205 235 

Temperatura tulei 3 [°C] 218,4 202,7 228,8 216,6 182 256 

Temperatura tulei 4 [°C] 241,2 226,6 222,3 242,7 208 258 

Temperatura w obwodzie chłodzenia 1 

[°C] 33,6 32,4 32,2 33,5 29 39 

Temperatura w obwodzie chłodzenia 13 
[°C] 35,1 35,1 36,0 36,7 32 40 

Temperatura w obwodzie chłodzenia 14 

[°C] 32,0 32,6 33,0 32,7 31 34 

Temperatura w obwodzie chłodzenia 15 

[°C] 33,8 34,4 34,2 33,6 32 36 

Temperatura w obwodzie chłodzenia 17 

[°C] 30,4 30,2 32,1 30,3 25 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 29,3 28,4 28,0 28,2 27 30 

Temperatura wody miejskiej [°C] 22,2 23,7 24,4 22,6 18 27 

Wartość próżni 1 [mBar] 432,1 385,7 415,0 377,4 138 599 

 

Tab. 5.109.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwróconego 

K-W i ANOVA, dla sieci z 100% wartości w zbiorze uczącym, 20 neuronami w warstwie 

ukrytej i funkcją aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Ciśnienie wody miejskiej [Bar] 4,2 3,9 3,0 4,3 3 5 

Ciśnienie wody obiegowej [Bar] 2,4 2,5 2,0 2,3 2 3 

Czas pierwszej fazy wtrysku [ms] 2246,6 2260,1 2186,0 2274,2 2186 2333 

Czas cyklu [s] 133,2 113,9 78,2 106,4 78,2 172,6 

Czas cyklu smarowania [s] 26,3 28,3 22,4 28,1 22,4 31,5 

Czas dozowania stopu [s] 23,0 25,8 10,9 27,5 10,9 33 

Czas dozowania stopu 2 [s] 76,6 82,2 53,8 72,3 53,8 106,6 

Czas krzepnięcia t2 [s] 10,2 10,1 10,0 10,1 10 11 
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W przypadku wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwróconego K-

W i ANOVA, Solver nie mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, 22 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu, 

• dla sieci z 70% wartości w zbiorze uczącym, 15% w zbiorze walidacyjnym i 

15% w testującym, 7 neuronami w warstwie ukrytej i funkcją aktywacji liniową 

na wyjściu. 

 

 

 

Czas przedmuchu [s] 8,2 8,6 6,3 9,7 6,3 11,7 

Czas smarowania [s] 8,1 7,7 5,1 6,2 5,1 9,3 

Dzienny numer wtrysku [j.] 368,7 270,0 1,0 402,9 1 663 

Filtr próżni 1 [mBar] 1499,4 1415,3 1259,0 1506,8 1259 1613 

Grubość piętki układu wlewowego [mm] 38,4 37,1 32,0 38,4 32 45 

Koncentrat [%] 2,5 2,3 1,9 2,2 1,9 2,7 

Ciśnienie maksymalne [Bar] 339,6 343,8 339,0 341,4 339 346 

Prędkość wtrysku maksymalna [m/s] 5,9 5,9 5,8 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 169,7 171,0 168,0 172,8 168 176 

Stała temperatura chłodzenia płyty [°C] 30,3 30,2 27,0 29,6 27 32 

Poziom stopu w piecu podgrzewczym [mm] 274,2 217,1 0,0 229,2 0 600 

Poziom wody w strumieniu chłodzącym [mm] 261,0 260,1 200,0 257,2 200 298 

Czas drugiej fazy wtrysku [ms] 89,1 89,1 88,0 88,9 87,9 89,9 

Profil próżni 1 [mBar] 1104,0 1191,8 1037,0 1185,1 1037 1384 

V2xVp2 511556,0 474273,9 75900,0 403391,8 75900 870539 

Przepływ chłodzenia tłoka [l] 19,3 21,3 14,0 18,9 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,9 24,9 23,0 25,6 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 16,5 17,8 15,0 17,6 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 28,0 27,8 26,0 27,6 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,3 26,8 25,0 26,9 25 28 

Przepływ w obwodzie chłodzenia 17 [l] 28,7 27,8 20,0 27,1 20 36 

Przepływ w obwodzie chłodzenia 20 [l] 23,4 22,3 21,0 23,3 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 28,7 31,0 26,0 29,1 26 33 

Prędkość we wlewach doprowadzających 

[m/s] 38,5 38,7 37,7 38,7 37,69 39,43 

Suw pierwszej fazy wtrysku [mm] 19,0 19,1 17,0 18,7 17 20 

Temperatura chłodzenia tłoka [°C] 31,5 32,1 27,0 31,5 27 35 

Temperatura stopu [°C] 680,8 681,1 669,9 679,4 669,9 689,2 

Temperatura termoregulatora 3.2 [°C] 150,2 151,2 144,0 151,0 144 156 

Temperatura tulei 2 [°C] 224,3 222,1 205,0 217,9 205 235 

Temperatura tulei 3 [°C] 214,9 236,1 182,0 230,3 182 256 

Temperatura tulei 4 [°C] 233,6 225,8 208,0 225,9 208 258 

Temperatura w obwodzie chłodzenia 1 [°C] 32,9 32,8 29,0 34,0 29 39 

Temperatura w obwodzie chłodzenia 13 [°C] 34,4 36,1 32,0 34,8 32 40 

Temperatura w obwodzie chłodzenia 14 [°C] 32,6 32,6 31,0 32,3 31 34 

Temperatura w obwodzie chłodzenia 15 [°C] 33,7 34,2 32,0 33,4 32 36 

Temperatura w obwodzie chłodzenia 17 [°C] 29,3 31,1 25,0 31,2 25 35 

Temperatura w obwodzie chłodzenia 7 [°C] 28,8 28,8 27,0 28,5 27 30 

Temperatura wody miejskiej [°C] 21,0 23,7 18,0 24,0 18 27 

Wartość próżni 1 [mBar] 311,3 316,4 138,0 411,1 138 599 
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Tab. 5.110.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

 

 

Tab. 5.111.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Ciśnienie wody miejskiej [Bar] 4,0 4,2 3,0 4,0 3 5 

Grubość piętki układu wlewowego 

[mm] 35,0 37,6 32,0 36,1 32 42 

Ciśnienie maksymalne [Bar] 342,4 343,0 339,0 341,4 339 345 

Opóźnienie multiplikacji [ms] 172,6 171,4 169,0 173,4 169 176 

Profil próżni 2 [mBar] 1134,9 1112,2 977,0 1179,2 977 1317 

Przepływ chłodzenia tłoka [l] 19,2 18,4 14,0 20,4 14 26 

Przepływ w obwodzie chłodzenia 13 [l] 17,6 18,1 15,0 17,0 15 20 

C1FxC14F 678,5 694,1 598,0 691,4 598 784 

Przepływ w obwodzie chłodzenia 15 [l] 26,6 26,8 25,0 25,8 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,4 23,4 21,0 22,4 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 28,8 29,4 26,0 28,4 26 33 

Temperatura stopu [°C] 677,5 678,1 670,9 683,1 670,9 688,5 

Wartość próżni 1 [mBar] 274,9 328,4 172,0 358,6 172 490 

 

Tab. 5.112.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

Nazwa zmiennej niezależnej 

MIN, metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Ciśnienie wody miejskiej [Bar] 3,4 4,3 3,9 3,9 3 5 

Grubość piętki układu wlewowego [mm] 34,9 35,1 35,6 38,4 32 42 

Ciśnienie maksymalne [Bar] 342,5 341,2 341,7 343,3 339 345 

Opóźnienie multiplikacji [ms] 170,3 173,7 172,1 172,3 169 176 

Profil próżni 2 [mBar] 1110,6 1099,2 1124,4 1152,4 977 1317 

Przepływ chłodzenia tłoka [l] 21,9 21,8 21,5 19,4 14 26 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Ciśnienie wody miejskiej [Bar] 3,6 4,3 3,9 4,2 3 5 

Grubość piętki układu wlewowego [mm] 38,2 35,6 35,1 37,8 32 42 

Ciśnienie maksymalne [Bar] 344,7 339,9 343,4 342,2 339 345 

Opóźnienie multiplikacji [ms] 172,7 172,3 172,1 170,9 169 176 

Profil próżni 2 [mBar] 1167,7 1131,5 1147,3 1117,9 977 1317 

Przepływ chłodzenia tłoka [l] 23,9 18,0 22,3 20,3 14 26 

Przepływ w obwodzie chłodzenia 13 [l] 18,0 17,2 17,0 17,1 15 20 

C1FxC14F 684,9 656,9 714,5 678,2 598 784 

Przepływ w obwodzie chłodzenia 15 [l] 27,7 26,6 27,2 27,4 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,1 22,9 22,4 24,0 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 29,3 30,0 28,9 29,1 26 33 

Temperatura stopu [°C] 678,4 687,8 676,2 680,0 670,9 688,5 

Wartość próżni 1 [mBar] 253,6 340,2 329,2 325,8 172 490 
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Przepływ w obwodzie chłodzenia 13 [l] 16,9 17,1 17,0 17,6 15 20 

C1FxC14F 684,6 711,9 662,0 684,8 598 784 

Przepływ w obwodzie chłodzenia 15 [l] 26,5 26,4 26,5 26,3 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,5 22,6 23,7 23,2 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 29,5 29,2 29,5 29,6 26 33 

Temperatura stopu [°C] 673,9 681,3 676,2 681,4 670,9 688,5 

Wartość próżni 1 [mBar] 273,0 251,6 359,9 372,8 172 490 

 

Tab. 5.113.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

Nazwa zmiennej niezależnej 

MIN, metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Ciśnienie wody miejskiej [Bar] 3,6 3,7 3,7 3,9 3 5 

