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Streszczenie

Niniejsza rozprawa doktorska skupia si¢ na zastosowaniu Sztucznych Sieci Neuronowych
(SNN), Drzew Decyzyjnych (DT) oraz Maszyn Wektorow Wspierajacych (SVM) do
diagnozowania przyczyn powstawania wad w wyrobach. Celem pracy jest sprawdzenie i
wykazanie, ze wymienione modele, ktorych skuteczno$¢ zostala juz wczesniej potwierdzona w
r6znych dziedzinach i zadaniach z powodzeniem mozna zastosowa¢ roéwniez w dziedzinie
wytwarzania i zadaniach identyfikacji przyczyn powstawania wad wyrobdéw pochodzacych z
procesu odlewania cisnieniowego, mimo jego wysokiego skomplikowania.

Rozprawa zawiera rOwniez opracowang strategi¢ odpytywania modeli zawierajaca
wielowymiarowa optymalizacj¢ parametréw procesu dla maksymalnej i minimalnej warto$ci
wady z wykorzystaniem metod gradientowych i ewolucyjnych. Tego typu zastosowane
rozwigzanie umozliwialoby w znacznym stopniu inzynierom proceséw wytworczych
prawidtowg identyfikacje parametrow i ich okre§lonych zakresow wartosci, ktore wplywaja na
powstanie wady w produkcie.

Poza szczegotowym studium literaturowym tematyki Sztucznych Sieci Neuronowych,
Maszyn Wektorow Wspierajacych oraz Drzew Decyzyjnych, rozprawa zawiera rowniez
wnikliwg analize wrazliwo$ci modeli na zmiany okre$lonych parametréw. Analiza ta oraz
wykonane na jej podstawie podsumowanie jest jednym z najbardziej wieloaspektowych

zestawien tego typu przedstawionych w dotychczasowej literaturze przedmiotu.

Stowa kluczowe: Diagnoza wad, Metody Uczenia Maszynowego, Sztuczne Sieci Neuronowe,

Drzewa Regresyjne, Maszyna Wektorow Wspierajacych, Optymalizacja Parametrow Procesu



Abstract

This dissertation focuses on the application of Artificial Neural Networks (SNN), Decision
Trees (DT) and Support Vector Machines (SVM) for diagnosing the causes of defects in
products. The aim of the work is to verify and demonstrate that the aforementioned models,
whose effectiveness has already been confirmed in various fields and tasks, can be successfully
applied also in the field of manufacturing and tasks of identifying the causes of defects in
products originating from the die casting process, despite its high complexity.

The study also includes an elaborated strategy of model questioning containing
multidimensional optimization of process parameters for maximum and minimum defect values
using gradient and evolutionary methods. This type of applied solution would significantly
enable manufacturing process engineers to correctly identify parameters and their specific value
ranges that influence the formation of a defect in a product.

Moreover, apart from a detailed literature review of the topics of Artificial Neural Networks,
Support Vector Machines and Decision Trees, the thesis also contains a deep analysis of the
sensitivity of models to changes in the certain parameters. This analysis and the summary made
on its basis is one of the most multi-faceted summaries of this kind presented in the literature

so far.

Keywords: Product Defect Diagnosis, Machine Learning Tools, Artificial Neural Network,

Regression Trees, Support Vector Machine, Optimization of Process Parameters
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1. Wstep
1.1. Motywacja i kontekst podjecia badan

Rozwoj technologii komputerowych, ktory miat miejsce w pierwszej dekadzie XXI wieku
stworzyt nowe mozliwos$ci do wykorzystania metod sztucznej inteligencji w wielu dziedzinach
nauki. Na poczatku drugiej dekady XXI wieku wzrosto rowniez znacznie zainteresowanie
przetwarzaniem wielkich zbiorow danych oraz rozpoczeto rozwijanie zastosowan metod
eksploracji danych i technik uczenia maszynowego w sektorze produkcji i wytwarzania. Stato
si¢ tak, gdyz w tym czasie pojawita si¢ nowa koncepcja tzw. ,,Przemystu 4.0.”, ktora dotyczy
optymalizacji sposobow pracy, okreslonej roli pracownikow w przemysle, nowych technologii
oraz sposobow funkcjonowania danego tradycyjnego przedsigbiorstwa produkcyjnego w
nowoczesne]j rzeczywistosci cyfrowej. Czwarta rewolucja przemystowa cechuje si¢ ogdlna
zdolnosciag do transformowania gospodarek, spoleczenstw oraz miejsc pracy poprzez
implementacje oraz adaptacje nowoczesnych technologii i nowa organizacj¢ procesOw oraz
zarzadzania produkcjg. Daje ona mozliwo$¢ uelastycznienia planow produkcyjnych, a co za
tym idzie wzrostu optacalnosci ekonomicznej, poprzez silne zorientowanie na klienta oraz na
jego potrzeby. Historycznie pojecie ,,Przemyst 4.0.” zostato pierwszy raz uzyte w 2011 roku
podczas targow w Hanowerze 1 dotyczylo ogotu strategii potaczonych z wdrozeniem technik
cyfrowych do tradycyjnego przemyshu. Transformacja cyfrowa przedsigbiorstwa przede
wszystkim wymaga skutecznych narzgdzi analitycznych, gdyz jest do dtugotrwaty proces,
wczesniej zaplanowany, odpowiednio obserwowany oraz stale ulepszany. Tego typu dzialanie
daje mozliwos¢ zysku poprzez mozliwo$¢ obnizania kosztow wytworzenia, czy tez produkcji,
wzrostu wydajnosci maszyn i ludzi oraz podnoszenia jako$ci wyrobow. Glowne trudnos$ci
wynikajace z wdrozenia cyfryzacji a nastgpnie digitalizacji w przedsigbiorstwach to wielkie
ilosci danych pochodzacych z proceséw oraz czesto niedostosowane linie produkcyjne (np.
zawierajagce maszyny, ktore niec mogg generowac danych). Dlatego tez podstawg jest obecnie
nastawienie przedsigbiorstw na przetwarzanie ogromnych ilosci danych przy zastosowaniu
zaawansowanych metod modelowania opartych na wspomnianych danych. Dlatego tez
Przemyst 4.0. zwigzany jest z technikami analizy duzych zbiorow danych, tzw. Big Data,
Sztuczng Inteligencja, uczeniem maszynowym 1 innymi. Dane stanowig swego rodzaju

najcenniejszy surowiec czwartej rewolucji przemystowej, gdyz od ich efektywnego



wykorzystania zalezy caly rozw¢j przemystu przysztosci. Przemyst przysztosci beda tworzyty
inteligentne fabryki (tzw. smart factories), ktorych koncepcja wpisuje si¢ w realia czwartej
rewolucji przemystowej 1 oznacza daleko idaca integracj¢ Swiata cyfrowego, digitalnego ze
swiatem fizycznym. Gitowne cechy fabryki inteligentnej to jej elastycznos$é, czyli zdolnosé
dostosowania produkcji do zmieniajgcych si¢ potrzeb klienta w sposdb automatyczny, dzigki
automatycznemu planowaniu oraz wyposazeniu umozliwiajagcemu szybkie przezbrojenia,
jednocze$nie z nowoczesnym parkiem maszynowym zdolnym do monitorowania swojego
stanu technicznego i reagowania np. samodzielnym sktadaniem zlecen naprawy. Nastepna,
wazng z punktu widzenia niniejszej rozprawy cechg fabryki inteligentnej jest jej elastyczno$é
przejawiajaca si¢ przez sprawny system kontroli procesu celem diagnostyki wadliwych
produktéw ocenianych w czasie rzeczywistym. Kolejna cecha zdolno$¢ do podejmowania
dzialan zanim wystapi potencjalne zagrozenie. Tego typu koncepcja moze wysnuwac cel albo
wizje dla niniejszej rozprawy, aby podjac si¢ proby diagnostyki wady wyrobu jeszcze przed jej
wystapieniem celem zapobiezenia jej wystagpieniu. Nastepna cecha inteligentnej fabryki to jej
zdolno§¢ do optymalizacji, poprzez zastosowanie zaawansowanych rozwigzan
technologicznych oraz odpowiednig organizacj¢ pracy i ograniczanie ryzyka popetnienia btedu
i minimalizacje kosztow wytworzenia, co rowniez stanowi wyzwanie niniejszej rozprawy, gdyz
btednie wytworzony produkt, czyli produkt z wada to zbedny koszt materiatoéw, czas pracy
maszyn, ludzi oraz koszt odpadu produkcyjnego, ktory nalezy wyeliminowaé. Inteligentna
fabryka powinna by¢ rowniez transparentna, czyli gromadzi¢ i analizowa¢ dane dotyczace
przebiegu produkcji, jednoczesnie zapewniajac spojny 1 wiarygodny opis sytuacji obecnej w
hali produkcyjnej albo na stanowisku produkcyjnym. Inteligentna fabryka powinna by¢
réwniez wysoce skomunikowana, czyli wszystkie maszyny, systemy informatyczne powinny
by¢ ze soba polaczone, co umozliwialoby wymiang informacji migdzy dzialami planowania,
magazynu, produkcji i utrzymania ruchu [1].

W niniejszej rozprawie poddano analizie dane rzeczywiste, pochodzace z procesu odlewania
cis$nieniowego wystepujacego w jednej z odlewni. Wybrano tego typu dane ze wzgledu na
wysoka ztozono$¢ procesu odlewniczego. Procesy metalurgiczne a w tym procesy odlewnicze,
w 0gllnym rozumieniu stanowig dziedzing techniki obejmujaca wytwarzanie materiatow
metalowych, mogacych stanowi¢ czeSci maszyn lub przedmiotoéw przez wypeknianie
odpowiednio przygotowanych form cieklym metalem oraz ich ksztaltowanie. W pracy
skupiono si¢ na zagadnieniu jakosci odlewow dla przemyshlu motoryzacyjnego, a w
szczegolnosci na bardzo waznej ich cesze, jaka jest szczelno$¢ odlewu. Wyznacza si¢ ja w

probach wykonywanych na specjalnym stanowisku, gdzie okresla si¢ wielko$¢ tzw. przecieku
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(ang. leakage), czyli objetosci cieczy poddanej cisnieniu, jaka przeniknela przez Scianki
odlewu. Zbyt duza warto$¢ przecieku oznacza wystgpienie nieszczelnosci odlewu,
powodowanej najczgsciej porowatoscig stopu bedacej na ogdt wynikiem zbyt porowatej
struktury na przekroju $cianki, zwigzanej najczesciej z procesem krzepnigcia.

Wspomniany juz stopien ztozonosci oraz skomplikowania procesow odlewniczych
przyczynia si¢ do faktu, iz modelowanie oparte na danych z uzyciem zaawansowanych réwnan
matematycznych, ktore opisywaloby wszystkie zaleznosci istotne z punktu widzenia procesu a
doktadniej z punktu widzenia diagnostyki przyczyn powstawania wad wyrobdéw, byloby
niemozliwe lub po prostu zbyt czasochtonne. Procesy te sg wigec niezalgorytmizowane przez
swoja ztozong nature, lub charakter. Sprawia to, ze procesy odlewnicze moga zosta¢ okreslone,
z punktu widzenia nauki, jako czarna skrzynka, czyli proces mozliwy do rozpatrzenia lub
analizy tylko pod katem wej$¢ 1 wyj$¢, bez znanej charakterystyki i kompleksowej wiedzy, co
dzieje si¢ w jego wnetrzu. Ztozono$¢ tego problemu oraz zagadnien zwigzanych z calym
procesem wytwarzania sprawity, iz zaistniata konieczno$¢ opracowania zbioru narzedzi celem
zaawansowanego modelowania opartego na danych, a w szczego6lnosci wykorzystujacego
sztuczne sieci neuronowe, ktdre obecnie wyparly tradycyjne i powszechnie stosowane
narzedzia do statystycznego opisu procesu, czyli swego rodzaju modele matematyczne, a
nastepnie drzewa decyzyjne, ktore sg zdolne odwzorowac¢ dowolnie skomplikowane pojgcia
oraz maszyn¢ wektorOw wspierajacych, wyrdzniajacg si¢ stosunkowo wysoka skutecznoscia.