Grubość piętki układu wlewowego [mm] 36,7 37,1 36,5 37,1 32 42 

Ciśnienie maksymalne [Bar] 341,3 341,7 342,1 341,1 339 345 

Opóźnienie multiplikacji [ms] 170,9 171,5 170,6 172,7 169 176 

Profil próżni 2 [mBar] 1191,1 1161,7 1168,6 1087,2 977 1317 

Przepływ chłodzenia tłoka [l] 20,2 18,0 21,8 20,8 14 26 

Przepływ w obwodzie chłodzenia 13 [l] 18,0 19,4 16,7 17,9 15 20 

C1FxC14F 739,9 729,7 687,7 691,1 598 784 

Przepływ w obwodzie chłodzenia 15 [l] 26,6 26,2 26,2 26,4 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,5 22,7 23,3 23,9 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 29,1 30,3 30,4 30,1 26 33 

Temperatura stopu [°C] 682,8 683,1 675,7 680,9 670,9 688,5 

Wartość próżni 1 [mBar] 326,7 282,6 297,2 361,6 172 490 

 

Tab. 5.114.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. odwróconego 

K-W i ANOVA, dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie 

ukrytej i funkcją aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Ciśnienie wody miejskiej [Bar] 3,8 4,3 4,2 3,6 3 5 

Czas krzepnięcia t2 [s] 10,3 10,6 10,4 10,4 10 11 

Filtr próżni 1 [mBar] 1486,2 1389,1 1473,4 1414,9 1259 1592 

Grubość piętki układu wlewowego [mm] 35,3 36,8 37,7 36,5 32 42 

Ciśnienie maksymalne [Bar] 341,5 342,9 342,0 340,8 339 345 

Opóźnienie multiplikacji [ms] 171,7 172,5 173,0 172,6 169 176 

Profil próżni 2 [mBar] 1180,5 1123,0 1159,9 1158,2 977 1317 

Przepływ chłodzenia tłoka [l] 21,1 18,9 19,0 20,9 14 26 

C1FxC14F 719,8 662,1 712,5 683,0 598 784 

Przepływ w obwodzie chłodzenia 13 [l] 17,6 16,9 18,1 16,1 15 20 

Przepływ w obwodzie chłodzenia 15 [l] 25,9 26,0 26,4 26,1 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,2 22,9 23,0 21,9 21,0 25 

Przepływ w obwodzie chłodzenia 6 [l] 26,9 29,8 29,5 29,2 26 33 

Temperatura chłodzenia tłoka [°C] 31,7 31,4 33,1 30,2 28 35 

Temperatura stopu [°C] 676,8 677,1 680,5 684,1 670,9 688,5 

Temperatura w obwodzie chłodzenia 1 
[°C] 34,9 34,7 35,1 32,7 30 39 

Temperatura wody miejskiej [°C] 21,2 22,4 22,3 22,3 19 26 

Temperatura wody w instalacji [°C] 23,5 24,3 24,0 23,9 23,0 25 

Wartość próżni 1 [mBar] 312,1 330,8 325,5 326,6 172 490 
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Tab. 5.115.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. odwróconego 

K-W i ANOVA, dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie 

ukrytej i funkcją aktywacji tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 

GRG z 

wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 

niezależnej 

MAX 

wartość 

zmiennej 

niezależnej 

Ciśnienie wody miejskiej [Bar] 4,3 3,7 4,0 4,0 3 5 

Czas krzepnięcia t2 [s] 10,5 10,2 10,4 10,6 10 11 

Filtr próżni 1 [mBar] 1394,2 1358,1 1420,3 1449,8 1259 1592 

Grubość piętki układu 

wlewowego [mm] 35,9 37,3 36,9 39,8 32 42 

Ciśnienie maksymalne [Bar] 343,9 341,3 341,9 342,3 339 345 

Opóźnienie multiplikacji [ms] 170,9 175,4 173,4 172,8 169 176 

Profil próżni 2 [mBar] 1180,7 1177,1 1173,5 1170,2 977 1317 

Przepływ chłodzenia tłoka [l] 22,1 20,7 19,8 18,8 14 26 

C1FxC14F 666,9 679,4 717,9 748,2 598 784 

Przepływ w obwodzie 

chłodzenia 13 [l] 16,7 17,5 17,6 17,3 15 20 

Przepływ w obwodzie 

chłodzenia 15 [l] 26,2 26,2 26,6 26,9 25 28 

Przepływ w obwodzie 

chłodzenia 20 [l] 23,5 22,8 22,9 22,9 21,0 25 

Przepływ w obwodzie 

chłodzenia 6 [l] 29,9 28,6 29,0 31,8 26 33 

Temperatura chłodzenia tłoka 

[°C] 30,9 33,6 31,3 33,3 28 35 

Temperatura stopu [°C] 678,8 676,0 679,7 681,0 670,9 688,5 

Temperatura w obwodzie 

chłodzenia 1 [°C] 36,1 34,7 35,5 31,6 30 39 

Temperatura wody miejskiej 

[°C] 24,2 22,3 23,5 20,8 19 26 

Temperatura wody w instalacji 

[°C] 24,1 23,9 24,0 24,1 23,0 25 

Wartość próżni 1 [mBar] 295,2 370,5 374,8 313,7 172 490 

 

W przypadku wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. odwróconego K-

W i ANOVA, Solver nie mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej i 

funkcją aktywacji liniową na wyjściu. 
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Tab. 5.116.: Wyniki wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 23 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

 

 

 

Tab. 5.117.: Wyniki wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 21 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Ciśnienie wody obiegowej [Bar] 2,3 2,6 2,6 2,3 2 3 

Czas pierwszej fazy wtrysku [ms] 2266,2 2246,2 2239,0 2242,6 2186 2333 

Czas cyklu [s] 140,9 147,8 131,0 92,4 78,2 172,6 

Czas cyklu smarowania [s] 27,4 27,7 28,0 26,1 22,4 31,5 

Czas dozowania stopu [s] 20,8 27,5 14,5 17,7 10,9 33 

Czas dozowania stopu 2 [s] 81,3 66,9 74,7 83,0 53,8 106,6 

Czas przedmuchu [s] 8,7 8,1 9,8 8,7 6,3 11,7 

Czas smarowania [s] 6,8 6,7 6,5 7,0 5,1 9,3 

Filtr próżni 1 [mBar] 1417,6 1400,8 1392,9 1463,8 1259 1613 

Koncentrat [%] 2,2 2,2 2,2 2,4 1,9 2,7 

Opóźnienie multiplikacji [ms] 170,3 169,7 171,3 172,0 168 176 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Ciśnienie wody obiegowej [Bar] 2,3 2,5 2,2 2,4 2 3 

Czas pierwszej fazy wtrysku [ms] 2278,4 2261,0 2260,0 2297,6 2186 2333 

Czas cyklu [s] 117,4 106,2 112,8 118,6 78,2 172,6 

Czas cyklu smarowania [s] 27,8 27,6 27,0 27,9 22,4 31,5 

Czas dozowania stopu [s] 24,7 21,5 16,3 19,3 10,9 33 

Czas dozowania stopu 2 [s] 75,4 87,1 77,0 74,5 53,8 106,6 

Czas przedmuchu [s] 10,4 8,9 8,3 9,5 6,3 11,7 

Czas smarowania [s] 6,9 7,3 7,3 7,8 5,1 9,3 

Filtr próżni 1 [mBar] 1426,3 1339,8 1449,0 1336,1 1259 1613 

Koncentrat [%] 2,2 2,2 2,3 2,6 1,9 2,7 

Opóźnienie multiplikacji [ms] 172,4 173,5 174,1 169,3 168 176 

Stała temperatura chłodzenia płyty 
[°C] 29,3 28,7 28,4 29,2 27,0 32 

Czas drugiej fazy wtrysku [ms] 89,3 88,6 88,6 88,6 87,9 89,9 

Profil próżni 1 [mBar] 1226,3 1256,5 1204,7 1185,3 1037 1384 

V2xVp2 461501,7 378953,8 418216,3 620333,5 75900 870539 

Przepływ chłodzenia tłoka [l] 19,1 18,5 18,6 22,8 14 26 

Przepływ w obwodzie chłodzenia 15 [l] 26,5 26,6 25,6 25,9 25 28 

Przepływ w obwodzie chłodzenia 17 [l] 32,8 30,2 26,1 26,6 20,0 36 

Przepływ w obwodzie chłodzenia 6 [l] 30,0 29,6 29,8 29,9 26 33 

Suw docisku po multiplikacji [mm] 18,3 18,3 19,0 18,5 17 20 

Temperatura chłodzenia tłoka [°C] 31,8 31,6 31,4 31,3 27 35 

Temperatura stopu [°C] 678,1 676,9 676,6 680,9 669,9 689,2 

Temperatura termoregulatora 3.2 [°C] 151,1 148,9 150,0 152,2 144 156 

Temperatura tulei 2 [°C] 213,7 216,6 226,7 217,0 205,0 235 

Temperatura w obwodzie chłodzenia 1 

[°C] 33,8 31,7 32,2 33,6 29 39 

Temperatura w obwodzie chłodzenia 
14 [°C] 32,5 31,8 32,8 32,9 31 34 

Temperatura w obwodzie chłodzenia 

15 [°C] 34,7 33,2 34,1 33,7 32 36 

Temperatura w obwodzie chłodzenia 
17 [°C] 29,5 28,7 30,2 29,7 25 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 27,9 29,1 27,9 28,6 27 30 

Temperatura wody miejskiej [°C] 21,6 22,5 22,7 21,9 18,0 27 

Wartość próżni 1 [mBar] 333,3 282,8 354,7 310,4 138 599 



218 
 

Stała temperatura chłodzenia płyty [°C] 28,5 29,2 28,7 29,6 27,0 32 

Czas drugiej fazy wtrysku [ms] 88,2 89,5 89,0 89,1 87,9 89,9 

Profil próżni 1 [mBar] 1190,9 1197,5 1182,3 1154,4 1037 1384 

V2xVp2 376320,5 472592,8 431653,3 644357,1 75900 870539 

Przepływ chłodzenia tłoka [l] 22,6 19,7 22,7 20,6 14 26 

Przepływ w obwodzie chłodzenia 15 [l] 26,1 26,9 26,3 26,4 25 28 

Przepływ w obwodzie chłodzenia 17 [l] 26,4 26,3 22,6 27,0 20,0 36 

Przepływ w obwodzie chłodzenia 6 [l] 29,2 30,9 29,8 29,2 26 33 

Suw docisku po multiplikacji [mm] 19,1 17,9 19,1 18,4 17 20 

Temperatura chłodzenia tłoka [°C] 30,5 30,8 30,4 30,0 27 35 

Temperatura stopu [°C] 681,3 682,6 679,4 676,4 669,9 689,2 

Temperatura termoregulatora 3.2 [°C] 148,2 151,1 151,3 148,6 144 156 

Temperatura tulei 2 [°C] 215,1 225,8 217,3 221,7 205,0 235 

Temperatura w obwodzie chłodzenia 1 [°C] 33,9 34,8 34,9 35,0 29 39 

Temperatura w obwodzie chłodzenia 14 
[°C] 32,4 33,1 32,1 32,4 31 34 

Temperatura w obwodzie chłodzenia 15 

[°C] 34,1 34,6 33,4 34,6 32 36 

Temperatura w obwodzie chłodzenia 17 

[°C] 28,6 29,6 28,0 31,8 25 35 

Temperatura w obwodzie chłodzenia 7 [°C] 28,5 28,8 28,7 29,2 27 30 

Temperatura wody miejskiej [°C] 22,7 23,8 21,5 23,4 18,0 27 

Wartość próżni 1 [mBar] 392,4 324,2 406,3 393,0 138 599 

 

W przypadku wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W Solver nie 

mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 70% wartości w zbiorze uczącym, 15% w zbiorze walidacyjnym i 

15% w zbiorze testującym, z 7 i 14 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu. 

 

Tab. 5.118.: Wyniki wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. odwróconego 

K-W i ANOVA, dla sieci z 100% wartości w zbiorze uczącym, z 21 neuronami w warstwie 

ukrytej i funkcją aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Ciśnienie wody obiegowej [Bar] 2,2 2,5 2,4 2,4 2 3 

Czas pierwszej fazy wtrysku [ms] 2240,1 2281,4 2256,5 2286,6 2186 2333 

Czas cyklu [s] 96,8 121,5 109,7 106,6 78,2 172,6 

Czas cyklu smarowania [s] 28,2 26,7 28,5 26,3 22,4 31,5 

Czas dozowania stopu [s] 29,5 27,3 15,2 21,6 10,9 33 

Czas dozowania stopu 2 [s] 61,8 83,9 82,5 84,1 53,8 106,6 

Czas krzepnięcia t2 [s] 10,4 10,6 10,2 10,3 10 11 

Czas przedmuchu [s] 10,8 7,4 11,0 7,4 6,3 11,7 

Czas smarowania [s] 6,9 6,8 6,9 7,1 5,1 9,3 

Filtr próżni 1 [mBar] 1439,0 1467,9 1419,0 1485,7 1259 1613 

Grubość piętki układu wlewowego 
[mm] 39,7 36,1 38,0 38,8 32 45 

Koncentrat [%] 2,3 2,3 2,3 2,2 1,9 2,7 

Ciśnienie maksymalne [Bar] 341,7 343,1 342,4 342,5 339 346 

Prędkość wtrysku maksymalna [m/s] 5,9 5,9 5,9 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 172,3 171,9 171,6 171,5 168 176 

Stała temperatura chłodzenia płyty [°C] 28,2 29,6 29,3 29,4 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 206,0 261,9 337,1 339,8 0 600 

Poziom wody w strumieniu chłodzącym 

[mm] 257,7 270,6 230,8 252,7 200,0 298 

Czas drugiej fazy wtrysku [ms] 89,4 88,9 88,6 89,4 87,9 89,9 
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Profil próżni 1 [mBar] 1184,3 1215,5 1098,7 1288,8 1037 1384 

V2xVp2 483497,4 577698,6 310240,5 475940,1 75900 870539 

Przepływ chłodzenia tłoka [l] 20,0 20,7 17,8 18,2 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 26,5 25,4 25,5 25,6 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,9 18,4 16,4 17,0 15,0 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,1 27,5 27,6 27,8 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 25,7 26,1 26,0 26,7 25 28 

Przepływ w obwodzie chłodzenia 17 [l] 26,7 26,6 27,3 26,9 20 36 

Przepływ w obwodzie chłodzenia 17 [l] 22,7 23,2 22,8 23,6 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 29,2 29,0 28,4 28,6 26 33 

Prędkość we wlewach 
doprowadzających [m/s] 38,8 38,5 38,4 38,5 37,7 39,4 

Suw docisku po multiplikacji [mm] 18,1 17,8 18,6 17,8 17 20 

Temperatura chłodzenia tłoka [°C] 32,4 30,6 30,1 29,3 27,0 35 

Temperatura stopu [°C] 679,2 680,1 677,8 679,6 669,9 689,2 

Temperatura termoregulatora 2.1 [°C] 70,8 70,7 70,5 71,1 67 75 

Temperatura termoregulatora 3.2 [°C] 149,1 150,7 148,9 153,6 144 156 

Temperatura tulei 2 [°C] 219,8 221,4 217,6 213,6 205 235 

Temperatura tulei 3 [°C] 222,5 226,4 209,7 222,7 182 256 

Temperatura w obwodzie chłodzenia 1 

[°C] 34,4 33,2 33,9 34,7 29,0 39 

Temperatura w obwodzie chłodzenia 13 

[°C] 37,2 35,9 34,3 36,4 32 40 

Temperatura w obwodzie chłodzenia 14 

[°C] 32,5 32,5 31,8 32,5 31 34 

Temperatura w obwodzie chłodzenia 15 

[°C] 35,0 34,0 34,0 34,0 32 36 

Temperatura w obwodzie chłodzenia 17 
[°C] 28,7 29,9 27,6 30,6 25 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 28,5 28,9 28,5 28,2 27 30 

Temperatura wody miejskiej [°C] 23,4 23,4 21,8 22,8 18,0 27 

Wartość próżni 1 [mBar] 467,3 327,5 348,2 304,1 138 599 

 

 

W przypadku wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W 

odwróconego i ANOVA, Solver nie mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, z 23 neuronami w warstwie 

ukrytej i funkcją aktywacji liniową na wyjściu. 

 

Tab. 5.119.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 

metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Czas cyklu smarowania [s] 27,4 26,2 27,9 25,2 22,5 31,5 

Czas krzepnięcia t2 [s] 10,6 10,2 10,7 10,3 10 11 

Czas przedmuchu [s] 7,2 9,1 8,7 10,2 6,3 11,7 

Czas smarowania [s] 6,7 7,9 6,6 7,5 5,1 9,3 

Stała temperatura chłodzenia płyty 

[°C] 28,5 28,7 29,0 30,4 27 32 

Poziom stopu w piecu podgrzewczym 
[mm] 372,4 373,2 410,5 354,4 145 600 

V2xVp2 223066,3 350082,0 253880,4 355108,9 106182 650502 

Przepływ chłodzenia tłoka [l] 19,0 20,5 21,2 20,1 14 26 
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Przepływ w obwodzie chłodzenia 1 [l] 26,6 24,5 25,6 24,4 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,9 17,5 17,4 18,5 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,1 27,2 27,5 27,0 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,7 26,9 26,7 27,2 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,4 23,9 23,0 23,7 21 25 

Temperatura tulei 2 [°C] 221,6 216,2 219,9 221,4 209 232 

Temperatura w obwodzie chłodzenia 17 

[°C] 30,1 31,5 29,7 28,5 26 35 

Wartość próżni 1 [mBar] 351,9 382,8 347,5 380,1 152 534 

 

Tab. 5.120.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 4 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 

metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Czas cyklu smarowania [s] 28,5 24,0 27,9 28,3 22,5 31,5 

Czas krzepnięcia t2 [s] 10,4 10,4 10,6 10,2 10 11 

Czas przedmuchu [s] 9,8 10,0 9,9 10,4 6,3 11,7 

Czas smarowania [s] 7,8 7,2 8,0 8,1 5,1 9,3 

Stała temperatura chłodzenia płyty 
[°C] 29,5 29,9 29,6 29,6 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 400,6 494,6 369,5 396,6 145 600 

V2xVp2 445869,4 374795,3 305496,2 499166,8 106182 650502 

Przepływ chłodzenia tłoka [l] 19,4 20,0 18,4 17,3 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,5 23,7 25,7 25,1 23 28 

Przepływ w obwodzie chłodzenia 13 

[l] 17,2 18,5 17,0 16,9 15 20 

Przepływ w obwodzie chłodzenia 14 
[l] 28,5 26,3 28,3 27,0 26 29 

Przepływ w obwodzie chłodzenia 15 

[l] 26,6 25,6 25,5 26,9 25,0 28 

Przepływ w obwodzie chłodzenia 20 
[l] 22,2 23,4 22,1 23,2 21 25 

Temperatura tulei 2 [°C] 220,6 217,0 219,3 217,6 209 232 

Temperatura w obwodzie chłodzenia 

17 [°C] 28,8 30,9 30,3 31,3 26 35 

Wartość próżni 1 [mBar] 405,8 354,2 365,3 404,3 152 534 

 

Tab. 5.121.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 5 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 

GRG z 

wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Czas cyklu smarowania [s] 27,4 28,6 28,9 27,3 22,5 31,5 

Czas krzepnięcia t2 [s] 10,2 10,7 10,0 10,7 10 11 

Czas przedmuchu [s] 8,5 8,1 9,2 9,5 6,3 11,7 

Czas smarowania [s] 7,3 7,6 7,2 7,2 5,1 9,3 

Stała temperatura chłodzenia płyty [°C] 29,8 30,3 29,6 29,3 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 319,2 190,3 429,2 321,1 145 600 

V2xVp2 559367,5 374456,4 490026,4 406752,7 106182 650502 

Przepływ chłodzenia tłoka [l] 22,4 18,4 21,7 17,7 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,9 25,5 24,1 27,0 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 18,0 18,6 18,0 17,1 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,3 27,8 27,2 28,4 26 29 
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Przepływ w obwodzie chłodzenia 15 [l] 26,1 26,6 25,8 26,6 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,1 23,5 22,4 23,3 21 25 

Temperatura tulei 2 [°C] 225,0 221,4 222,3 223,8 209 232 

Temperatura w obwodzie chłodzenia 17 

[°C] 32,0 30,5 29,9 30,0 26 35 

Wartość próżni 1 [mBar] 311,9 360,0 290,9 421,2 152 534 

 