Systemy uczace si¢, oparte o modele, ktore nie uwzglgdniaja natury fizycznej procesu,
nazywane migkkimi, znajdujag swoje zastosowanie w gromadzeniu i analizie danych
przemystowych. Techniki, ktore pozwalajg odkrywaé ztozone zaleznosci statystyczne duzych
zbiorow danych, bedace w stanie wykorzysta¢ metody uczenia maszynowego, lub przedstawiac
ich reprezentacj¢ w formie regut logicznych np. sztucznych sieci neuronowych [2], [3], [4]
nazywane sg eksploracja danych (ang. Data Mining). Podczas ostatnich dwoch dekad mozna
byto zaobserwowac¢ znaczny przyrost badan wykorzystujacych techniki eksploracji danych.
Zastosowanie tych technik w procesach zwigzanych z wytwarzaniem moze pomoC W
przewidywaniu prawdopodobienstwa wystapienia awarii maszyn lub urzadzen, wykrywania
przyczyn pogorszenia jakosci wyrobu, przewidywania skutkéw zmian w procesie z
jednoczesnym wskazaniem na optymalne parametry lub parametry krytyczne dla procesu.
Doktadna charakterystyka zastosowan technik eksploracji danych oraz plynacych z tego
zastosowania korzysci, zostata zaprezentowana w pracach [5], [6]. Ogdlny opis charakterystyki
przyktadéw wykorzystania techniki eksploracji danych w sektorze produkcji i wytwarzania

mozna znalez¢ w publikacji o charakterze przegladowym [7], [8], [9], [10].
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Przedsigbiorstwo produkcyjne posiadajace dostep do danych pochodzacych z procesu,
wykorzystujac metody opisane w niniejszej rozprawie, bedzie moglo prognozowac tendencje
do wystepowania wady wyrobu. Jest to wazna i warto§ciowa funkcjonalno$¢, poniewaz na
przyktadzie przedsigbiorstwa, z ktérego pochodza dane rzeczywiste do badan, mozna
stwierdzi¢, iz badanie jako$ci odlewu poprzez okreSlenie wartosci przecieku, to koszt
stanowigcy nawet 40% jednostkowego kosztu wytworzenia. Odnoszac si¢ do tego faktu
mozliwo$¢ przewidywania wartosci przecieku pozwolitaby na zaniechanie (czeSciowe lub
catkowite) kosztownych badan. Wynik badan bylby znaczacy rowniez dlatego, ze
przedsigbiorstwa produkcyjne obecnie ktada coraz wigkszy nacisk na spetnienie oczekiwan
klienta ostatecznego, czyli dostarczenie produktu o wysokiej jakosci, w konkurencyjnych
cenach oraz w pozadanym przez klienta czasie. W tym celu poszukuje si¢ sposobow ciaglego
doskonalenia procesow produkcyjnych, czyli wdrazania filozofii Kaizen (kai — ,,zmiana” oraz
zen — ,,dobry”), ktéora w dostownym tlumaczeniu oznacza ,zmian¢ na lepsze”, filozofi¢
skupiong na cigglym ulepszaniu. Kaizen jest podstawa w podej$ciu Lean Manufacturing. Lean
Manufacturing to metodologia, ktoéra pozwala nie tylko na uzyskanie wymiernych wynikow
dziatalnosci firmy, ale dodatkowo wprowadza do niej kulture sprzyjajaca rozwojowi i dobrej
komunikacji pomiedzy pracownikami. Podstawa metodologii Lean jest praca nad redukcja
marnotrawstw (nadprodukcji, oczekiwania, transportu, zbednej obrobki, zapaséw, zbgdnego
ruchu 1 defektow). Produkcja tzw. defektow czyli ostatni z wyzej wymienionych z siedmiu
typOw marnotrawstw, powinna by¢ redukowana celem zmniejszenia kosztow materialowych,
kosztow utylizacji odpadow, kosztéw energii, kosztow zatrudnienia, kosztow maszyn i narzedzi
oraz optymalizacji standow magazynowych, gdyz w przypadku braku defektow nie bedzie
potrzebny zwiekszony zapas na pokrycie blednych wyroboéw produkcyjnych. Wszystkie z
przywotanych argumentéw umozliwiaja stwierdzenie, iz wilasciwe wydobycie wiedzy z
gromadzonych danych z zastosowaniem metod zaawansowanego modelowania procesu moze
stanowi¢ dla przedsigbiorstwa zrodto wartosciowych informacji.

Niniejsza rozprawa doktorska skupia si¢ na okreSleniu, jaki sposdb zaawansowanego
modelowania opartego na duzych zbiorach danych, najlepiej odpowiada na potrzeby
diagnozowania przyczyn wad wyrobéw powstajacych podczas procesu odlewania
wysokocisnieniowego. Dlatego tez celem pracy jest stworzenie metodyki (zbioru zasad
okreslajacego metody), jako prezentacji calo§ciowego postepowania celem diagnozowania
przyczyn powstawania wad wyrobodw na podstawie zaawansowanego modelowania opartego
na duzych zbiorach danych (Big Data).  Wspomniane pojecie duzych zbioréw danych
okreslanych jako Big Data, w tym przypadku uzywane jest, gdyz wykorzystywane dane sa
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stosunkowo duze jak na dane pochodzace z procesu produkcyjnego. Wykorzystanie duzych
zbiordw danych do analiz oznacza brak konieczno$ci badania mniejszych zbioréw okreslanych
za pomoca réznych sposobdéw doboru proby, eliminujac tym samym zwigzane z tym biedy.
Dane badane sg roznorodne oraz umozliwiajg zdobywanie nowych informacji i pozyskiwanie
z nich wiedzy. W badaniach skupiono si¢ na probach przewidzenia danej wyjsciowej jaka jest
przeciek, ktérego wartos¢ wskazuje na jakos¢ produktu wyjsciowego. Podczas badan
zauwazono szczegblny problem badawczy powodujacy trudno$¢ znalezienia skutecznej
techniki zaawansowanego modelowania procesu, przez silne niezréwnowazenie danych, gdyz
z jednej strony dostepna jest duza ilos¢ danych procesowych, z drugiej natomiast mata ilos§¢
danych o stanach krytycznych — mala reprezentacja niektorych krytycznych wartosci,
dodatkowo zauwazono zmienno$¢ skutecznosci stosowanych metod, powodujaca dodatkowa
trudno$¢ wyboru najbardziej skutecznej techniki modelowania procesu, celem jego
optymalizacji. Podczas badan zauwazono rowniez wysoka konieczno$¢ znalezienia i
okreslenia wszystkich relacji migdzy parametrami procesu produkcji i wytwarzania oraz ich
wplywu na jako$¢ produktu wytwarzanego.

Badania rozpoczeto od wskazania najbardziej istotnych zmiennych wejsciowych, na
podstawie wstepnego przetwarzania danych, ktdre nast¢pnie utworzyly zbiory danych do badan
uzytych do uogoélnionych modeli regresyjnych jakimi sg sztuczne sieci neuronowe. W
kolejnych etapach zastosowano rowniez alternatywne modele oparte na danych, czyli metode
Drzew Decyzyjnych, z uwagi na ich diametralnie inny charakter oraz rozpowszechnienie w
zastosowaniach przemystowych i innych oraz Maszyng Wektorow Wspierajacych, z uwagi na
aktualne trendy w modelowaniu opartym na danych. Nastepnie dla metody zapewniajacej
najlepsze wyniki, a wigc dzigki zbudowanym modelom sztucznych sieci neuronowych

wyznaczono parametry o najwyzszym wplywie na powstanie wady wyrobu.
1.2.  Cel i hipoteza pracy

Zarysowany dotychczas motyw przewodni odnoszacy si¢ do ogdlnej hipotezy badawczej,
ktorag zamierza udowodni¢ niniejsza rozprawa doktorska, w ramach realizacji tematyki
doktoratu, zaktada, iz diagnozowanie przyczyn powstawania wad wyrobow wymaga
zastosowania okre§lonego zbioru metod zaawansowanego modelowania opartego na duzych
zbiorach danych. Cele rozprawy mozna dodatkowo doprecyzowa¢ w formie doktadniejszych

zadan, a wiec:
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e odpowiedzie¢ na pytanie, jakie metody eksploracji danych w sektorze produkcji i
wytwarzania, mogg by¢ z powodzeniem zastosowane w zadaniach diagnozowania
przyczyn powstawania wad wyrobow, w szczegdlnosci majgc na uwadze WysokKi
stopien skomplikowania danych dostgpnych w dziedzinie wytwarzania odlewow
cisnieniowych,

e przeprowadzi¢ skuteczny proces wstepnego przetwarzania danych celem
przygotowania ich do zaawansowanego modelowania procesu,

e zaprezentowa¢ dziatanie modeli opartych na wybranych metodach zaawansowanego
modelowania opartego na danych, w formie studium przypadku dla danych
pochodzacych z rzeczywistego procesu odlewania ci§nieniowego,

e przeanalizowa¢ wptyw zmian rodzaju i parametrow modelu na jego skutecznosc,

e Oceni¢ i wybra¢ najskuteczniejsze metody, celem stworzenia kompleksowej metodyki
diagnozowania przyczyn powstawania wad wyrobow.

Takie rozwigzanie pozwoli na implementacj¢ nowego rodzaju algorytméw do

diagnozowania przyczyn powstawania wad wyrobOw, a nastepnie sterowania parametrami

procesu, celem zapobiezenia powstawania wady.

1.3.  Uklad pracy

Rozprawa zostata podzielona na sze$¢ rozdzialow. Rozdzialy od drugiego do czwartego
zawierajg ogolne wprowadzenie teoretyczne potaczone z przegladem literatury. Natomiast opis
oryginalnych prac badawczych przeprowadzonych w ramach niniejszej rozprawy doktorskiej
zostal zawarty w rozdziale piagtym.

Rozdziat drugi stanowi ogdlne wprowadzenie do zagadnienia sztucznych sieci
neuronowych. Poza oméwieniem funkcjonowania sztucznych sieci neuronowych i glownych
zatozen uczenia modeli opartych na duzych zbiorach danych, zawiera on przeglad najbardziej
znaczacych struktur, rodzajow i sposobow uczenia wystepujacych w literaturze a takze
wybranych najnowszych koncepcji w zakresie konstruowania sztucznych sieci neuronowych.

Rozdziat trzeci skupia si¢ na tematyce drzew decyzyjnych. Szczeg6lng uwage poswiecono
metodzie drzew regresyjnych. Tekst rozdzialu opisuje histori¢ powstania metody, podstawy
teoretyczne oraz przeglad literaturowy zastosowan drzew regresyjnych w dziedzinie

wytwarzania.
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Rozdziat czwarty zawiera rozbudowany opis metody maszyn wektorow wspierajacych.
Rozpoczyna si¢ od historii powstania metody, nast¢pnie zawiera uzasadnienie zastosowania jej
W niniejszej rozprawie. Dodatkowo opisuje jej podstawy teoretyczne wraz z charakterystyka
parametrow modelu.

Rozdzial pigty przedstawia efekt prac badawczych zwigzanych z wst¢pnym przetwarzaniem
danych a nastepnie zastosowaniem metod sztucznych sieci neuronowych, drzew decyzyjnych i
maszyny wektoro6w wspierajacych oraz wielowymiarowej optymalizacji parametrow procesu
celem stworzenia metodologii skutecznego diagnozowania przyczyn powstawania wad
wyrobow.

Rozdzial szosty stanowi podsumowanie rozprawy doktorskiej oraz wnioski ogdlne

formutujace odpowiedzi na cele niniejszej rozprawy doktorskiej.
1.4. Powigzane publikacje i wystgpienia

Wyniki oryginalnych prac eksperymentalnych przeprowadzonych przez autora, ktorych
omoOwienie znajduje miejsce w niniejszej rozprawie, zostaly przedstawione w nastepujacych
publikacjach i wystgpieniach konferencyjnych, seminariach:

e OKUNIEWSKA, Alicja, PERZYK, Marcin and KOZLOWSKI, Jacek, 2021,
Methodology for Diagnosing the Causes of Die-Casting Defects, Based on Advanced
Big Data Modelling. Archives of Foundry Engineering. 2021. Vol. 21, no. 4, p. 103-
109. DOI 10.24425/afe.2021.138687.

e OKUNIEWSKA, Alicja, Methods review of advanced data analysis tools, in process
control and diagnosis. Piech K., ed. Zagadnienia Aktualne Poruszane Przez Mtodych
Naukowcow, 17. Creativetime; 2020, p. 95-98.

e OKUNIEWSKA, Alicja, Current tools of data preparation in industrial
manufacturing. Piech K., ed. Zagadnienia Aktualne Poruszane Przez Mlodych
Naukowcow, 17. Creativetime; 2020, p. 92-94.

e 61 Migdzynarodowa Konferencja Naukowa ,Krzepnigcie i Krystalizacja Metali
20217, 18-20.10.2021, temat wystapienia: ,,Metodyka diagnozowania przyczyn
powstawania wad odlewow cisnieniowych na podstawie zaawansowanego
modelowania opartego na duzych zbiorach danych”.

e Seminarium Neuromet 2021, pt. ,,Zaawansowanie sztucznej inteligencji w symulacji
i sterowaniu procesami metalurgicznymi” 22.04.2021 r. temat wystgpienia:

,Problematyka wyboru zmiennych do opracowania metodyki diagnozowania
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przyczyn powstawania wad wyrobow na podstawie zaawansowanego modelowania
opartego na duzych zbiorach danych”.

e Konferencja CreativeTime, pt. ,,Analiza zagadnienia, analiza wynikow -wystgpienie
mtodego naukowca” edycja Il, 01-02.04.2020, temat wystapienia: ,,Methods review
of advanced data analysis tools in proces control and diagnosis”.