Tab. 5.122.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 90% wartości w zbiorze uczącym i 10% w testującym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 
niezależnej 

MAX 
wartość 

zmiennej 
niezależnej 

Czas cyklu smarowania [s] 27,6 26,9 26,5 26,5 22,5 31,5 

Czas krzepnięcia t2 [s] 10,3 10,9 10,1 10,2 10 11 

Czas przedmuchu [s] 10,2 8,7 8,1 9,5 6,3 11,7 

Czas smarowania [s] 7,7 7,8 5,9 8,1 5,1 9,3 

Stała temperatura chłodzenia płyty [°C] 28,6 28,9 28,8 30,4 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 467,1 272,4 480,2 451,2 145 600 

V2xVp2 308761,5 395909,3 249079,9 411935,2 106182 650502 

Przepływ chłodzenia tłoka [l] 16,3 17,4 16,2 21,0 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 26,9 27,3 26,9 25,8 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,6 16,5 17,8 18,5 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 28,9 28,0 28,4 27,9 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 27,4 26,5 26,6 27,3 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 21,7 22,1 21,5 21,6 21 25 

Temperatura tulei 2 [°C] 223,5 220,3 220,2 216,5 209 232 

Temperatura w obwodzie chłodzenia 17 

[°C] 29,4 30,6 31,7 30,4 26 35 

Wartość próżni 1 [mBar] 270,9 441,1 310,0 321,4 152 534 

 

Tab. 5.123.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 90% wartości w zbiorze uczącym i 10% w testującym, z 4 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu smarowania [s] 25,8 27,0 29,1 22,5 22,5 31,5 

Czas krzepnięcia t2 [s] 10,6 10,2 10,3 10,0 10 11 

Czas przedmuchu [s] 8,7 9,3 9,2 6,3 6,3 11,7 

Czas smarowania [s] 7,9 6,8 5,8 5,1 5,1 9,3 

Stała temperatura chłodzenia płyty [°C] 28,3 30,5 28,8 27,0 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 472,4 443,9 294,9 145,0 145 600 

V2xVp2 516944,2 268098,9 392647,5 106182,0 106182 650502 

Przepływ chłodzenia tłoka [l] 18,7 22,0 16,1 14,0 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,5 23,7 26,1 23,0 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 18,0 17,4 16,7 15,0 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 28,2 27,4 27,4 26,0 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,4 27,0 27,4 25,0 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,1 24,2 22,6 21,0 21 25 

Temperatura tulei 2 [°C] 221,5 220,5 222,9 209,0 209 232 

Temperatura w obwodzie chłodzenia 17 

[°C] 30,5 29,9 30,9 26,0 26 35 

Wartość próżni 1 [mBar] 370,2 392,4 335,9 152,0 152 534 
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Tab. 5.124.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu smarowania [s] 27,2 27,6 28,2 27,3 22,5 31,5 

Czas krzepnięcia t2 [s] 10,4 10,4 10,7 10,4 10 11 

Czas przedmuchu [s] 8,7 9,3 9,7 8,7 6,3 11,7 

Czas smarowania [s] 7,5 7,1 7,4 7,9 5,1 9,3 

Stała temperatura chłodzenia płyty [°C] 30,6 27,9 30,6 28,4 27 32 

Poziom stopu w piecu podgrzewczym 
[mm] 303,9 387,6 406,3 455,7 145 600 

V2xVp2 330312,8 337179,5 462937,9 496844,4 106182 650502 

Przepływ chłodzenia tłoka [l] 21,0 17,9 21,4 19,4 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 26,0 26,0 24,6 24,4 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,4 17,8 16,7 18,1 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 28,5 28,4 27,0 27,8 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 27,1 26,8 26,5 26,6 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,6 21,6 21,9 22,7 21 25 

Temperatura tulei 2 [°C] 221,8 218,0 223,5 221,9 209 232 

Temperatura w obwodzie chłodzenia 17 

[°C] 29,1 29,1 32,6 32,3 26 35 

Wartość próżni 1 [mBar] 320,2 332,2 279,6 290,1 152 534 

 

Tab. 5.125.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Czas cyklu smarowania [s] 25,9 27,2 27,1 28,1 22,5 31,5 

Czas krzepnięcia t2 [s] 10,5 10,2 10,4 10,5 10 11 

Czas przedmuchu [s] 8,6 8,4 9,0 9,3 6,3 11,7 

Czas smarowania [s] 6,9 7,4 7,8 7,6 5,1 9,3 

Stała temperatura chłodzenia płyty [°C] 29,0 29,0 29,0 29,9 27 32 

Poziom stopu w piecu podgrzewczym 

[mm] 380,2 354,2 310,6 393,6 145 600 

V2xVp2 356126,2 326865,0 333704,2 408109,7 106182 650502 

Przepływ chłodzenia tłoka [l] 17,0 18,5 22,3 19,8 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,3 25,8 24,8 25,8 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 16,6 16,3 16,5 18,0 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,8 27,4 27,2 28,1 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 27,1 26,7 26,3 26,8 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,5 22,3 22,8 22,8 21 25 

Temperatura tulei 2 [°C] 225,7 224,2 223,4 221,5 209 232 

Temperatura w obwodzie chłodzenia 17 

[°C] 31,1 31,4 31,6 32,3 26 35 

Wartość próżni 1 [mBar] 394,7 293,6 225,7 369,6 152 534 
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Tab. 5.126.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla 

sieci z 100% wartości w zbiorze uczącym, z 4 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Czas cyklu smarowania [s] 27,7 27,0 27,4 28,0 22,5 31,5 

Czas krzepnięcia t2 [s] 10,5 10,2 10,2 10,5 10 11 

Czas przedmuchu [s] 9,2 8,4 9,4 10,1 6,3 11,7 

Czas smarowania [s] 7,6 6,6 7,8 7,0 5,1 9,3 

Stała temperatura chłodzenia płyty 

[°C] 29,1 29,0 30,0 28,9 27 32 

Poziom stopu w piecu podgrzewczym 
[mm] 307,1 361,8 377,8 287,5 145 600 

V2xVp2 308025,0 436490,9 503890,2 333389,5 106182 650502 

Przepływ chłodzenia tłoka [l] 19,6 16,7 19,1 19,2 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 26,4 26,4 25,5 25,6 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 16,7 17,0 17,8 17,7 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 28,2 28,4 27,7 27,9 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 27,0 26,8 26,6 26,6 25,0 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,7 22,7 23,4 22,7 21 25 

Temperatura tulei 2 [°C] 217,6 223,2 218,3 224,3 209 232 

Temperatura w obwodzie chłodzenia 

17 [°C] 29,6 30,5 30,9 29,8 26 35 

Wartość próżni 1 [mBar] 275,3 340,6 321,8 320,3 152 534 

 

Tab. 5.127.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. odwróconego 

K-W, dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 
niezależnej 

MAX 
wartość 

zmiennej 
niezależnej 

Czas cyklu smarowania [s] 27,6 25,8 27,1 27,7 22,5 31,5 

CtxDt2 6360,0 14185,3 9310,4 12936,3 4820,3 17642,3 

Czas krzepnięcia t2 [s] 10,5 10,4 10,5 10,4 10 11 

Czas przedmuchu [s] 8,3 8,7 8,2 9,1 6,3 11,7 

Czas smarowania [s] 7,3 7,1 6,8 7,9 5,1 9,3 

Filtr próżni 1 [mBar] 1398,8 1430,8 1394,5 1455,6 1259 1613 

Grubość piętki układu wlewowego [mm] 41,2 38,1 40,7 41,3 32 45 

Ciśnienie maksymalne [Bar] 341,7 340,8 343,2 342,8 339 345 

Prędkość wtrysku maksymalna [m/s] 5,9 5,9 5,9 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 172,9 172,4 172,6 171,6 168 176 

Stała temperatura chłodzenia płyty [°C] 30,8 30,4 30,4 28,9 27 32 

V2xVp2 213849,8 453349,8 303422,7 422436,2 106182,0 650502 

Przepływ chłodzenia tłoka [l] 19,2 19,9 20,2 18,4 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,2 26,4 24,6 25,5 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,4 18,9 16,9 17,1 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,1 27,9 27,3 27,3 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,4 27,0 26,9 26,4 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,9 22,6 22,9 23,2 21 25 

Temperatura chłodzenia tłoka [°C] 30,6 32,1 29,4 32,4 28 35 

Temperatura tulei 2 [°C] 224,7 221,0 215,7 223,5 209 232 

Temperatura w obwodzie chłodzenia 1 

[°C] 31,9 33,6 34,1 34,0 29 39 

Temperatura w obwodzie chłodzenia 17 
[°C] 30,1 30,7 31,2 30,3 26,0 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 28,8 27,3 28,5 28,3 27 30 

Temperatura wody miejskiej [°C] 23,9 24,1 24,2 23,9 23 25 

Wartość próżni 1 [mBar] 364,1 351,3 312,4 292,8 152 534 
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Tab. 5.128.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. odwróconego 

K-W, dla sieci z 100% wartości w zbiorze uczącym, z 4 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Czas cyklu smarowania [s] 26,8 26,0 28,0 29,5 22,5 31,5 

CtxDt2 12412,9 9981,4 8116,0 7660,1 4820,3 17642,3 

Czas krzepnięcia t2 [s] 10,4 10,4 10,6 10,4 10 11 

Czas przedmuchu [s] 8,3 9,9 7,3 8,6 6,3 11,7 

Czas smarowania [s] 7,4 7,9 6,4 7,2 5,1 9,3 

Filtr próżni 1 [mBar] 1425,1 1461,9 1449,3 1416,2 1259 1613 

Grubość piętki układu wlewowego 

[mm] 38,0 37,3 38,1 41,0 32 45 

Ciśnienie maksymalne [Bar] 342,5 343,4 341,9 341,8 339 345 

Prędkość wtrysku maksymalna [m/s] 5,9 5,8 5,8 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 174,0 175,8 173,7 171,4 168 176 