Rozdziat piaty zawiera ujednolicony i rozszerzony opis tych treSci oraz doktadng analize

wynikow eksperymentalnych.
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2. Sztuczne Sieci Neuronowe
2.1.  Historia Sztucznej Inteligencji

Opublikowany przez zespot Geoffreya Hinton z uniwersytetu w Toronto, w 2006 r. artykut,
dotyczacy funkcjonowania 1 specyfiki sieci DBN [11] stanowil inspiracj¢ majacg na celu
poprawi¢ stan rzeczy. Tuz po wspomnianym artykule najpoczytniejsze czasopisma otrzymaty
liczne zgloszenia publikacji poswigconych glebokiemu uczeniu si¢. Artykuly te podniosty
znacznie wage tematu widzenia komputerowego oraz mozliwosci i zastosowan uczenia
maszynowego. Na wstepie rozprawy dokonano, wigc przegladu literatury dotyczacej metod
zaawansowanego modelowania opartego na danych, stosowanych w sektorze produkcji i
wytwarzania, wraz z jednoczesng oceng artykutéw powstatych podczas ostatnich dwéch dekad.

Metody sztucznej inteligencji obecnie opieraja swoje dziatania na wykorzystaniu zasad
funkcjonowania ludzkiego moézgu, ktory jest w stanie szybko przetwarza¢ informacije, jest
zdolny do prawidtowego dziatania w szybko zmieniajacym si¢ otoczeniu, posiada umiejetnosé
przyswajania (uczenia si¢) i stosowania bardzo obszernej wiedzy, ma mozliwos¢ prawidtowego
dzialania nawet przy uszkodzeniach jego struktury, oraz wykazuje umiejetnos¢ abstrakcyjnego
myslenia i1 potrafi rozwigzywa¢ wysoce skomplikowane problemy. Z czym nie do konca
zgadzaja si¢ psycholodzy, ktorzy niestety z reguly nie traktuja powaznie poréwnywania
ludzkiego moézgu do komputera. Amerykanski psycholog, naczelny redaktor czasopisma
,Psychology Today”, zatozyciel Cambrige Center for Behavioral Studies, Robert Epstein, w
jednym ze swoich artykutéw zatytutowanym ,,Pusty Mozg. Two] mozg nie przetwarza
informacji, nie odzyskuje wiedzy ani nie przechowuje wspomnien. Krotko mowige: Twoj mozg
nie jest komputerem” z 2016 roku, napisat, iz: ,,Badacze mdzgu i1 psychologowie, cho¢by nie
wiadomo jak si¢ starali, nie znajda w mdzgu piatej symfonii Bethovena, stow, obrazow, regut
gramatyki, ani jakichkolwiek bodzcow $rodowiskowych” [12]. Niestety stwierdzenie to a co
wiecej sam tytul artykutu nie bierze pod uwage zasady dziatania konwolucyjnych sieci
neuronowych. Podejscie te jednak ma tez swoje uzasadnienie, gdyz nadal nie odkryto wysoce
skutecznych modeli wysokopoziomowych funkcji mozgu, takich jak na przyktad mysl ludzka
czy $wiadomos¢ czlowieka, jednak nie mozna tez jednoznacznie stwierdzi¢ czy w ogole sama
Swiadomos$¢ stanowi rzeczywistg funkcje mozgu [13]. Pojemnos$¢ powszechnie znanych nam
no$nikow informacji oraz czas dostgpu do nich, porownujac do mozliwosci mdzgu jest

ograniczona (wida¢ to zwtlaszcza, jesli porowna si¢ wiedz¢ zgromadzong w modzgu oraz
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predkos¢ zarzadzania informacja u przeci¢tnego cztowieka z wiasciwosciami wspdlczesnego
twardego dysku) [14].
Sztuczna inteligencja gromadzi w sobie trzy podzbiory (rys. 2.1.1.): pierwszy z nich to

uczenie maszynowe, kolejne jest gtebokie uczenie 1 na koncu sieci neuronowe.

Sztuczna
inteligencja

Uczenie
maszynowe

Gtebokie
uczenie

Sztuczne
sieci
neuronowe

Rys. 2.1.1. Relacje migdzy sztuczng inteligencja, uczeniem maszynowym,
glebokim uczeniem a sztucznymi sieciami neuronowymi [opracowanie wlasne]

Zacznijmy od uczenia maszynowego, ktore zasadniczo tworzone jest w celu wyszukiwania
wzorcow, klasyfikacji danych, przewidywania wynikdw i na ich podstawie podejmowania
zasadnych decyzji. Warto w tym miejscu zauwazy¢, ze wczesSniej powszechnie tworzone
programy wykorzystujagce wyrazenia warunkowe, bedace w stanie podejmowac decyzje
jedynie na podstawie spetnienia okreslonych warunkéw, gdzie wszystkie kryteria musza by¢
uprzednio zdefiniowane przez programiste, powodowaly i nadal powoduja wiele trudnosci,
ktére eliminuje obecnie uczenie mMaszynowe, poniewaz zastosowane algorytmy sa stanie
poprawia¢ si¢ automatycznie poprzez doswiadczenie, czyli ekspozycje na dane [15] i nie
wymagajg predefiniowania zadnych kryteriow warunkowych. Skuteczno$¢ tej poddziedziny
sztucznej inteligencji zostata rOwniez udowodniona przez Alana Turninga juz w 1950 roku w
tzw. teScie Turninga, podczas ktorego komputer mial rozrézni¢ wiasciwie ludzi od
komputeréw, aby zdac¢ test [16]. Jednak mozna poddaé¢ watpliwosci ten fakt i1 stwierdzié, iz
rewolucja danych rozpoczeta sie jednak od postepéw w metodologii zbierania danych i
technologii powigzanych z dziedzing [17]. Mozna by nawet powiedzie¢ iz dane zawierajg

odpowiedzi na pytania, 0 ktorych zadaniu jeszcze nikt nie pomyslat [18]. Pojecie uczenie
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maszynowe zostalo uzyte po raz pierwszy, przez Arthura Samuela w 1959 roku na konferencji.
Powiedzial on, iz ,,Uczenie maszynowe daje komputerom mozliwos$¢ ,,uczenia si¢” bez bycia
konkretnie zaprogramowanym do danego zadania.” [19]. Neal Stephenson, autor znanej ksigzki
z 1999 roku, pt. ,,Zamiec¢”, skupiajacej si¢ na negatywnych konsekwencjach funkcjonowania
ludzi w otoczeniu zaawansowanej technologii komputerowej i informacyjnej, stwierdzit, iz
sztuka jest ,,stworzy¢ niezbity fakt z pajeczyny domystow” [20]. Mozna powiedzie¢, ze stowa
te doskonale opisujg uczenie maszynowe, ktore opiera si¢ na wyodrebnianiu informacji (przy
uzyciu algorytmow), z surowych danych i tworzenia reprezentacji tych danych w postaci
modelu. Pojecie modelu mozemy okresli¢, jako reprezentacj¢ danego systemu, uproszczony
lub wyidealizowany opis lub koncepcj¢ okreslonego procesu [21]. Stworzony model jest
wykorzystywany do przetwarzania dalszych zestawow danych, na ktorych nie byto wczesniej
oparte modelowanie [13]. Modelowaniem nazywamy proces tworzenia odpowiedniej
reprezentacji pewnego zjawiska (systemu). Jedyna potrzeba jest uchwycenie gtownej idei
prawdziwego systemu. W przeciwnym razie, projektuje si¢ model, aby przewidzie¢ zachowanie
systemu w obecnos$ci pewnego bodzca. Oczywistym jest, ze w tym pozadany model powinien
zachowywac si¢ jak najbardziej zblizony do rzeczywistego systemu [21]. Uczenie maszynowe
jako cz¢$¢ empirycznego, migkkiego modelowania opartego na danych, zgodnie z taksonomig
przedstawiong na rysunku 2.1.2., swoje zastosowanie znajduje w rozwigzywaniu
wysokokompleksowych problemow, w ktorych nie mamy wiedzy w zakresie przyczyn
wplywajacych na dane zachowanie obiektu lub procesu [22]. Modelowanie oparte na danych,
Z uzyciem uczenia maszynowego nie wymaga posiadania wszystkich informacji na temat
analizowanego procesu, obiektu lub systemu, dane mogg by¢ ograniczone lub fragmentaryczne,
gdyz modelowanie empiryczne, migkkie budowane jest z uproszczonych zaleznosci lub regut,
ktére sa wyprowadzane bezposrednio z danych. Obserwacje procesow przemystowych sa
zazwyczaj niepewne. Stopien niepewnos$ci zalezy od analizowanego procesu. W przypadku

danych pochodzacych z przedsigbiorstw produkcyjnych jest on czgsto dos¢ wysoki [23].
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Rys. 2.1.2. Zakres zastosowania roznych typow modeli proceséw [22].

Przyktady uczenia maszynowego sklasyfikowane ze wzgledu na typ uczenia si¢
przedstawiono na ponizszym rysunku (rys.2.1.3.). Ogolnie sam temat uczenia maszynowego
stat si¢ bardzo zywy w ciggu ostatniej dekady. Podejmowany jest na licznych konferencjach
naukowych 1 gospodarczych, w programach naukowych i praktycznie codziennie w ,,Wall
Street Journal”, gdzie prowadzona jest oddzielna strona dotyczaca prowadzonego programu o
tytule: ,,Przyspieszenie rozwoju aplikacji do uczenia maszynowego”. Na przywolanej stronie
autor David Schubmehl, Dyrektor badan, z Cognitive/Artificial Intelligence Systems, IDC —
firmy poswigconej poglebianiu rozumienia wptywu technologii na biznes, podsumowat iz:
,»Rynek aplikacji opartych na uczeniu maszynowym i glebokim uczeniu, czyli ogolnie opartych
na sztucznej inteligencji szybko si¢ rozrost 1 nadal rosnie. Firma IDC szacuje, ze wydatki na
uczenie maszynowe i rozwigzania uczenia glebokiego przekrocza 57 miliardéw dolarow do
2021 roku, a do 2026 roku firma IDC przewiduje, Zze 75 procent calego oprogramowania dla
przedsigbiorstw bedzie zawierato aspekty uczenia maszynowego i1 glebokiego uczenia na
potrzeby prognoz, zalecen lub porad” [24]. Dlatego tez sam temat podjety w niniejszej
rozprawie jest wazny i innowacyjny nie tylko z perspektywy naukowej, ale dodatkowo jest
potrzebny 1 wszechobecny z perspektywy biznesowej. Tak jak wspomniano we wstepie
rozprawy w obecnym Ssrodowisku biznesowym organizacje starajg si¢ pracowac nad cigglym
ulepszaniem si¢, aby dostarcza¢ swoim klientom, pracownikom i udziatowcom, coraz lepsza

warto$¢. Ulepszenie te rozumie si¢ poprzez obnizenie kosztéw wytworzenia produktu,
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usprawnienia czy tez uproszczenia procesOw produkcyjnych 1 ostatecznie zwigkszenia
sprzedazy do klienta ostatecznego. Odpowiedzi na poszukiwane rozwigzania coraz czesciej

firmy znajduja wiasnie w uczeniu maszynowym.
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Rys. 2.1.3. Klasyfikacja uczenia maszynowego [19].