Stała temperatura chłodzenia płyty [°C] 29,6 30,2 29,8 30,0 27 32 

V2xVp2 298984,8 331876,9 256446,5 421930,4 106182,0 650502 

Przepływ chłodzenia tłoka [l] 21,3 21,1 20,3 19,2 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,4 25,6 25,7 25,1 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 16,9 18,8 17,4 17,7 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,5 27,1 27,0 27,8 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,7 27,3 26,6 26,6 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,4 22,7 22,2 22,5 21 25 

Temperatura chłodzenia tłoka [°C] 31,5 29,8 30,1 30,4 28 35 

Temperatura tulei 2 [°C] 220,2 213,7 217,4 218,2 209 232 

Temperatura w obwodzie chłodzenia 1 
[°C] 33,9 34,9 33,1 33,9 29 39 

Temperatura w obwodzie chłodzenia 17 

[°C] 29,6 30,5 28,8 30,0 26,0 35 

Temperatura w obwodzie chłodzenia 7 
[°C] 28,3 28,7 28,2 28,6 27 30 

Temperatura wody miejskiej [°C] 24,5 24,2 23,8 24,0 23 25 

Wartość próżni 1 [mBar] 378,2 326,4 289,6 338,9 152 534 

 

W przypadku wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W 

odwróconego, Solver nie mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, z 5 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 4 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu. 
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Tab. 5.129.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla 

sieci z 100% wartości w zbiorze uczącym, z 4 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

 

 

Tab. 5.130.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla 

sieci z 100% wartości w zbiorze uczącym, z 5 neuronami w warstwie ukrytej i funkcją 

aktywacji tangensoidalną na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu smarowania [s] 27,5 28,8 25,3 28,5 22,5 31,5 

CtxDt2 9887,0 14247,5 7509,3 11446,9 4820,3 17642,3 

Czas krzepnięcia t2 [s] 10,4 10,4 10,5 10,6 10 11 

Czas przedmuchu [s] 8,0 9,7 9,1 8,7 6,3 11,7 

Czas smarowania [s] 7,1 6,2 5,7 6,3 5,1 9,3 

Filtr próżni 1 [mBar] 1387,8 1422,8 1360,6 1510,2 1259 1613 

V2xVp2 193590,0 260699,3 308162,4 437917,1 106182 650502 

Grubość piętki układu wlewowego 

[mm] 39,4 37,3 40,2 35,3 32 45 

Ciśnienie maksymalne [Bar] 343,3 340,0 341,9 341,2 339 345 

Prędkość wtrysku maksymalna [m/s] 5,9 5,8 5,9 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 172,9 169,2 171,7 173,8 168 176 

Stała temperatura chłodzenia płyty 
[°C] 29,8 29,7 29,8 28,9 27,0 32 

Przepływ chłodzenia tłoka [l] 22,8 20,0 21,1 20,4 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,0 25,9 26,2 25,4 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,2 17,9 16,3 18,0 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,6 27,4 27,0 27,8 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,8 26,4 26,7 26,3 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,5 22,4 22,8 22,6 21 25 

Temperatura chłodzenia tłoka [°C] 30,8 32,6 31,1 29,9 28 35 

Temperatura stopu [°C] 675,7 682,7 677,8 677,7 670,9 688,5 

Temperatura tulei 2 [°C] 217,1 221,1 222,4 220,2 209 232 

Temperatura w obwodzie chłodzenia 1 

[°C] 35,8 34,1 35,6 31,8 29,0 39 

Temperatura w obwodzie chłodzenia 

17 [°C] 29,8 31,5 29,8 29,1 26 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 28,8 28,3 28,2 28,8 27 30 

Temperatura wody miejskiej [°C] 24,1 24,1 24,1 24,2 23 25 

Wartość próżni 1 [mBar] 263,9 390,8 295,6 387,3 152 534 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu smarowania [s] 27,3 24,9 25,6 26,6 22,5 31,5 

CtxDt2 12159,9 12118,2 9572,3 13749,4 4820,3 17642,3 

Czas krzepnięcia t2 [s] 10,6 10,6 10,6 10,5 10 11 

Czas przedmuchu [s] 9,8 7,2 8,7 9,5 6,3 11,7 

Czas smarowania [s] 6,8 9,0 7,2 7,4 5,1 9,3 

Filtr próżni 1 [mBar] 1463,7 1304,2 1482,4 1458,7 1259 1613 

V2xVp2 467304,2 458864,5 475087,8 500348,1 106182 650502 

Grubość piętki układu wlewowego [mm] 37,8 36,2 40,7 35,2 32 45 

Ciśnienie maksymalne [Bar] 344,0 343,9 341,4 341,1 339 345 

Prędkość wtrysku maksymalna [m/s] 5,9 6,0 5,9 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 171,9 174,4 172,0 171,1 168 176 

Stała temperatura chłodzenia płyty [°C] 30,3 31,4 29,3 27,5 27,0 32 

Przepływ chłodzenia tłoka [l] 17,6 21,7 17,8 21,8 14 26 
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Tab. 5.131.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla 

sieci z 90% wartości w zbiorze uczącym i 10% w testującym, z 4 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu 

 

 

Przepływ w obwodzie chłodzenia 1 [l] 25,4 24,0 25,4 25,0 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 18,5 17,7 17,8 17,7 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,2 28,2 27,6 28,1 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 25,6 25,5 25,6 26,6 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,4 23,9 23,3 23,3 21 25 

Temperatura chłodzenia tłoka [°C] 31,1 29,8 30,9 30,4 28 35 

Temperatura stopu [°C] 677,8 674,0 680,6 682,8 670,9 688,5 

Temperatura tulei 2 [°C] 215,4 214,7 224,1 220,3 209 232 

Temperatura w obwodzie chłodzenia 1 

[°C] 34,0 34,5 33,1 33,6 29,0 39 

Temperatura w obwodzie chłodzenia 17 

[°C] 29,7 27,9 30,7 30,0 26 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 28,7 27,5 28,6 28,3 27 30 

Temperatura wody miejskiej [°C] 24,3 24,2 24,1 24,1 23 25 

Wartość próżni 1 [mBar] 404,7 344,3 403,8 330,7 152 534 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Czas cyklu smarowania [s] 27,2 28,2 26,3 25,9 22,5 31,5 

CtxDt2 7372,4 10869,3 7540,2 11101,2 4820,3 17642,3 

Czas krzepnięcia t2 [s] 10,3 10,5 10,6 10,6 10 11 

Czas przedmuchu [s] 9,2 8,7 8,1 9,8 6,3 11,7 

Czas smarowania [s] 7,3 8,2 6,5 6,8 5,1 9,3 

Filtr próżni 1 [mBar] 1464,6 1335,1 1483,9 1464,0 1259 1613 

V2xVp2 245988,3 254517,0 404911,3 416997,2 106182 650502 

Grubość piętki układu wlewowego [mm] 41,6 36,0 40,5 39,6 32 45 

Ciśnienie maksymalne [Bar] 342,1 341,6 342,4 340,9 339 345 

Prędkość wtrysku maksymalna [m/s] 5,9 5,9 5,9 5,9 5,8 6 

Opóźnienie multiplikacji [ms] 174,0 172,2 173,2 173,2 168 176 

Stała temperatura chłodzenia płyty [°C] 29,4 30,5 29,7 29,2 27,0 32 

Przepływ chłodzenia tłoka [l] 22,7 19,0 19,9 20,5 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,6 25,2 25,1 26,0 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,4 17,6 16,9 18,1 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,7 27,7 26,9 27,3 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,5 26,3 26,7 26,4 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,6 23,2 23,2 23,1 21 25 

Temperatura chłodzenia tłoka [°C] 28,9 31,4 30,4 33,1 28 35 

Temperatura stopu [°C] 678,2 684,7 678,1 676,7 670,9 688,5 

Temperatura tulei 2 [°C] 224,8 218,1 218,9 214,2 209 232 

Temperatura w obwodzie chłodzenia 1 

[°C] 32,5 32,8 33,9 34,0 29,0 39 

Temperatura w obwodzie chłodzenia 17 

[°C] 30,6 29,4 30,5 30,5 26 35 

Temperatura w obwodzie chłodzenia 7 

[°C] 28,7 28,5 28,1 28,2 27 30 

Temperatura wody miejskiej [°C] 24,1 24,0 24,4 23,7 23 25 

Wartość próżni 1 [mBar] 289,6 416,7 355,1 344,2 152 534 
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Tab. 5.132.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla 

sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu smarowania [s] 27,1 26,4 28,4 27,1 22,5 31,5 

CtxDt2 12001,0 13143,7 13109,1 12052,8 4820,3 17642,3 

Czas krzepnięcia t2 [s] 10,5 10,6 10,5 10,5 10 11 

Czas przedmuchu [s] 7,8 8,7 8,1 8,1 6,3 11,7 

Czas smarowania [s] 7,5 6,7 7,1 6,9 5,1 9,3 

Filtr próżni 1 [mBar] 1438,3 1396,2 1457,5 1423,5 1259 1613 

V2xVp2 342087,3 366957,0 371670,9 377741,2 106182 650502 

Grubość piętki układu wlewowego 

[mm] 37,9 41,7 36,4 39,0 32 45 

Ciśnienie maksymalne [Bar] 340,3 343,6 342,1 342,1 339 345 

Prędkość wtrysku maksymalna [m/s] 5,9 5,9 5,8 5,8 5,8 6 

Opóźnienie multiplikacji [ms] 170,6 174,2 172,5 171,5 168 176 

Stała temperatura chłodzenia płyty 
[°C] 30,7 29,0 28,8 29,7 27,0 32 

Przepływ chłodzenia tłoka [l] 20,7 19,9 21,6 20,2 14 26 

Przepływ w obwodzie chłodzenia 1 

[l] 24,2 25,7 26,0 24,6 23 28 

Przepływ w obwodzie chłodzenia 13 
[l] 17,3 17,6 17,7 17,3 15 20 

Przepływ w obwodzie chłodzenia 14 

[l] 27,5 27,6 27,8 27,7 26 29 

Przepływ w obwodzie chłodzenia 15 
[l] 26,7 26,0 26,2 26,7 25 28 

Przepływ w obwodzie chłodzenia 20 

[l] 24,1 23,1 23,1 23,3 21 25 

Temperatura chłodzenia tłoka [°C] 29,8 30,4 31,1 31,2 28 35 

Temperatura stopu [°C] 683,4 675,5 679,8 678,8 670,9 688,5 

Temperatura tulei 2 [°C] 221,8 222,1 225,4 219,6 209 232 

Temperatura w obwodzie chłodzenia 

1 [°C] 33,3 34,5 36,3 33,6 29,0 39 

Temperatura w obwodzie chłodzenia 
17 [°C] 28,6 32,2 31,3 32,2 26 35 

Temperatura w obwodzie chłodzenia 

7 [°C] 28,2 28,4 28,7 28,3 27 30 

Temperatura wody miejskiej [°C] 23,4 23,9 23,7 23,8 23 25 

Wartość próżni 1 [mBar] 410,9 324,0 338,5 294,5 152 534 

 

W przypadku wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, Solver 

nie mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 90% wartości w zbiorze uczącym, 10% w testującym z 3 neuronami 

w warstwie ukrytej i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 4 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu. 
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Tab. 5.132.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. K-W, dla 

sieci z 90% wartości w zbiorze uczącym, 10 % w testującym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu 

 

 

 

 

 

 

 

 

 

 

 

W przypadku wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. K-W, Solver nie 

mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu, 

• dla sieci z 90% wartości w zbiorze uczącym, 10% w testującym z 2 neuronami 

w warstwie ukrytej i funkcją aktywacji liniową na wyjściu, 

• dla sieci z 90% wartości w zbiorze uczącym, 10% w testującym z 5 neuronami 

w warstwie ukrytej i funkcją aktywacji liniową na wyjściu. 