Dzigki uczeniu maszynowemu oraz gltebokiemu uczeniu wiele firm byto w stanie rozwigzac
ztozone problemy, wystepujace w rzeczywistych procesach, nie posiadajac petnych informacji
na temat analizowanego procesu, obiektu lub systemu, wykorzystujac zalety sztucznej
inteligenc;ji

Drugi podzbior sztucznej inteligencji to uczenie gtebokie. Temat glgbokiego uczenia zostat
podjety w 2012 roku na konferencji Neural Information Processing Systems (NIPS) i w
opublikowanych materiatach pokonferencyjnych autorzy Alex Krizhevsky, Ilya Sutskever i
Geoffrey Hinton, w jednym z artykutéw, o tytule: ImageNet Classification with Deep
Convolutional Neural Network, napisali: ,,Warto zauwazy¢, ze po usuni¢ciu pojedynczej
warstwy konwolucyjnej wydajno$¢ sieci obniza si¢. Na przyktad usunigcie dowolnej
wewnetrznej warstwy prowadzi do utraty okoto 2% wydajnosci sieci. Stad wniosek, ze dla

osiggnigcia dobrych wynikow bardzo wazna jest glebokos§¢” [25]. W tym przetomowym

artykule jednoznacznie podkre§lono wazno$¢ ilosci ukrytych warstw w glebokich sieciach
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neuronowych. Autorzy tego artykulu doktadnie omawiajg pojecie warstw konwolucyjnych
podkreslajac ich znaczenie dla przetwarzania i rozpoznawania obrazow. Samo rozpoznawanie
obrazow nadal jest jednym z najbardziej ztozonych probleméw nauk informatycznych,
poniewaz trudno jest przekaza¢ informacj¢ maszynie o wszystkich cechach charakteryzujacych
dany obraz. Zgodnie ze znanym chinskim powiedzeniem ,,jeden obraz jest wart wigcej niz
tysigc stow”. Te niepozorne przystowie swoja droga stanowito skrocony opis metody nauczania
zastosowanej przez Abigaila Housena w p6znych latach osiemdziesiatych, w ktorej narzedziem
do osiagnigcia zamierzonego celu byla dyskusja na temat obrazoéw. Obecnie znany program
oparty o te technike, to np. Visual Thinking Strategies, w Polsce znany, jako Strategia myslenia
Wizualnego. Na szczgécie nie musimy opisywaé obrazow tysigcami stow, gdyz techniki
glebokiego uczenia si¢ a wigc gleboka sie¢ neuronowa sama jest w stanie nauczy¢ si¢ cech
kazdego obiektu i dzigki tej wiedzy wiasciwie je rozpoznawaé i klasyfikowaé [17].
Stwierdzenie te zostalo udowodnione w artykule autorstwa H. Lee, R. Grosse, R. Ranganath,
A. Ng, pod tytutem: Convolutional deep belief networks for scalable unsupervised learning of
hierarchical representations, opublikowanym w materiatach pokonferencyjnych, z konferencji
International Conference on Machine Learning w 2009 roku. Autorzy artykutu zaprezentowali
sieci neuronowej zdje¢cia obiektow z roznych kategorii rzeczy oraz zwierzat. W pierwszej
warstwie sie¢ nauczyla si¢ prostych cech charakterystycznych takich jak ksztatty krawedzi,
linii. W nastepnej warstwie juz wiedziata w jaki sposob wczesniej nauczone krawedzie oraz
linie pasuja do siebie, dzigki temu byla w stanie odtworzy¢ konkretne obiekty. Artykul ten
potwierdzit, Ze sie¢ neuronowa w kazdej kolejnej warstwie zaczyna rozumie¢ coraz bardziej
skomplikowane cechy [26].

Trzeci ze wspomnianych podzbiorow, (ktorego dokladna historia powstania i rozwoju
zostanie opisana w kolejnym rozdziale), czyli sztuczne sieci neuronowe, zostaty odkryte
wskutek stworzenia w 1943 roku przez wybitnego matematyka Waltera Pitts oraz
utalentowanego neurofizjologa Warrena McColloch, pierwszego modelu matematycznego,
ludzkiego neuronu biologicznego. W koncu w 1956 roku, spotkanie w Dartmouth,
zapoczatkowato oficjalnie nowy dziat badan, ktory nazwano sztuczng inteligencja (nazwa
zostala zaproponowana przez Johna McCarthy’ego, amerykanskiego informatyka i lauteata
Nagrody Turninga z 1971 r.). Jednym z dziesigciu uczestnikow tego spotkania byt rowniez
Allen Newell, amerykanski informatyk, ktory otrzymat wraz z Herbertem Simonem,
amerykanskim polihistorem, ekonomistg, informatykiem, Nagrode Turninga w 1975 roku, za
dwudziestoletnie badania nad sztuczng inteligencja i psychologia ludzkiego poznania, ktore

prowadzono gtownie na Carnegie Mellon University, w Pittsburghu [27]. Te oraz wiele innych
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innowacji w dziedzinie uczenia maszynowego doprowadzity do tworzenia od poczatku XXI
wieku coraz to lepszych, szybszych i bardziej wydajnych maszyn obliczeniowych, nazywanych
potocznie superkomputerami, byta to swego rodzaju informatyczna ,,eksplozja kambryjska”.
Komputery te sg w stanie stale uczy¢ si¢ 1 samodzielnie podejmowac decyzje, bazujac na

zdobytym doswiadczeniu, doktadnie tak jak ludzie.
2.2.  Historia modelowania wykorzystujacego Sztuczne Sieci Neuronowe

Tak jak juz wspomniano w poprzednim rozdziale historia Sztucznych Sieci Neuronowych
siega 1943 roku, kiedy to Warren S. McCulloch i Walter Pitts stworzyli pierwszy opis
matematyczny, uproszczonego schematycznego modelu dziatania neuronu i przetwarzania
przez niego danych, wzorujac si¢ na zasadach funkcjonowania ludzkiego moézgu, ktoéry jest
zdolny do wytwarzania wysokich ztozonosci, przez wykorzystanie licznych potaczen
wzajemnych komoérek podstawowych nazywanych neuronami [28]. Stworzony wowczas
model, opisujac odpowiednig strukture i nasladujac procesy zachodzace w mozgu, ktory to
posiada w swojej strukturze miliardy neurondéw potaczonych w sie¢. W swoich badaniach
stworzyli proste neurony, ktore byty zdolne do modelowania opartego na funkcjach logicznych,
na przyktad: AND, OR itd., w tym opisie natomiast nie byto uj¢tej koncepcji uczenia si¢ sieci.
Swoimi badaniami zapoczatkowali szereg kolejnych badan, ktore skupiaty si¢ na problemach
modelowania inteligentnych sposobow dzialania mozgu.

W 1949 roku kanadyjski psycholog Donald Oldigin Hebb rozwinal koncepcje o
wzmacnianiu potgczen i wspoétdziataniu zespotow neuronowych w procesie uczenia sig¢ [29].
Opracowany algorytm (nazywany regulag Hebba), czyli reguta uczenia si¢ bez nadzoru, bierze
pod uwagg dzialanie komorek nerwowych, w ktorych potaczenie miedzy nimi czyli synapsa,
ulega wzmocnieniu, w momencie, kiedy neuron presynaptyczny i postsynaptyczny ulegaja
réwnoczesnemu pobudzeniu lub hamowaniu. Dzigki temu algorytm zaklada modyfikacj¢ wag
poszczegdlnych neuronow [30]. Ograniczeniami tej metody to zaleznos$¢ przebiegu uczenia od
warto$ci reprezentowanych przez wagi poczatkowe, nie ma pewnosci, ze zawsze jeden neuron
bedzie odpowiadat jednej klasie wzorcOw oraz nie ma pewnosci, ze zawsze wszystkie Klasy
wzorcow bedg reprezentowane przez oddzielne zbiory aktywnych neuronow [31]. W 1958 r.
John Von Neumann stworzyt historyczng prace teoretyczna, w ktorej wprowadzit pomyst
uczenia si¢ sieci, ktore mialoby zastapi¢ konieczno$¢ jej programowania [32]. W tym samym
roku Frank Rossenblatt jako pierwszy zbudowat dziatajacy elektroniczny model ludzkiego
moézgu, jako koncepcje sytemu ztozonego ze sztucznych neuronéw, wykazujacego zdolnos¢ do
nabywania wiedzy na podobienstwo ludzi [33]. Proces uczenia si¢ systemu miat przebiega¢ na
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zasadzie rozpoznawania. System ten zostal nazwany perceptronem, poniewaz zjawisko
zdobywania danych i informacji z otoczenia, nast¢pnie ich identyfikacja, odpowiednia
klasyfikacja i poznanie, w psychologii nosi nazwe¢ percepcji. System nauczony zostat
rozpoznawania znakow alfanumerycznych. Stworzony perceptron wraz ze zwigkszajacg si¢
iloscig pokazow obrazéw w procesie uczenia si¢ popeiniat coraz mniej btedow. Caty cykl
uczenia si¢ trzeba byto powtorzy¢ dwa tysigce razy, co wskazuje na wysokg czasochtonnos¢ i
pracochlonno$¢ badan [34]. Ostatecznie system wykazywal wysoka wrazliwo$¢ na
transformacje znakoéw, dziatat jednak normalnie nawet po uszkodzeniu kilku jednostek.
Stworzony system mimo wielu niedoskonalosci zainspirowal badaczy do dalszych,
dynamicznie rozwijajacych si¢ badan.

W 1960 roku, powstata tzw. struktura pojedynczego elementu liniowego o nazwie Adaline,
oparta na modelu Rossenblatta, stworzona przez Bernarda Widrowa ze Standford University
[35]. Adaline byt analogowym urzadzeniem elektronicznym. Istota modelu neuronu Adaline,
skupiata si¢ na sposobie liczenia a doktadniej na korekcie wag, ktora odbywata si¢ poprzez
porownanie oczekiwanej odpowiedzi z potencjalem membranowym neuronu, powodujac
zmiang we wzorze, ktory opisuje btad popelniany przez neuron. Zmiana ta umozliwia
zastosowanie gradientowego algorytmu uczenia, ktory jest oparty o minimalizacje funkcji
sredniokwadratowej, mimo iz neuron wykazuje charakter nieliniowy [36]. Nast¢pnie z
neuronéw Adaline zbudowano sie¢ jednowarstwowg, po dodaniu do niej kolejnych
polaczonych ze sobg elementow, tworzac sie¢ o nazwie Madaline (nazwa od slow Many
Adaline). W tej sieci kazdy neuron uczy si¢ w oparciu o regute Adaline [36]. Po tym wydarzeniu
nastgpit okres frustracji 1 zniechecenia, ktory zostal spowodowany przez wydarzenia majace
miejsce w 1969 roku, kiedy to Marvin Minsky i Seymoura Papert [37], w swojej ksigzce pt.
Perceptrons, dowiedli, Zze jednowarstwowe sieci neuronowe typu perceptronu maja bardzo
ograniczone zastosowanie i uogolnili je na sieci wielowarstwowe. Zahamowanie badan trwato
az do konca lat osiemdziesigtych, dodatkowym powodem tego spowolnienia byty rowniez
obcigte fundusze na badania zwigzane z sieciami neuronowymi. Mimo to w latach
siedemdziesigtych naukowcy pracowali nad kolejnymi ciekawymi rozwigzaniami, takimi jak:
opracowanie i uzycie w 1974r. przez Werbosa metody wstecznej propagacji btgdu do uczenia
sieci neuronowej [38], stworzenie przez F. Kunihiko w 1975 roku sieci do rozpoznawania
pisma o nazwie ,,Cognitron” [39], nastepniec w 1978 roku rozbudowanej do sieci o nazwie
Neocognitron, ktora byta zdolna do odczytu nawet bardzo skomplikowanych znakow takich jak
pismo chinskie [40], niezalezne opracowanie koncepcji sieci asocjacyjnych ,,Brain in the Box™”

w 1977r. przez Andersona i Kohonena [41], stworzenie sieci o nazwie ,,Cerebellatron” przez
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Dawida Mara, oraz stworzenie sieci o nazwie ,,Avalanche” przez Rossenberga stuzacej do
rozpoznawania mowy. Przelomem w badaniach prowadzonych w temacie sztucznych sieci
neuronowych byta publikacja po§wigcona algorytmowi uczenia wielowarstwowej nieliniowej
sieci neuronowej [42], wowczas dowiedziono sensowno$¢ uzywania perceptronéw
wielowarstwowych w roli klasyfikatorow w warunkach niepewnosci probabilistycznej [43].