 

Tab. 5.133.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. odwróconego 

K-W, dla sieci z 90% wartości w zbiorze uczącym, 10 % w testującym, z 2 neuronami w 

warstwie ukrytej i funkcją aktywacji liniową na wyjściu 

Nazwa zmiennej niezależnej 

MIN, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MAX, 

metoda 
nieliniowa 

GRG z 

wielostartem 

MIN, 
metoda 

ewolucyjna 

MAX, 
metoda 

ewolucyjna 

MIN 

wartość 

zmiennej 
niezależnej 

MAX 

wartość 

zmiennej 
niezależnej 

Czas krzepnięcia t2 [s] 10,2 10,4 10,0 10,5 10 11 

Ciśnienie maksymalne [Bar] 342,4 341,4 342,0 342,2 339 345 

Profil próżni 1 [mBar] 1135,1 1175,1 1214,3 1145,5 1055 1298 

V2xVp2 242309,4 388547,7 401939,1 252461,4 82740 650502 

Przepływ chłodzenia tłoka [l] 19,9 16,8 20,8 15,8 14 26 

Przepływ w obwodzie chłodzenia 1 [l] 24,3 26,8 25,9 27,8 23 28 

Przepływ w obwodzie chłodzenia 13 

[l] 16,6 17,7 18,5 16,1 15 20 

Przepływ w obwodzie chłodzenia 15 

[l] 26,7 26,8 26,6 27,3 25 28 

Temperatura tulei 2 [°C] 225,3 232,0 218,9 224,1 211 232 

Temperatura w obwodzie chłodzenia 

14 [°C] 32,2 33,1 32,1 32,0 31 34 

Zużycie smaru [l] 0,6 0,6 0,3 0,1 0 2 

Nazwa zmiennej niezależnej 

MIN, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MAX, 
metoda 

nieliniowa 

GRG z 
wielostartem 

MIN, 

metoda 

ewolucyjna 

MAX, 

metoda 

ewolucyjna 

MIN 

wartość 
zmiennej 

niezależnej 

MAX 

wartość 
zmiennej 

niezależnej 

Czas cyklu [s] 123,3 136,2 149,5 116,8 89,1 172,6 

Czas dozowania stopu 2 [s] 75,5 83,3 77,9 77,4 54,1 106,6 

Czas krzepnięcia t2 [s] 10,8 10,3 10,6 10,9 10 11 

Czas smarowania [s] 7,7 6,1 7,9 6,9 5,1 9,3 
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Tab. 5.134.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. odwróconego 

K-W, dla sieci z 100% wartości w zbiorze uczącym z 2 neuronami w warstwie ukrytej i funkcją 

aktywacji liniową na wyjściu 

 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu [s] 125,1 132,2 141,7 127,5 89,1 172,6 

Czas dozowania stopu 2 [s] 76,6 78,6 70,8 72,9 54,1 106,6 

Czas krzepnięcia t2 [s] 10,5 10,6 10,7 10,7 10 11 

Czas smarowania [s] 6,8 5,9 6,9 7,8 5,1 9,3 

Grubość piętki układu wlewowego 

[mm] 40,2 36,5 38,4 38,9 32 45 

Ciśnienie maksymalne [Bar] 342,2 342,2 342,0 341,9 339 345 

Opóźnienie multiplikacji [ms] 172,6 172,0 172,9 172,6 168 176 

Stała temperatura chłodzenia płyty 
[°C] 28,7 29,0 29,7 30,6 27 32 

Poziom wody w strumieniu chłodzącym 

[mm] 257,5 242,1 246,5 235,2 200 298 

Profil próżni 1 [mBar] 1208,4 1175,4 1173,0 1200,5 1055 1298 

V2xVp2 483258,2 296550,1 419242,1 326483,6 82740 650502 

Przepływ chłodzenia tłoka [l] 18,7 21,3 17,9 20,4 14,0 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,1 25,1 25,3 25,9 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,0 17,4 17,1 16,5 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 27,4 27,5 27,4 27,5 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 27,2 26,0 26,5 26,5 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,3 24,1 23,2 23,0 21 25 

Prędkość we wlewach 
doprowadzających [m/s] 38,3 38,2 38,3 38,4 37,7 39,3 

Temperatura chłodzenia tłoka [°C] 31,1 29,4 31,1 30,6 28 35 

Temperatura tulei 2 [°C] 217,5 222,0 220,6 220,0 211 232 

Temperatura w obwodzie chłodzenia 1 

[°C] 32,3 34,3 35,3 34,0 30 39 

Temperatura w obwodzie chłodzenia 14 
[°C] 32,5 33,4 32,5 32,8 31,0 34 

Grubość piętki układu wlewowego [mm] 40,8 38,8 38,9 37,2 32 45 

Ciśnienie maksymalne [Bar] 341,9 340,7 342,2 341,0 339 345 

Opóźnienie multiplikacji [ms] 170,8 170,0 172,5 171,5 168 176 

Stała temperatura chłodzenia płyty [°C] 28,7 29,7 29,5 29,2 27 32 

Poziom wody w strumieniu chłodzącym 

[mm] 247,7 238,2 238,4 249,5 200 298 

Profil próżni 1 [mBar] 1202,7 1203,9 1139,2 1175,1 1055 1298 

V2xVp2 271565,1 385240,6 324558,9 454804,9 82740 650502 

Przepływ chłodzenia tłoka [l] 18,5 19,1 17,3 21,5 14,0 26 

Przepływ w obwodzie chłodzenia 1 [l] 25,9 25,7 26,1 24,5 23 28 

Przepływ w obwodzie chłodzenia 13 [l] 17,7 18,4 17,7 17,4 15 20 

Przepływ w obwodzie chłodzenia 14 [l] 26,8 28,1 27,5 27,6 26 29 

Przepływ w obwodzie chłodzenia 15 [l] 26,6 26,1 26,6 26,3 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 22,8 23,1 23,0 22,7 21 25 

Prędkość we wlewach doprowadzających 
[m/s] 38,4 38,2 38,6 38,7 37,7 39,3 

Temperatura chłodzenia tłoka [°C] 32,6 32,4 30,9 30,8 28 35 

Temperatura tulei 2 [°C] 221,1 216,2 222,3 219,8 211 232 

Temperatura w obwodzie chłodzenia 1 [°C] 33,3 34,6 34,3 35,2 30 39 

Temperatura w obwodzie chłodzenia 14 
[°C] 32,4 33,0 32,7 32,8 31,0 34 

Temperatura w obwodzie chłodzenia 7 [°C] 28,1 27,4 28,2 28,2 27 30 

Temperatura wody miejskiej [°C] 24,1 24,0 24,0 23,8 23 25 

Wartość próżni 1 [mBar] 274,1 368,7 351,8 373,8 159 552 

Zużycie smaru [l] 0,4 0,9 0,9 0,4 0 2 
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Temperatura w obwodzie chłodzenia 7 

[°C] 28,8 29,0 28,5 27,8 27 30 

Temperatura wody miejskiej [°C] 23,7 23,8 24,1 23,9 23 25 

Wartość próżni 1 [mBar] 292,8 413,7 291,9 352,8 159 552 

Zużycie smaru [l] 0,8 0,4 0,9 1,0 0 2 

 

W przypadku wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. odwróconego K-

W, Solver nie mógł znaleźć dopuszczalnego rozwiązania: 

• dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu. 