Od poczatku lat osiemdziesiagtych nastgpito odrodzenie tematu badan, juz w 1982 roku
Tuewo Kohonen przedstawit opracowanie sieci klasyfikacyjnych niewymagajacych
nauczyciela w procesie uczenia, opierajacych swoje dzialanie na odkrywaniu i uzyskiwaniu
cech. W potowie lat osiemdziesigtych dwudziestego wieku nastgpit rozwo6j dziatalnosci firm
produkujacych neuropodobne uktady elektroniczne, gdyz rozpoczg¢to prace nad budowa
analogowych rozwigzan sprzetowych, miedzy innymi neuroprocesorow. Pomyst Werbosa
metody wstecznej propagacji btedu do uczenia sieci neuronowej zostat rozpowszechniony w
1982r.1w 1986r. w ksigzce ,,Learning Internal Representation by Error Propagation” autorstwa
Rumelharta, Hintona i Williamsa [44]. Zaproponowana sie¢ umozliwiala budowe i skuteczne
uczenie wielowarstwowych nieliniowych sieci neuronowych wykorzystujacych wlasnosci sieci
z neuronami radialnymi w ukrytej warstwie 1 stanowila poczatek sieci RBF (ang. Radial Basis
Function) wykorzystujacych lokalng optymalizacje w procesie uczenia [34]. Kolejne
przelomowe badania prowadzone przez Steve Grossberga i Gail Carpentera, ktérzy w 1988
wymyslili teori¢ adaptacyjnych sieci rezonansowych, ART (ang. Adaptive Resonance Theory),
bazujacych na biologicznych analogiach [45]. W 1987 roku rozpoczgto coroczne
migdzynarodowe konferencje zwigzane 2z tematem sztucznych sieci neuronowych
organizowane przez Instytut Inzynierow Elektrykow 1 Elektronikow, IEEE (od ang. Institute of
Electrical and Electronics Engineers). Nastepnie w 1987 roku powstato migedzynarodowe
stowarzyszenie - International Neural Network Society (INNS), a w 1988 roku czasopismo
INNS Neural Networking journal.

Pod koniec lat dziewigédziesigtych dwudziestego wieku entuzjazm srodowiska naukowego
zwigzany z tematem sztucznych sieci neuronowych wygasat, a sieci staty si¢ ustabilizowana,
dobrze znang technologia. Stato si¢ tak dlatego, ze mozliwo$ci techniczne zwigzane z
technologiami komputerowymi tamtych czasow limitowaly ich mozliwosci rozwoju.
Naukowcy aby zaimplementowac sie¢ zdolng do skomplikowanych obliczen budowali sieci
wielowarstwowe, ktorych uczenie wielu warstw i duzej liczby neurondéw trwato tygodniami,
miesigcami lub latami obliczen [46]. Przetom nastgpit wraz z rozwojem nowych technologii, w
2006 roku zaczety pojawiac si¢ glebokie sieci oraz odkrywaé¢ metody ich uczenia. Poczatkowo

sieci tego rodzaju wykazywaly mozliwos$ci generalizacji na bazie niewielkich zbiorow danych
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nastepnie wraz z rozwojem Internetu oraz pojawieniem si¢ elementéw obliczeniowych w
postaci kart graficznych GPU nurt skierowat si¢ na wykorzystywanie wielkich zbiorow danych
do obliczen opartych na wcze$niej znanych metodach.

W dzisiejszych czasach w publikacjach mozna znalez¢ przyktady zastosowania sztucznych
sieci neuronowych w wielu dziedzinach nauki i techniki w tym proceséw odlewniczych, wraz
z opisami skomplikowanych problemow, ktore dzigki ich zastosowaniu mozna byto skutecznie
rozwigza¢. Jednym z pierwszych gtownych i kompleksowych opracowan stworzonych w
formie poradnika naukowego byla praca Profesora Ryszarda Tadeusiewicza, ktory opisat
gléwne problemy, ktore moga zosta¢ rozwigzane przez implementacje sztucznych sieci
neuronowych 1 gldwne zadania, ktore moga =zostaé powierzone sztucznym sieciom
neuronowym. Poczatek lat dziewigédziesiagtych dwudziestego wieku zostat uznany za poczatek

badan naukowych nad tematem sztucznych sieci neuronowych w Polsce [47].
2.3.  Podstawowe informacje o Sztucznych Sieciach Neuronowych.

Ludzki mézg jest najbardziej ztozonym obiektem we Wszech§wiecie [48]. Wazy okoto
1100 - 1400 gramoéw, zawiera on trylion komorek, a 100 miliardéw sposrod nich stanowia
neurony polaczone w sieci, dzigki ktorym powstaja emocje, Swiadomos$¢, inteligencja, pamieé
1 zdolnosci twodrcze. Neuron, inaczej nazywany komorka nerwowa, jest zdolny do
przetwarzania i przewodzenia informacji zawartej w sygnale elektrycznym oraz do transmisji
chemicznej sygnatu poprzez pobudzone przez neurotransmitery receptorow. Neuron sktada si¢
z ciala komorki tzw. perikarionu oraz aksonu i dendrytéw, ktore umozliwiaja przewodzenie
informacji [49]. Wzorem do stworzenia mechanizmu sztucznych sieci neuronowych jest
neuroplastyczno$¢ mdzgu, ktora objawia si¢ w rozwijajacym maozgu poprzez dostosowywanie
zmian rozwojowych do sygnatow 1 bodzcoOw plynacych ze Srodowiska zewnetrznego oraz
poprzez proces uczenia si¢. W pelni rozwini¢tym moézgu zmiany neuroplastyczne stanowia
podstawe procesu uczenia si¢ 1 zapamigtywania, czyli powstawania nowych obwodow
neuronalnych stuzgcych sladowi pamieciowemu [48].

Na temat sztucznych sieci neuronowych napisano wiele prac o charakterze przegladowym
oraz popularnonaukowym. W literaturze przedmiotu prezentowane sg zréznicowane podejscia,
gdyz przedmiotem badan moze by¢ pojedyncza struktura, czyli pojedyncza komodrka nerwowa
lub jej fragment, na przyklad synapsy, aksony, dendryty (rys. 2.3.1.), jak rowniez cala sie¢
neuronowa, jako samodzielny obiekt badan [47]. Zgodnie z definicja, sztuczna sie¢ neuronowa
jest paradygmatem przetwarzania informacji, inspirowanego przetwarzaniem informacji przez
biologiczne systemy nerwowe [50], na przykltad w korze modzgowej ssakow tworzac,
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uproszczony model funkcjonowania ludzkiego mozgu, a jednoczesnie stanowigc nowoczesng

metode matematycznego modelowania zjawisk 1 procesow [51].
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Rys.2.3.1. Przyblizony wyglad komoérki nerwowej [52]

W ciggu ostatnich lat wykorzystanie technik sztucznych sieci neuronowych zyskato duze
zainteresowanie 1 zastosowanie w réznych dziedzinach nauki takich do rozwigzywania
skomplikowanych probleméw (w rolnictwie, naukach medycznych, edukacji, finansach,
zarzadzaniu, bezpieczenstwie, handlu, sztuce, architekturze, biznesie, transporcie, bankowosci,
ubezpieczeniach, zarzadzaniu nieruchomos$ciami, marketingu itd.), klasyfikacji, grupowania i
rozpoznawania wzorcow oraz predykcji [53], stajac si¢ konkurencyjnymi dla
konwencjonalnych modeli regresyjnych i statystycznych pod wzgledem ich uzytecznos$ci [54].
Powody licznego stosowania sztucznych sieci neuronowych wynikaja z ich zalet. Ocena
zastosowania sztucznych sieci neuronowych moze by¢ odniesiona do ich doktadnosci,
wydajnosci, szybkos$ci przetwarzania, opdznienia, wartosci btedu, skalowalnosci 1 kowergencji
[55], [56]. W momencie, kiedy istnieje potrzeba opisania skomplikowanych i zlozonych
procesow fizycznych, chemicznych z jednoczesna analiza wplywu okreslonych parametréw na
ich przebieg przy uzyciu rownan odzwierciedlajacych ich natur¢ moze by¢ trudne i bardzo
czasochtonne, dlatego tez struktury neuronowe znalazly swoje zastosowanie do modelowania
procesoOw o nieokreslonej naturze fizycznej, nazywanych ,,czarng skrzynka”. Znaczacym
potencjatem sztucznych sieci neuronowych jest roOwniez szybkie przetwarzanie wielkich
zbiorow danych [57], [58]. Znalazly one liczne zastosowanie roéwniez w rozpoznawaniu i
analizie obrazu, przetwarzaniu jezyka 1 innych, jednak najczesciej s3 uzywane do aproksymacji
funkcji w paradygmatach numerycznych, poniewaz maja doskonate wlasciwosci uczenia sie,
nieliniowosci 1 mozliwosci uzaleznienia wartosci wyjsciowych od wartosci wejsciowych [59].

Sztuczne sieci neuronowe ustanawiajg wigc zwigzek migdzy wieloma wektorami wej§ciowymi
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(1, X5, ..., X), @ PO jego przetworzeniu zmienng lub zmiennymi wyjéciowymi (V4, Y2, -, Yn),
wynikajacymi z danych zmiennych wejsciowych, co mozna przedstawi¢ w nastepujacy sposob

(2.1.) [42]:

y1 = j(x1, %z, 0, Xpn) (2.1)
V2 =Jj(x1, X2, ) Xp)
gdzie:

— Y1, Y2 -, Yo — Warto$Ci zmiennych wyjsciowych
— X1, X3, ..., X, — Warto$Ci zmiennych wejsciowych
— j —funkcja aktywacji

Jak juz wspomniano neuron otrzymuje pewnag liczbe sygnatow nazywanych warto$ciami
wejsciowymi. Warto$ci te moga pochodzi¢ z pierwotnych danych zewnetrznych kierowanych
do sieci obliczen, mogg jednak tez pochodzi¢ z warto$ci wyjsciowych innych neuronow
tworzacych dang sie¢, wowczas sg to tzw. sygnaty posrednie [60]. Kazda wartos¢ wejsciowa
kierowana do neuronu ma okre$lone znaczenie, nazywane waga. Odwotujac si¢ do inspiracji
biologicznej, wagi sg odpowiednikiem synaps z neuronu biologicznego. W biologii synapsy s3
miejscem komunikacji mi¢dzy dwoma neuronami (presynaptycznym, czyli nadawczym i
postsynaptycznym, czyli odbierajagcym) lub miedzy neuronem a komorka docelowsg [61], [62].
W sztucznych sieciach neuronowych synapsy sprowadzane sg do operatoréw przemnazania
wejsciowych sygnalow przez wspotczynniki ustalone w procesie uczenia si¢ sieci. Poczatkowo
wagi sg dobierane losowo, nastgpnie nastgpuje ich wielokrotna korekta w procesie uczenia si¢
sieci. Wspomniane korygowanie mozna przeprowadzi¢ poprzez poréwnywanie znanych,
rzeczywistych, zaobserwowanych, lub do§wiadczalnie wyznaczonych warto$ci wyjsciowych z
tymi obliczonymi przez sie¢. Dzieje si¢ tak w jednej z podstawowych metod uczenia si¢ sieci,
nazywanej metoda z nauczycielem, czyli metoda uczenia nadzorowanego (ang. supervised
learning). W metodzie tej dazy si¢ do osiagni¢cia minimalnej warto$ci funkcji kryterialne;j,
ktora jest suma kwadratow roznic migdzy wartosciami otrzymanymi przez sie¢ w procesie
ucznia si¢ z tymi pochodzacymi z rzeczywistego procesu. Celem minimalizacji tej warto$ci
stosuje si¢ gradientowa metod¢ najwigkszego spadku. Modyfikacja wielokrotna wag daje
nauczong sie¢ zdolng do prognozowania wartosci wyjsciowych na podstawie dowolnych
wprowadzonych warto$ci wejSciowych. Znane jest rowniez pojecie funkcji btedu, stuzacej do

oceny jakos$ci sieci neuronowej podczas jej iteracyjnego uczenia si¢ lub podczas pozniejszych
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etapoOw analizy. W algorytmach uczacych sie iteracyjnie podstawowym narzedziem do
modyfikacji wag jest pochodna funkcji bledu [63].

Podsumowujac podstawowe elementy neuronu to: wagi (w;, wy, ..., wy), funkcja aktywacji
i funkcja wewnetrznego przetwarzania. Ustalenie wartosci sygnatu wyjsciowego z neuronu jest
prowadzone najpierw przez przemnozenie sygnatow wejsciowych (xq,x,,...,X,) przez
odpowiadajagce im wagi i poddanie zadanej funkcji (etap nazywany funkcjg wewngtrznego
przetwarzania), nast¢pnie wynik funkcji wewnetrznego przetwarzania e, poddany zostaje
dziataniu okres$lonej funkcji wejscia-wyjscia, zwanej funkcja aktywacji ¢ (rys.2.3.2.). Funkcje
aktywacji sztucznej sieci neuronowej, to réwnania matematyczne, ktore okre§lajg moc
wyj$ciowg sieci neuronowej, sa one kluczowym elementem algorytméw uczenia si¢. Okreslaja
one wyniki modelu, jego doktadnos¢ i wydajnos$¢ obliczeniows, jednoczesnie wptywajac na

zdolno$¢ sieci neuronowej do konwergencji, lub jej zapobiezenia.
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Rys.2.3.2. Model neuronu [52]

Sygnal wyjsciowy pojedynczego neuronu moze by¢ obliczany wedlug nastepujacego
rOwnania (2.2.) [52]:

y=¢(Zisawix) = oW - X) (2.2)
gdzie:

— X — wektor danych wejsciowych
— W — wektor wag
— j —funkcja aktywacji
—y —sygnal wyjsciowy
Naukowcy, ktorzy poswigcili lata na badania neuronow, odkryli ponad tysigc r6znych typow

neurondw biologicznych, dlatego istnieje potrzeba aby umie¢ zamodelowa¢ co najmniej kilka
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roéznych typow sztucznych sieci neuronowych [64]. Mozna to zrobi¢ wykorzystujac rozne typy

funkcji aktywacji, okreslonych na wewngtrznym stanie neuronu, o aktywacji obliczonej na

podstawie wej$¢ wszystkich neuronow wejsciowych. Najczgsciej uzywane funkcje aktywacji

definiujgce wyjscie neuronu, to:

funkcja liniowa, pobiera dane wejSciowe pomnozone przez wagi i tworzy sygnat
wyj$ciowy proporcjonalny do sygnatu wejSciowego. Funkcja liniowa posiada
przewage nad funkcja progowa, poniewaz umozliwia powstanie wielu wyjs¢.
funkcja tangens hiperboliczny (zwana tez tangensoidalna), druga najczgsciej
stosowana funkcja,

funkcja logistyczna (nazywana tez logistycznym sigmoidem), czg¢sto Stosowana,
przekazuje wartos¢ w przedziale od 0 do 1, mozliwa do interpolacji stochastyczne;j
jako prawdopodobienstwo uaktywnienia neuronu,

funkcja tozsamosci, przekazujaca wartos¢ aktywacji,

funkcja progowa aktywacji, oparta jest na wartosci progowej, oznacza to, iz w
przypadku, gdy wartos¢ wejsciowa jest powyzej lub ponizej pewnego progu, to
neuron zostaje aktywowany i1 wysyla dokladnie ten sam sygnal do nastepnej
warstwy,

funkcja sigmoid bipolarny (wersja sigmoidu logistycznego o wartosciach w
przedziale od (-1 do 1)).

Funkcje ReLU (od ang. Rectifier Linear Unit), (nazywang tez rektyfikatorem),

stanowi kombinacj¢ funkcji tozsamosci z funkcja progowa [17].

Jezeli sie¢ mialaby nauczy¢ si¢ zlozonych zestawow danych z wysoka doktadnosciag

niezbedne moze by¢ zastosowanie kilku ukrytych warstw neurondéw (ang. input hidden layer)

(rys. 2.3.3), natomiast sie¢ z jedng warstwg ukrytg powinna nauczyC si¢ rozwigzywaé

podstawowe problemy, zastosowanie zbyt wielu warstw moze spowodowaé pogorszenie

jakosci uczenia si¢ sieci, gdyz poswieci si¢ ona zbyt wielu szczegotom.
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Rys.2.3.3. Schemat ukrytych warstw neuronow i przyktadowa lokalizacja funkcji
aktywacji [opracowanie wiasne]

W literaturze przedmiotu w omawianej dziedzinie nauki i techniki zwigzanej z
zagadnieniami metalurgicznymi sie¢ najcze$ciej ma strukturge wielowarstwowa, zawierajaca
warstwy wejsciowe 1 wyj$ciowe a miedzy nimi jedna lub kilka warstw ukrytych. Natomiast
najczgsciej uzywane techniki uczenia sieci to aproksymacja funkcji wielu zmiennych.
Odnoszac si¢ jednak doktadniej do tematu modelowania zagadnien wytwarzania w procesach
odlewniczych sztuczne sieci neuronowe dotychczas stosowano do: analizy wptywu réznych
parametrow procesu na poziom porowatosci odlewu [65], analizy wytrzymatosci na rozciaganie
[66], sterowania jako$cig mas formierskich [67], prognozowania parametrow mas formierskich
[68], [69], jak rowniez do projektowania oprzyrzadowania odlewniczego, sterowania pracg
piecow do topienia metalu i innych. Glowne zalety sztucznych sieci neuronowych, wptywajace
na ich liczne wykorzystanie do modelowania ztozonych procesow i zjawisk, to:

e zdolno$¢ do odwzorowania ztozonych, nieliniowych procesow z duza iloscia
zmiennych niezaleznych z jednoczesng kontrolg wielowymiarowos$ci procesow i
danych, nawet takich proceséw, ktore sg niezalgorytmizowane, W tym w procesow
odlewniczych, czy ogoblnie proceséw metalurgicznych [69].

e Kolektywnos$¢ (masowa wspotbieznosc) obliczen, czyli wykonywanie rownoczesnie
przydzielonych zadan przez tysigce sztucznych neuronéw w sztucznych sieciach

neuronowych,
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e samouczenie si¢ sieci, niewymagajacych programowania, co pozwala na skuteczne
dziatanie bez koniecznosci formutowania hipotez 1 znajomosci skomplikowanych
zalezno$ci i mechanizmow danego zjawiska,

e adaptacyjnos$¢, czyli nauka na podstawie przedstawionych przyktadow,

e zdolno$¢ do generalizacji, czyli mozliwos$¢ pracy sieci na przyktadach, ktorych
wczesniej nie przetwarzata, co pozwala na prognozy bazujace na zjawiskach, ktore
nigdy wcze$niej nie wystapity,

e Koniecznos$¢ znajomosci podstaw procesu przez tworce sieci celem selekcji istotnych
zmiennych niezaleznych majacych wplyw na zmienng zalezng aby wlasciwie
modelowac¢ procesy i dobra¢ wlasciwy rodzaj i strukture sztucznej sieci neuronowe;j,

e zdolnos$¢ do przechowywania informacji w sieci neuronowej, a nie w bazie danych,
co nie zaburza funkcjonowania sieci,

e zdolnos¢ do rozumienia zalezno$ci, gdy dane sg niekompletne lub zawieraja bledy
[69].

Wspomniane cechy w znaczy sposob wplynety roéwniez na wykorzystanie sztucznych sieci

neuronowych do realizacji niniejszej pracy.
2.4.  Dzialanie Sztucznych Sieci Neuronowych.

Na przestrzeni wielu lat najpowszechniej stosowana technika modelowania
matematycznego, do opisywania rzeczywistosci w jezyku matematyki i logiki formalnej,
ktorego algorytmy zapewnialy osiggnigcie globalnego minimum funkcji btedu [70], byty
modele funkcyjne liniowe (w postaci funkcji liniowej) [71]. W zakresie tego typu modeli znane
byly strategie optymalizacji podczas ich budowy, jednak czesto zastosowanie aproksymacji
liniowej celem opisania okreslonego problemu czy zjawiska nie miato podstaw i prowadzito do
wniosku o braku mozliwosci opisu danego problemu czy zjawiska w postaci matematycznej
[72], ewentualne zastosowanie modeli liniowych do opisu zjawisk nieliniowych spowoduje
duze niedoskonatosci w opisie danego procesu lub zjawiska. W zwigzku z tym, celem opisu
tych zjawisk uzywa si¢ modeli nieliniowych, co wigze si¢ z konieczno$cig okreslenia ksztattu
modelu i doborem parametréw najlepiej okreslajacych dany proces, lub zjawisko. Okreslenie
ksztaltu modelu ma charakter intuicyjny 1 wptywa na jako$¢ predykcji modelu, poniewaz w
przypadku btednie dobranego modelu, nie ma pozniejszej mozliwosci jego wilasciwej
optymalizacji. W przypadku doboru parametrow mozna zastosowac¢ metody statystyczne, ktore

uprzednio zoptymalizujg parametry do wybranego ksztattu modelu, na przyktad mozna uzy¢
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do tego regresji nieliniowej. W tym momencie warto odwota¢ si¢ do sztucznych sieci
neuronowych, ktore umozliwiajg szybkie i wygodne modelowanie [43] procesow, z duzym
prawdopodobienstwem odniesienia sukcesu w problemach zwigzanych z tworzeniem modeli
matematycznych, celem odwzorowania zlozonych zalezno$ci wystepujgcych miedzy
zmiennymi wejsciowymi i wyjéciowymi [73], gdyz maja one zdolno$¢ do samodzielnego
znajdywania modelu nieliniowego bez potrzeby uprzedniego okreslania jego ksztattu co
wplywa na zmniejszenie ryzyka popeknienia bledu na poczatku modelowania.

Dotychczasowe prace doswiadczalne w dziedzinie metalurgii i odlewnictwa w wigkszosci
wykorzystywaly modelowanie oparte na danych, z uzyciem sztucznych sieci neuronowych do
regresji, czyli aproksymacji nieznanej funkcji wielu zmiennych bazujac na danych
doswiadczalnych, do wykrywania wzorcow, grupujac sygnaly podczas uczenia
nienadzorowanego, niewymagajacego zbioru uczacego z wejsciem i wyjsciem, do predykcji,
czyli przewidywania wyniku bazujac na danych historycznych Iub wczesniejszych
obserwacjach doswiadczalnych [74]. Chciano wiec uzyskaé jak najwigksza zgodno$é
modelowanego zjawiska z dzialaniem modelu neuronowego. Sprawdzano dzigki temu roéwniez
wptyw badanego problemu lub zjawiska na okre§lone parametry, czynniki, ktérych nie byto
mozliwo$ci osiggnigcia w doswiadczeniu w prosty sposob, bez zmieniania pozostatych
czynnikow czy parametrow. Oryginalnym podejsciem okazato si¢ uzycie modeli neuronowych
do ekstrakcji wiedzy z danych i uzupehlnienie brakujacej wiedzy o mato znanym
skomplikowanym procesie lub o catkiem nowym zjawisku. Przyktadem moze by¢ praca [75],
w ktorej autorzy wykorzystali migkkie techniki obliczeniowe, w tym sztuczne sieci neuronowe
do ekstrakcji wiedzy z danych dotyczacych wlasciwosci termomechanicznie przetwarzanej stali
wysokowytrzymatej. Badania ukierunkowano na lepsze zrozumienie procesu metalurgicznego
przetwarzanej stali i potwierdzono uzyskane informacje z istniejagcymi koncepcjami fizycznej
metalurgii stali. Udowodniono wigc, ze sztuczne sieci neuronowe sg w stanie potwierdzic¢
niektoére z hipotez wygenerowanych na drodze eksperymentalnej 1 moga by¢ wykorzystane do
projektowania systemow o lepszych parametrach dostosowanych do potrzeb uzytkownika.

Dotychczasowy opis uwydatnial pozytywne cechy modelowania opartego na danych, z
uzyciem sztucznych sieci neuronowych, jednak nalezaloby jeszcze rozwazyé wady ich
dzialania, a sg to miedzy innymi:

e Uzaleznienie predkosci 1 jakosci przetwarzania od parametrow procesorow

sprz¢towych, gdyz wymagaja one procesorow o odpowiedniej mocy obliczeniowej,
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e niewyjasniona przyczyna zrodtowa zachowania si¢ sieci, gdyz podane przez sie¢
rozwigzanie sondujace, bez uzasadnienia dlaczego =zostalo wybrane moze
powodowac brak zaufania do jej wyboru,

e Dbrak jednej, sprawdzonej i najlepszej struktury sieci neuronowej, co powoduje
koniecznos$¢ znajomosci struktur i ich mozliwosci oraz do§wiadczenia, lub po prostu
wielu préb i analiz,

e trudno$c¢ przedstawienia doktadnego problemu sieci neuronowej, gdyz sztuczne sieci
neuronowe pracuja z danymi numerycznymi, wi¢c nalezy przetlumaczy¢ dany
problem na wartos$ci liczbowe,

e Czas pracy sztucznej sieci neuronowej jest nieznany, gdyz sie¢ zawsze bedzie szukac
odpowiedniej warto$ci bledu na okre§lonej probce. Osiagniecie tej wartosci bedzie
dla sieci sygnatem do zakonczenia pracy. Mozliwe, Ze te warto$ci nie sg jeszcze
warto$ciami optymalnymi [76],

e brak umiejetnosci rozwigzania wszystkich skomplikowanych probleméw, gdyz sie¢
nie posiada zadnej reguty prognozujacej wartos¢ potrzebnej zmiennej, dlatego tez
wymagana jest specjalistyczna wiedza procesowa celem wiasciwego doboru
zmiennych wejsciowych 1 wyjsciowych umozliwiajacych wyszukanie istniejagcych
zaleznosci,

e konieczno$¢ wystepowania zaleznos$ci, relacji lub prawidlowosci w danych. Siec¢
moze zidentyfikowa¢ nawet ukryte lub mato precyzyjne informacje, jezeli zbior
uczacy bedzie odpowiednio duzy a zalezno$ci bgda maty charakter powtarzalny.
Ponadto sie¢ zidentyfikuje wystepujace zaktocenia w danych i dopasuje si¢ do
uogdlnionych trendow wystepujacych w zbiorze uczacym,

e trudno$¢ uczenia si¢ ze zbioru danych, w ktorych wystepuje problem silnego
niezrownowazenia danych, z mala reprezentacja wartosci, ktore chcemy
prognozowac (zauwazono w toku badan),

e brak pewnosci czy znaleziony stopien dopasowania modelu jest optymalny (nawet
w przypadku osiagniecia minimalnego btgdu uczenia sieci) w przypadku
modelowania nieliniowej charakterystyki przebiegu.