 

Tab. 5.135.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. ANOVA, dla 

sieci z 100% wartości w zbiorze uczącym z 2 neuronami w warstwie ukrytej i funkcją aktywacji 

liniową na wyjściu 

 

W przypadku wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. ANOVA, Solver 

nie mógł znaleźć dopuszczalnego rozwiązania: 

Nazwa zmiennej niezależnej 

MIN, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MAX, 

metoda 

nieliniowa 
GRG z 

wielostartem 

MIN, 

metoda 
ewolucyjna 

MAX, 

metoda 
ewolucyjna 

MIN 
wartość 

zmiennej 

niezależnej 

MAX 
wartość 

zmiennej 

niezależnej 

Czas cyklu smarowania [s] 129,2 127,1 121,1 118,2 89,1 172,6 

Czas dozowania stopu 2 [s] 73,9 90,6 78,6 78,2 54,1 106,6 

Czas krzepnięcia t2 [s] 10,5 10,6 10,4 10,5 10 11 

Czas smarowania [s] 6,9 7,3 6,8 7,0 5,1 9,3 

Grubość piętki układu wlewowego [mm] 38,0 36,6 38,5 37,6 32 45 

Ciśnienie maksymalne [Bar] 342,6 343,5 343,0 342,6 339 345 

Opóźnienie multiplikacji [ms] 171,9 171,4 171,3 170,6 168 176 

Stała temperatura chłodzenia płyty [°C] 29,8 30,0 29,5 29,6 27 32 

Poziom wody w strumieniu chłodzącym 

[mm] 244,8 232,1 248,9 250,3 200 298 

Profil próżni 1 [mBar] 1172,7 1233,0 1146,7 1163,8 1055 1298 

V2xVp2 429876,6 414196,7 359649,2 339142,5 82740 650502 

Przepływ chłodzenia tłoka [l] 21,7 19,5 21,7 20,7 14,0 26 

Przepływ w obwodzie chłodzenia 13 [l] 18,4 16,8 17,3 17,9 15 20 

C1FxC14F 684,5 660,3 689,2 674,0 598 784 

Przepływ w obwodzie chłodzenia 15 [l] 26,4 26,3 26,5 26,5 25 28 

Przepływ w obwodzie chłodzenia 20 [l] 23,0 23,2 22,9 22,4 21 25 

Przepływ w obwodzie chłodzenia 6 [l] 29,5 30,9 29,5 29,4 26 33 

Prędkość we wlewach doprowadzających 

[m/s] 38,3 38,1 38,7 38,2 37,7 39,3 

Temperatura chłodzenia tłoka [°C] 31,4 30,3 31,3 31,6 28 35 

Temperatura stopu [°C] 681,8 679,6 676,9 679,8 670,9 689 

Temperatura tulei 2 [°C] 221,2 220,6 224,1 222,4 211 232 

Temperatura w obwodzie chłodzenia 1 

[°C] 35,2 35,8 34,0 35,0 30,0 39 

Temperatura w obwodzie chłodzenia 14 

[°C] 31,8 32,1 32,6 32,9 31 34 

Temperatura w obwodzie chłodzenia 7 

[°C] 27,9 28,8 29,0 28,6 27 30 

Temperatura wody miejskiej [°C] 23,9 24,3 24,2 24,1 23 25 

Wartość próżni 1 [mBar] 423,9 453,7 334,1 363,2 159 552 

Zużycie smaru [l] 1,1 0,9 1,1 0,9 0 2 
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• dla sieci z 100% wartości w zbiorze uczącym, z 2 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 100% wartości w zbiorze uczącym, z 3 neuronami w warstwie ukrytej 

i funkcją aktywacji tangensoidalną na wyjściu, 

• dla sieci z 90% wartości w zbiorze uczącym, z 5 neuronami w warstwie ukrytej 

i funkcją aktywacji liniową na wyjściu. 

W niektórych przypadkach Solver nie znalazł wykonalnego rozwiązania. Oznacza to, że nie 

istnieje żaden zestaw wartości spełniający wszystkie ograniczenia a zadany problem jest 

niewykonalny. Czyli nie ma limitu wartości funkcji celu, ponieważ wartości komórki celu nie 

są zbieżne.  

5.2.7.2. Omówienie wyników i wnioski  

Wyniki analizy przeprowadzonej dla pięciu zbiorów danych według trzech kryteriów 

wskazują, że w większości przypadków wielowymiarowa optymalizacja parametrów procesu 

nie ma możliwości zobrazowania co dokładnie wpływa na formowanie się wady w produkcie, 

w tym przypadku w odlewie. Dokładniej nie jest w stanie określić jakie wartości parametrów 

procesu wpływają na wytwarzanie wadliwych odlewów.  

Mimo to udało się uzyskać w paru przypadkach taką odpowiedź. (rys. od 5.7.7.4 do 5.7.7.8). 

Na wykresie (rys.5.7.7.4.) należy zwrócić uwagę, że wyższe wartości zmiennej niezależnej - 

opóźnienie multiplikacji [ms] sprzyjają powstawaniu wyższych wartości przecieku. Parametr 

ten jest kluczowym etapem w procesie, którego celem jest zmniejszenie porowatości 

skurczowej produkowanych odlewów, poprzez wymuszone podawanie ciekłego stopu do 

krzepnącego odlewu. Parametr ten definiuje moment rozpoczęcia tej fazy procesu i jego 

znaczenie uzyskane w wyniku modelowania nie jest zaskakujące. Możliwe, że w przypadku 

wymuszenia podawania metalu, które rozpocznie się za późno może okazać się, że będzie ono 

nieefektywne z powodu dużej frakcji zakrzepniętego metalu w odlewie. W publikacji [149] ten 

sam parametr został zidentyfikowany jako statystycznie istotny i wpływający na właściwości 

materiałowe. Wynik ten sugeruje że parametr ten ma z pewnością duży wpływ na 

występowanie nieszczelności w odlewach i powinien być bardzo poważnie traktowany przez 

pracowników odlewni, uznany wręcz za krytyczny z punktu widzenia zarządzania i kontroli 

jakości.  
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Rys.5.2.7.4. Wyniki optymalizacji skłonności do powstania wady na podstawie modelu 

neuronowego dla parametru opóźnienie multiplikacji (szczegóły w Tablicy 5.105) 

 

Drugim wykrytym parametrem była widoczna na wykresie (rys.5.7.7.5.) temperatura wody 

miejskiej. Wyższe wartości zmiennej niezależnej również sprzyjają powstawaniu wyższych 

wartości przecieku, co może mieć związek z niedoskonałością systemu stabilizacji temperatury 

formy, której rola w powstawaniu porowatości jest dość oczywista.  
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Rys.5.2.7.5. Wyniki skłonności do powstania wady na podstawie modelu neuronowego 

dla parametru temperatura wody miejskiej (szczegóły w Tablicy 5.106) 

 

Trzecim wykrytym parametrem był widoczny na wykresie (rys.5.7.7.6.) czas dozowania 

stopu 2. Wyższe wartości zmiennej niezależnej również sprzyjają powstawaniu wyższych 

wartości przecieku, jednak mechanizm tego oddziaływania nie jest jasny. Być może, znaczącą 

rolę odgrywają tu korelacje z innymi parametrami procesu, co omówiono w p. 5.2.2.1.  

 

 

Rys.5.2.7.6. Wyniki skłonności do powstania wady na podstawie modelu neuronowego 

dla parametru czas dozowania stopu 2 (szczegóły w Tablicy 5.108) 
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Czwartym wykrytym parametrem było widoczne na wykresie (rys.5.7.7.7.) czas 

przedmuchu. W tym przypadku niższe wartości zmiennej niezależnej sprzyjają powstawaniu 

wyższych wartości przecieku. Wykazana zależność pochodzi z optymalizacji modelu zbioru 3, 

w którym występowała znacząca zmienność wartości przecieku, a rozkład zmiennej zależnej 

był zbliżony do rozkładu normalnego, z zwiększonym występowaniem wartości 

podwyższonych. Interpretacja wpływu tego parametru nie jest prosta, również dla personelu 

technicznego odlewni i wymagałaby głębszych analiz i dodatkowych prób. 

 

Rys.5.2.7.7. Wyniki skłonności do powstania wady na podstawie modelu neuronowego 

dla parametru czas przedmuchu (szczegóły w Tablicy 5.118) 

 

Piątym wykrytym parametrem był widoczny na wykresie (rys.5.7.7.8.) przepływ w obwodzie 

chłodzenia 14. W tym przypadku również niższe wartości zmiennej niezależnej sprzyjają 

powstawaniu wyższych wartości przecieku. Wykazana zależność pochodzi z optymalizacji 

modelu zbioru 4, który utworzony został celem wykrycia parametrów wpływających na 

zwiększenie wartości przecieku w niepożądanym stopniu. Wydaje się dość oczywiste, że 

obniżenie intensywności przepływu wody w określonych kanałach, skutkujące zmniejszeniem 

lokalnej intensywności studzenia odlewu może mieć wpływ na zwiększenie czasu krzepnięcia 

i koncentrację porowatości odlewu w tym miejscu prowadzącej do nieszczelności. 
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Rys.5.2.7.8. Wyniki skłonności do powstania wady na podstawie modelu neuronowego 

dla przepływ w obwodzie chłodzenia 14 (szczegóły w Tablicy 5.120) 

 

Na rys. 5.2.7.9 pokazano przykład wyników optymalizacji, które nie wskazały 

jednoznacznego wpływu danej zmiennej procesu na występowanie wady - przecieku. 

 

Rys.5.2.7.9. Wyniki optymalizacji skłonności do powstania wady na podstawie modelu 

neuronowego dla parametru czas cyklu (szczegóły w Tablicy 5.134.) 

 

Przyczyny dla których procedury optymalizacyjne nie wskazały jednoznacznie na kierunek 

wpływu większości zmiennych wejściowych mogą być różne. Pierwsza związana jest z 

losowym charakterem działania procedur optymalizacyjnych, co prowadzi do znajdowania 
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ekstremów lokalnych. Ma to szczególne znaczenie przy optymalizacji wielowymiarowej, jak 

w niniejszej pracy. Drugą przyczyną może być fakt słabych zależności między niektórymi 

zmiennymi wejściowymi a zmienną wyjściową odzwierciedlanych przez modele neuronowe 

pomimo, że analizy istotności oparte na metodach statystycznych (p. 5.2.3) wskazywały na 

znaczące role tych zmiennych. To z kolei mogło być wynikiem złożoności tych 

wielowymiarowych zależności i naturalnego zaszumienia danych przemysłowych.  

Niemniej, w przypadku kilku zmiennych wskazania uzyskane z optymalizacji są dość 

wyraźne, choć nie zawsze możliwe do zinterpretowania bez dodatkowych pomiarów i prób 

warsztatowych, ewentualnie komputerowych symulacji procesów krzepnięcia odlewu. Warto 

zauważyć, że nawet bez takich pogłębionych analiz mogą one posłużyć personelowi odlewni 

do wprowadzenia bardziej rygorystycznych procedur kontrolnych tych właśnie parametrów. 
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6. Podsumowanie i wnioski ogólne 

Problematyka ogólna doktoratu zawierająca się w pytaniu „w jaki sposób przy użyciu 

zaawansowanego modelowania opartego na dużych zbiorach danych można diagnozować 

przyczyny powstawania wad wyrobów?”, stanowi swego rodzaju przyczynę podjętych i 

realizowanych w niniejszej rozprawie doktorskiej badań. Niniejsza praca zamierzała 

udowodnić ogólną hipotezę badawczą, która zakładała, iż diagnozowanie przyczyn 

powstawania wad wyrobów wymaga zastosowania zbioru metod zaawansowanego 

modelowania opartego na dużych zbiorach danych.   