Sztuczne sieci neuronowe rozwijajg si¢ bardzo szybko. Nalezy wiec pamigtaé, ze wady
sztucznych sieci neuronowych, napotykane w procesie ich stosowania sg stale eliminowane, a
jednoczesénie nastgpuje wzrost odkrywanych ich zalet. Moze by¢ to podstawa do stwierdzenia,

ze stang si¢ one niebawem nieodtaczng czescig naszego zycia [76].
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2.5. Wybor struktury i rodzaju sieci neuronowych oraz sposobu ich uczenia.

Obecnie istnieje wiele rodzajow sieci neuronowych, zrdéznicowanych pod wzgledem
struktury 1 zasad ich dzialania. Pojedyncze sztuczne neurony posiadaja ograniczone
mozliwosci, dlatego tez sg one taczone w sieci, co gwalttownie podnosi ich rzeczywistag moc
obliczeniowa, ktéra wynika z jednoczesnej pracy wielu neuronéw, tworzacych réznorodne
architektury (struktury). W zwigzku z tym rozroznia si¢ sieci jednokierunkowe (ang.
feedforward) (jednowarstwowe i wielowarstwowe), sieci rekurencyjne, sieci komoérkowe [77],
sieci radialne (RBF), sieci GRNN oraz sieci probabilistyczne (PNN). W pierwszym rodzaju
struktury do sieci jest dostarczana porcja danych, ktére rozchodza si¢ W sieci neuronowej,
miedzy neuronami zdolnymi do uczenia si¢. Sie¢ wewnatrz opracowuje charakterystyki, dzigki
ktorym definiowane sg zmienne wyjsciowe [70]. Sieci jednokierunkowe charakteryzuja si¢
istnieniem polaczen miedzy neuronami znajdujacymi si¢ w sgsiednich warstwach, gdyz moga
sktada¢ si¢ z wielu warstw, a informacje przeptywaja w jednym kierunku. Drugi typ struktury
to sieci rekurencyjne, w ktorych nastgpuje przeptyw informacji w dwoch kierunkach,
sprzezenie zwrotne oraz wystepuja W ich pracy przebiegi dynamiczne [77]. Przyktadami sieci
rekurencyjnych sg sieci Hopfielda (znane z tzw. ,,Problemu Komiwojazera” [78], czyli
rozpoznawania obrazéw z dziedziny medycyny), maszyna Boltzmana, sieci BAM
(Bidirectionxl Associxtive Memory), oraz sieci ART (Adaptive Resonance Theory). Trzeci typ
struktury, czyli sieci komorkowe, w ktorych kazda komodrka potaczona jest ze wszystkimi
neuronami, ktore znajduja si¢ w jej sasiedztwie, jednoczesnie wszystkie neurony posiadaja takg
samg funkcje aktywacji. Kolejne struktury to sieci radialne (RBF), majace dwuwarstwowa
strukture, W tym warstwe ukryta realizujgca, przez neurony radialne funkcje bazowa,
odwzorowujaca liniowo. Zastosowanie ich zamiast sieci MLP (opisanej doktadniej ponizej)
spowoduje, ze sie¢ neuronowa odnajdzie aproksymacje, ktora bedzie lepiej dopasowana, do
lokalnych wtasciwosci zbioru danych ale bedzie miata gorsza zdolnos¢ do ekstrapolacii,
ponadto sie¢ ta wykazuje nadmierng wrazliwos¢ na nawet najmniejsze btedy w danych [79], co
w przypadku modelowania proceséw odlewniczych stanowitoby duzy problem. Kolejna
struktura to sieci uogdlnione GRNN (ang. Generalized Regression Neural Network) sie¢
neuronowa realizujaca regresj¢ uogo6lniong, gdzie liczba neurondéw radialnych jest rowna
liczbie punktow uczacych [80]. Ostatnie z omawianych to sieci probabilistyczne PNN (ang.
Probabilistic Neural Network), ktore stuza do klasyfikacji danych, na podstawie funkcji
decyzyjnej. Sie¢ ta sktada si¢ z minimum trzech warstw: wejsciowej, radialnej i wyjSciowe;.

Warstwa radialna zawiera neurony radialne, ktore reprezentuja funkcje radialng z centrum nad
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swoim przypadkiem uczacym. Warstwa ta zawiera tyle neuronow ile wzorcoOw znajduje si¢ w
ciggu uczacym [81]. Nalezatoby wspomnieé, ze jedng z najbardziej popularnych struktur
sztucznych sieci neuronowych sg jednokierunkowe sieci liniowe, stanowigce najprostszy model
neuronowy, w ktérych funkcja aproksymujgca stanowi hiperptaszczyzng, dodatkowo
optymalizacja takiego modelu jest uproszczona i polega na znalezieniu pochylenia i potozenia.

Najpopularniejsza architektura sieciowa wigze si¢ z koncepcjg sieci jednokierunkowej a
doktadniej  perceptronem  wielowarstwowym [82], [83]. Sie¢ jednokierunkowa
wielowarstwowa jest najczeSciej wykorzystywana do modelowania  procesow
technologicznych [74]. Wspomniany perceptron wielowarstwowy (ang. Multilayer Perceptron,

klasy MLP), to sie¢ sktadajaca si¢ z neuronéw utozonych w warstwy (rys. 2.5.1.).

Rys. 2.5.1. Schemat perceptronu wielowarstwowego [84]

Posiada warstwe wejSciowa, w ktorej neurony obliczaja wazong sume swoich wejsé, ktora
nastepnie staje si¢ argumentem funkcji przejscia celem obliczenia w kolejnej warstwie wyjscia
neuronu, warstwy ukryte i warstwe wyjsciowa. W warstwie ukrytej najczesciej znajduja sig
neurony McCullocha-Pittsa. Okreslenie wihasciwej liczby warstw ukrytych oraz liczby
neuronow ukrytych w poszczegdlnych warstwach jest problemem ogdlnym i swego rodzaju
wyzwaniem dla tworcy sieci. Sygnaly czy informacje w tej sieci przesylane sa w jednym
kierunku od wejscia do wyjscia, bez zadnych sprzezen zwrotnych. Parametrami sieci sg
warto$ci progowe i wagi. Istnieje mozliwos¢ modelowania w oparciu 0 rozne funkcje, z
dowolnym stopniem ztozonosci przy uzyciu tych sieci, jednak wazne jest aby whasciwie dobraé
ich strukture, ktéra wptywa na ostateczng jakos$¢ prognozy, czyli jakos¢ modelu. Nalezatoby
wiec znalez¢é prostg strukture generujagca wyniki na pozadanym poziomie jakosci. Jak
wspomniano wczesniej prosty model (zawierajacy malg liczbe neuronéw ukrytych i malg liczbe
warstw ukrytych) powinien by¢ w stanie rozwigza¢ podstawowe problemy, jednak moze on

zbyt ogblnie opisa¢ pewne ztozone zaleznosci. Z drugiej strony ztozony model (zawierajacy
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duzg liczbe warstw ukrytych i wiele neuronéw ukrytych w tych warstwach) powoduje dtuzszy
proces uczenia si¢ sieci i moze wykazywac sklonnosci do nadmiernego dopasowania si¢ do
danych. Sztuczne sieci neuronowe sg stosowane aby po nauczeniu si¢ rozwigzywac zadania
podobne do tych do ktorych byta uczona (jednak nie identyczne z nimi). Przenoszenie zdobytej
wiedzy do rozwigzywania nowych przypadkéw nazywa si¢ generalizacjg. Glownym
zagrozeniem dla zdolnosci sieci do generalizacji jest jej przeuczenie, wystepujace wskutek
nadmiernego dopasowania do mniej istotnych szczeg6low, niemajacych znaczenia w
rozwigzaniu danego problemu. Taki przewymiarowany model ma sklonnosci do uczenia si¢
danych ze zbioru uczacego na pamieg¢. Celem kontroli tego problemu tworzy si¢ zbiory

walidacyjne [85] (rys.2.5.2.).

Y e- Przypadki uczace y ©-Przypadki uczace
@ - Przypadki walidacyjne ® - Przypadki walidacyjne

Sie¢ zachowujgca dobrg Siec ktora utracita zdolnos¢
zdolno$c¢ generalizacji generalizacji

Rys. 2.5.2. Porownanie wykresow sieci zachowujacej zdolnos¢ do generalizacji i sieci z
utracong zdolnoscig do generalizacji [85].

W publikacji [86], stwierdzono iz badania wskazuja, ze nie ma uzasadnienia do
zastosowania wigcej niz jednej warstwy ukrytej, poniewaz nie wplywa ona na zwigkszenie
jakosci wyniku, a jedynie komplikuje model. Obecnie istnieje wiele teorii dotyczacych
sposobow doboru struktur sieci, jednak mozna podsumowac, iz do kazdego rozpatrywanego
problemu, czy przypadku, powinno si¢ podej$¢ indywidualnie i dobra¢ wtasciwe parametry w
oparciu o badania. Postuzy¢ do tego moze procedura walidacji krzyzowej lub podzielenie
zbiorow danych na dwa zbiory trenujacy (stuzy do korygowania wag sieci) i testowy (stuzy do
biezacych obliczen bledu dla innych danych aby sprawdzi¢ zdolno$¢ danej sieci do
generalizacji), nastepnie porowna¢ wyniki prognoz dla réznych struktur dla zbioru testowego a
po trenowaniu sieci dla zbioru trenujgcego. Problem wiasciwego doboru struktury dotyczy
réwniez niniejszej rozprawy doktorskiej 1 wplynaglt w znacznym stopniu na realizacj¢ badan,
podczas ktorych dobierano indywidualne plany badan dla kazdego badanego zbioru danych

doswiadczalnych pochodzacych z rzeczywistego procesu. Nalezy jednak pamigtac, ze dane
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procesowe (szczegdlnie pochodzace z odlewni) mogg posiada¢ niedobory danych. Trudno jest
réwniez wybra¢ z nich zbior danych najlepszych jakosciowo, aby wytypowac dane do zbiorow
walidujacych i testujacych. Dlatego tez czesto pomija si¢ te zbiory w procesie uczenia si¢ sieci
jezeli nie ma koniecznosci ich tworzenia. Jednak w niniejszej rozprawie sprawdzono rowniez
jakos¢ prognoz dla modeli zawierajacych zbior walidujacy 1 testujacy. Podczas uczenia nalezy
rowniez prowadzi¢ stale obserwacje stopnia dopasowania zbioru danych uczacych i
walidujacych sztucznej sieci neuronowej, aby nie pozwoli¢ na nadmierne jej przeuczenie.
Proces uczenia sieci typu MLP mozliwy jest poprzez zastosowanie metody wstecznej
propagacji bledéw (ang. Backpropagation), polegajgcej na uczeniu si¢ poprzez propagacije

réznicy migdzy otrzymanym sygnatem na wyjsciu sieci a oczekiwanym [85] (rys. 2.5.3).

Metoda propagacii wstecznej biedu
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Rys. 2.5.3. Przyktadowy przebieg korekt btedu sieci w kolejnych iteracjach [69]

Celem catego procesu uczenia si¢ sieci jest poznanie ukrytej wiedzy znajdujacej si¢ W
danych, czyli pewnych szczegoétowych informacji a nastepnie dzigki temu mozliwosé
rozwigzania probleméw czy zadan podobnych do tych, przedstawionych sieci w procesie jej
uczenia si¢, czyli wnioskowanie o ogo6lnych prawidlowosciach. Dlatego tez jak wcze$niej
wspomniano proces uczenia sieci neuronowej to w istocie proces minimalizacji funkcji btedu.
Podczas tej minimalizacji jest niestety szansa, ze otrzymane zostanie minimum lokalne, zamiast
minimum globalnego, wigc sie¢ bedzie btednie aproksymowac dane wyjsciowe (rys. 2.5.4.)
[85], [87], [88].