W rozdziałach 2, 3 i 4 poświęconych studium literaturowemu, zwrócono szczególną uwagę, 

na fakt, iż dotychczas używane metody zaawansowanej analizy danych oraz ekstrakcji wiedzy 

były niewystarczające, aby stworzyć uniwersalną metodologię przewidywania wartości 

badanej zmiennej zależnej oraz dzięki temu skutecznego diagnozowania przyczyn powstawania 

wad wyrobów. Dotychczas badane metody nie były w stanie automatycznie wykrywać 

zależności występujących w danych, opisujących określone procesy czy zjawiska. Zgodnie z 

opinią wielu badaczy kolejnym przełomowym krokiem w zakresie dziedziny było opracowanie 

dedykowanych badań w oparciu o specjalnie wybrane narzędzia, celem optymalizacji 

uzyskanych wcześniej modeli, a więc rozszerzenie interpretacji ich wyników poza podstawową 

interpretację skuteczności przewidywania wartości zadanej zmiennej wyjściowej. Przekonanie 

stanowiło swego rodzaju podstawę do opracowania etapów i metod badań zmierzających do 

wydobywania wiedzy z badanych zbiorów danych, w oparciu o metody sztucznych sieci 

neuronowych, których wynikiem była wielowymiarowa optymalizacja parametrów procesu.  

W niniejszej rozprawie doktorskiej opisano dokładnie 6 etapów badań własnych, mających 

na celu doprowadzić do odkrycia przyczyn powstawania wad w produktach: 

• wstępne przetwarzanie danych, 

• analizę istotności zmiennych, 

• zaawansowane modelowanie oparte na danych metodą sztucznych sieci 

neuronowych, 

• zaawansowane modelowanie danych metodą drzew regresyjnych, 

• zaawansowane modelowanie oparte na danych metodą maszyn 

wektorów wspierających,  

• badanie modelu w celu wielowymiarowej optymalizacji parametrów 

procesu. 
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Podczas badań zrealizowano koncepcje rozwiązania problemu badawczego, poprzez 

postępowanie uwzględniające następujące działania: określenie obszaru badawczego, 

sformułowanie pytań badawczych, ocenę wartości naukowej pytania na podstawie studiów 

literaturowych, wykonanie studium przypadku, sformułowanie problemu badawczego i 

hipotezy badawczej, zweryfikowanie hipotezy badawczej przez własne badania zasadnicze. 

Postawione w rozdziale piątym niniejszej rozprawy pytania badawcze znalazły odpowiedź w 

przeprowadzonych badaniach własnych oraz ich wynikach. Pierwsze pytanie rozważało, czy 

zaawansowane metody analizy danych będą w stanie skutecznie przewidzieć pojawienie się 

wady w wyrobie? Każda z użytych metod pozwoliła na dość skuteczne przewidzenie wartości 

zmiennej wyjściowej, jednak metoda sztucznych sieci neuronowych uzyskała najlepsze wyniki, 

a więc najlepsze dopasowanie i  najmniejsze wartości błędu przewidywania (RMSE, tab. 6.1.) 

spośród dużych i małych zbiorów danych. Dane do tab. 6.1. zostały wybrane spośród wyników 

zaprezentowanych w rozdziale 5 w tab. 5.91. i 5.92. (dla badań przeprowadzonych metodą 

sztucznych sieci neuronowych), tab. 5.94., tab. 5.95. i 5.96. (dla badań przeprowadzonych 

metodą drzew regresyjnych) i w tab. 5.98. i 5.99. (dla badań przeprowadzonych metodą 

wektorów wspierających). W tabeli 6.1. przywołano również parametry modeli, w których 

uzyskano najniższe wartości RMSE. Uzasadnienie wyboru wskazanych parametrów modeli 

zawarto w rozdziałach 5.2.4.1., 5.2.5.1., 5.2.6.1..  

 

 

 

 

 

 

Tab. 6.1.: Porównanie najlepszych wyników zaawansowanego modelowania 

Metoda 

zaawansowanego 

modelowania 

opartego na danych 

Rozmiar 

zbioru danych 

Wynik 

RMSE 
Parametry modelu 

Sztuczne sieci 

neuronowe (SSN) 

Mały 

 
0,90 

Zbiór 4 (ustalony według 

kryterium odwróconego K-W i 

ANOVA), bez zbioru testującego, 5 

neuronów w warstwie ukrytej, 

tangensoidalna funkcja aktywacji na 

wyjściu  
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Duży 

 
0,86 

Zbiór 3 (ustalony według 

kryterium odwróconego K-W i 

ANOVA), bez zbioru testującego,  

23 neurony w warstwie ukrytej,  

liniowa funkcja aktywacji na 

wyjściu  

Drzewa regresyjne 

(RT) 

Mały 

 
7,10 

Zbiór 2 (ustalony według 

kryterium K-W), bez walidacji 

krzyżowej, minimalna liczność 

węzła równa 5 

Duży 

 
0,93 

Zbiór 3 (ustalony według 

kryterium odwróconego K-W i 

ANOVA), bez walidacji krzyżowej, 

minimalna liczność węzła równa 50 

Maszyny wektorów 

wspierających (SVM) 

Mały 

 
29,20 

Zbiór 2 (ustalony według 

kryterium odwróconego K-W i 

ANOVA), SVM typu 2, z funkcją 

jądrową RBF 

Duży 

 
1,10 

Zbiór 3 (ustalony według 

kryterium odwróconego K-W i 

ANOVA), SVM typu 1, z funkcją 

jądrową wielomian 

 

 

Najlepsze wyniki każdorazowo otrzymywano dla dużych zbiorów danych zawierających 

więcej obserwacji opisujących proces, jednocześnie bardziej zróżnicowanych. W małych 

zbiorach danych, które zawierały mniej obserwacji, pośród których było mniej danych 

zaszumionych i niezrównoważonych najlepsze wyniki z najmniejszymi wartościami błędów 

przewidywania uzyskano również metodą sztucznych sieci neuronowych. Metoda drzew 

decyzyjnych okazała się być mniej precyzyjna, szczególnie dla małych zbiorów danych. 

Wyniki modelowania uzyskane za pomocą maszyn wektorów wspierających zasadniczo 

odzwierciedlają oczekiwane tendencje, jednak wartości wynikowe są mniej dokładne niż te 

uzyskane metodą sztucznych sieci neuronowych i drzew decyzyjnych. 

Końcowa część planu badań dotyczyła zaawansowanej analizy wyników i badania modelu 

w celu wielowymiarowej optymalizacji parametrów procesu przeprowadzonej, aby określić 

jakie wartości parametrów danej zmiennej wpływają na formowanie się wady w wyrobie. 

Wyniki tej analizy pozwalają uzyskać odpowiedź na drugie zadane pytanie badawcze, czy 

wielowymiarowa optymalizacja parametrów procesu będzie w stanie wskazać wartości 

parametrów określonych zmiennych, wpływające na powstanie wady w produkcie? Wyniki 
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analizy pokazały, że konkretne wartości parametrów sprzyjają powstawaniu wyższych wartości 

przecieku a więc formowania się wady w produkcie, w odlewie. Wskazano, że podwyższone 

wartości parametrów: opóźnienie multiplikacji, temperatura wody miejskiej i czas dozowania 

stopu 2 oraz obniżone wartości paramentów: czas przedmuchu i przepływ w obwodzie 

chłodzenia 14, wpływają na osiąganie wyższych wartości przecieku w obwodzie wysokiego 

ciśnienia a tym samym na powstawanie wady w odlewie. Mimo, że udało się w niektórych 

przypadkach uzyskać obiecujące wyniki, dzięki którym istnieje możliwość wyboru istotnych 

zmiennych i ich określonych wartości jako istotnych dla badanego procesu, wskazując na 

konieczność traktowania ich jako krytycznych przez pracowników odlewni, to nie w każdym 

przypadku uzyskanie takiej informacji z utworzonych modeli było możliwe.  

 Niniejsza praca dowiodła, iż tworzenie się wad w odlewach mimo, że często wydaje się 

przypadkowe, bez możliwości identyfikacji jego przyczyn, tak naprawdę jest spowodowane 

określonymi przedziałami wartości parametrów opisujących dany proces. Narzędzia 

zastosowane do badań dobrane zostały w oparciu o ich możliwości pracy z danymi o 

niedoskonałej jakości i wysokim skomplikowaniu, a więc zawierającymi różnego typu rozkłady 

zmiennych, z różnego typu korelacjami pomiędzy parametrami procesu i, co najtrudniejsze, 

zawierającymi bardzo małą reprezentację podwyższonych wartości przecieku w obwodzie 

wysokiego ciśnienia, opisujących produkty z wadą. Podczas badań zidentyfikowano ogólne 

trudności związane z zaawansowanym modelowaniem opartym na dużych zbiorach danych, a 

więc w modelach sztucznych sieci neuronowych ich nieodłączną losowość (różne wartości wag 

w sieciach o identycznej strukturze,  ograniczoną wydajność modeli drzew regresyjnych oraz 

trudność zastosowania modeli maszyn wektorów wspierających.  

Mimo, zidentyfikowanych problemów, uzyskane wyniki modelowania i wielowymiarowej 

optymalizacji wydają się być obiecujące i mogą stanowić motywację do dalszych badań. 

Wyniki potwierdzają, że przewidywanie poziomu wady w odlewie może być dokonywane z 

zadowalającą jakością i dokładnością, dlatego może stanowić bardzo ważny punkt dla dalszego 

rozwoju odlewni. Nadal jednak widoczna jest potrzeba pracy nad nowymi metodami wstępnego 

przygotowania danych, aby zapewnić eliminację błędów i właściwą reprezentację wartości 

parametrów jakości w zbiorach danych. Dużą szansą może być opracowanie modeli mogących 

przewidzieć jakość produktów z określonym wyprzedzeniem czasowym, co może pozwolić na 

lepsze poznanie procesu produkcyjnego i ewentualną zmianę procedur kontroli jakości w 

przedsiębiorstwie.  
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