&

y

Rys. 2.5.4. Minimum globalne i minima lokalne [48]
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Celem zapobiezenia blednemu okreSleniu minimum funkcji biedu wykonywana jest
optymalizacja funkcji wielu zmiennych (czyli rownej liczbie wag synaps i wyrazéw wolnych).
Nalezy znalez¢ odpowiednie warto$ci wag sprawiajacych, ze warto$¢ $redniokwadratowego
btedu E dla wszystkich odpowiedzi sieci byla mniejsza w stosunku do obserwacji
doswiadczalnych (2.3). Kazdorazowe obliczenie btgdu i modyfikacja wag nazywana jest epoka

[69].

5

k=1

S| -

1 m
2
o Z(dkj ~ Yi)
j=1

(2.3)

gdzie:
— E — warto$¢ bledu sredniokwadratowego
—m — liczba wyj$¢ sieci
— p — liczba prezentacji, czyli rekordow obserwacji do§wiadczalnych
— d —wartosci doswiadczalne
— Y —warto$ci otrzymane z sieci
Optymalizacje mozna wykona¢ przy pomocy réznych metod, przyktadowo moze si¢ to
odby¢ poprzez wykorzystanie algorytmu genetycznego [85], metod gradientowych (najczesciej
stosowanych), w ktorych koryguje si¢ wczesniej ustalony zbior warto$ci wag (rys. 2.5.5.), dazac
do zmniejszenia bledu sieci i metod poszukujgcych minimum globalne bledu (rzadko

stosowane) np. metod¢ wyzarzania symulowanego (rys. 2.5.6.) i metody ewolucyjne [87].

* Wylosowany punk
startowy

Biad sieci

» Osiggniete najblizsze
minimum btedu

Wartosci wag sieci

Rys. 2.5.5. llustracja metod gradientowych [69]
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Rys. 2.5.6. Ilustracja metod wyzarzania symulowanego [69]

Kolejnym problemem jest decyzja kiedy zakonczy¢ trenowanie sieci. Mozna przyjac, ze
koniec procesu uczenia sieci nastgpuje, gdy zaczyna wzrasta¢ warto$¢ btedu dla danych
weryfikujacych. Gtownie dlatego aby nie dopusci¢ do wspomnianego nadmiernego
dopasowania si¢ sieci neuronowej do danych uczacych, co spowodowatoby brak zdolno$ci do
generalizacji, czyli prognoz dla innych danych. Jest to bardzo wazne, poniewaz jak juz
wspomniano jednym z glownych zadan sztucznych sieci neuronowych jest nauka wzorcow i
przewidywanie na podstawie danych, ktorych sie¢ wezesniej nie widziata.

Perceptron wielowarstwowy MLP ze wzgledu na najszerzej stosowang sie¢ neuronows,
wykorzystywana przez wigkszo$¢ badaczy [89], jednocze$nie oceniang jako najbardziej
wilasciwa do rozwigzywania problemow zwigzanych z odlewnictwem [42], stanowi jedyna
strukture uzyta do badan prowadzonych w ramach niniejszej rozprawy.

Sztuczne sieci neuronowe zostaly stworzone do realizacji paru rodzajow zadan, z
ktorych do modelowania procesow produkcyjnych w tym odlewniczych wykorzystywane sa do
zadan, takich jak klasyfikacja, regresja, predykcja i wykrywanie wzorcow [69]. Klasyfikacja
polega na dopasowaniu do odpowiednich klas, przypadkow reprezentowanych przez dane.
Zadania klasyfikacji najczesciej realizuje si¢ przy uczeniu bez nauczyciela, czyli bez wartosci
wyjsciowych, ktore sa wykorzystywane w metodach uczenia opisywanych powyzej.
Klasyfikacja realizowana jest przez wykorzystanie nominalnej zmiennej wyjsciowej, dla ktorej
warto$ci odpowiadajg danym klasom, do ktorych mozna przyporzadkowac wartosci wejsciowe.
Regresja, inaczej nazywana aproksymacja (nieznanej) funkcji wielu zmiennych bazujaca na
obserwacjach do§wiadczalnych wykorzystywana jest do okreslenia warto$ci cigglej zmiennej
wyj$ciowej w oparciu o posiadane wartosci zmiennych wejSciowych [69]. Jako rozwigzanie
sie¢ podaje konkretng warto$¢, co wigze si¢ z pdzniejszym skalowaniem i ekstrapolacja.
Skalowanie, moze by¢ wykonane poprzez normalizacje danych wej$ciowych i wyjsciowych,
czyli umieszczenie ich w jednym przedziale np. od 0 do 1. Niestety w momencie kiedy dane
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zostang poddane skalowaniu nie b¢dzie mozliwosci ekstrapolowania wykresu cigglej warto$ci
wyjsciowej poza zakres danych uczacych. Sie¢ moze rozwigzaé takie zadanie, jednak poda
wynik nasycenia. Mimo r6znych metod radzenia sobie z tym zjawiskiem [88], ogolnie przyjeta
zasada mowi, ze ekstrapolacja nie powinna wykracza¢ poza odpowiednig odlegto$¢ [42].
Kolejne z gtownych zadan sieci to predykcja, czyli zdolnos¢ do przewidzenia, czy prognozy
przysztych warto$ci lub zachowan systemu okreslone w oparciu o wartos$ci historyczne z ciagta
adaptacjg wag. Ostatnie czyli wykrywanie wzorcoéw, ktdre jest uczeniem nienadzorowanym,
niewymagajacym zbioru uczacego sktadajacego si¢ z danych wejsciowych i do§wiadczalnych
danych wyjsciowych. Wykrywanie wzorcow umozliwia zgrupowanie sygnalow
charakteryzujgcych podobne cechy (np. sieci typu Kohonena) [69].

W niniejszej rozprawie doktorskiej gtownym zadaniem sztucznych sieci neuronowych
bedzie predykcja warto$ci wyjsciowych oraz dalsza analiza wynikow celem ustalenia wptywu
zmiennych wej$ciowych na wartosci zmiennej wyjsciowej. Jak wezesniej wspomniano badania
zostang oparte na strukturze MLP, rekomendowanej przez wielu autoro6w do zadan zwigzanych

z wytwarzaniem, a doktadniej odlewnictwem.

2.6. Metodyka gromadzenia i przygotowania danych do zaawansowanego

modelowania

Nadrzedny cel wszelkiej nauki to poznawanie, rozumienie 1 wyjasnianie czy opisywanie
Swiata. Otaczajaca nas rzeczywistos¢ jest jednak zbyt skomplikowana, aby mogta zosta¢
opisana z najwyzsza doktadnos$cia, unikajac uogolnien czy przyblizen. Dlatego tez celem
zbudowania jak najdoktadniejszego opisu uwzglednia si¢ aspekty, ktore maja najwyzszy wplyw
na okreslone zjawisko. Pozostate czynniki mogg woOwczas zosta¢ pominigte. Faza
wyabstrahowania istotnych czynnikOw 1 pominigcia tych nieistotnych z punktu widzenia
danego zjawiska okazuje si¢ by¢ najwazniejsza faza poznania danego zjawiska. Wazne dlatego
jest poznanie pewnych zasad 1 mechanizméw wptywajacych na okreslony obiekt badan, czyli
stworzenie swego rodzaju modelu [90], ktory bedzie stanowil reprezentacj¢ konceptualng lub
umystowa, okreslonego systemu formalnego lub aksjomatycznego, spetniajaca wszystkie jego
formuly matematyczne, czy reguly stuzace do jego opisania. Modele te moga by¢ nazywane
modelami matematycznymi [91]. Odnoszac si¢ do definicji modelu mozemy podsumowac, ze
modelowaniem nazywamy proces tworzenia reprezentacji danego zjawiska, czy systemu.
Odpowiednia adekwatno$¢ modelu zwigzana jest bezposrednio z jego jakoscia [90].

Opisywany proces tworzenia reprezentacji danego zjawiska ma swoje odzwierciedlenie w
opartym na danych modelowaniu, przyczyn powstawania wad wyrobow, gdyz na poczatku
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tworzenia modelu wazne jest, aby przeanalizowa¢ nastgpujace elementy. Po pierwsze nalezy
okresli¢ strategie tworzenia zbiordw uczacych oraz parametry produkcji i wtasciwosci wyrobu
czy materialty uzyte do jego produkcji decydujace o powstawaniu wady wyrobu. Istotng
trudnoscig jest pozyskanie tych informacji, gdyz nie zawsze s3 one zawarte w instrukcjach
technologicznych, czy ogdlnie w istniejacej dokumentacji stanowiskowej. Na tej podstawie
nastgpnie nalezy wybra¢ jedynie istotne parametry majace albo mogace mie¢ duzy wplyw na
powstawanie wady wyrobu.

Kolejnym waznym elementem jest podjecie decyzji, ktore wartosci traktowac jako zmienne
zalezne (wynikowe, czyli sygnaty wyjSciowe), a ktore jako zmienne niezalezne (sygnaly
wejsciowe). Istotnym zadaniem pojawiajacym si¢ w niniejszej rozprawie jest otrzymanie
doktadnego odwzorowania relacji bodziec reakcja, czyli relacji wejscie wyjscie dla
modelowanego procesu, bez szczegdtowego wyjasniania jego whasciwosci. Modele takie jak
juz wspomniano w poprzednich rozdziatach nazywamy modelami typu czarnej skrzynki (ang.
black-box). Podejscie tego typu umozliwi odpowiednie zasymulowanie procesu, celem
otrzymania przewidzianego stanu wyrobu (informacje, czy dany wyrdb posiada wadg, czy nie),
jednak nie proponuje doboru parametrow technologicznych, celem uzyskania wyrobu o
okreslonych wilasciwosciach. Dlatego tez praktykuje si¢ wykorzystanie jako wartosci
wejsciowych wihasciwosci wyrobow oraz jako warto$ci wyjsciowe, wynikowe parametry
procesu nalezne do zastosowania. Tego typu plan modelowania oparty na danych, znajdzie
swoje zastosowanie przyktadowo w ustalaniu koniecznej ilosci dodatkow odswiezajacych do
mas formierskich, kiedy znany jest jej aktualny sktad oraz wtasciwosci [42]. Warto zauwazy¢,
ze nie wszystkie wskazania sieci beda mozliwe do wprowadzenia, gdyz czasami nie ma
mozliwo$ci zmiany danych parametréw albo zmiany ilo$ci uzytych surowcow, wtedy
modelowanie procesu tego rodzaju nie jest uzasadnione. Przyktadowo w procesie wytopu
wplyw na sklad chemiczny kapieli moze by¢ ograniczony, w zaleznosci od materialow
wsadowych. Uzasadnione wtedy jest stworzenie sieci wedlug pierwszego podejscia i
dodatkowo celem uzyskania dodatkowych informacji o parametrach procesu nalezy
przeprowadzi¢ symulacj¢ wielokrotnego odpytywania sieci. Optymalizacja warto$ci
wejsciowych do sztucznych sieci neuronowych w okreslonych przez uzytkownika zakresach,
jest mozliwa dzigki wybranym programom komputerowym, na przyktad za pomoca dodatku
Solver, do programu Microsoft Excel, ktore zostalo wykorzystane 1 opisane w kolejnych
rozdzialach niniejszej rozprawy.

Gromadzenie danych przemystowych, w tym przypadku danych dotyczacych procesu

odlewania jest znaczng trudnoscig. Warto zauwazy¢, ze dane przemystowe maja swoja
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specyfike 1 mozna je odrézni¢ od innych danych pochodzacych z réznych obszaréw badan i
zastosowan naukowych. Dane te posiadaja swoje cechy, ktorych jednoczesne
wspotwystepowanie jednoznacznie wyroznia tego typu dane od innych. Istotna cecha danych
przemystowych, to ich objetos¢, gdyz zawierajg one nie tylko duza liczbg obserwacji ale tez
duzo parametrow charakteryzujacych pojedynczg obserwacje [90]. Przyktadowo dla maszyn
wyposazonych w systemy typu SCADA zbiory danych przemystowych zawieraja miliony
rekordow. Jezeli dodatkowo rozpatrzymy proces tworzenia zaawansowanego produktu, ktory
moze by¢ wytwarzany w wielu operacjach, gdzie kazda dostarcza wielu parametréw, powoduje,
ze bazy danych zawierajg setki atrybutow, ktére w polaczeniu z milionami obserwacji tworzg
ogromne zbiory danych (ang. Big Data) [90].W przypadku przemystu odlewania gromadzenie
danych przemystowych jest znacznie utrudnione, poniewaz standardowy proces produkcyjny
odlewu sktada si¢ w przyblizeniu ze stu parametroéw mogacych mie¢ znaczacy wplyw na jego
przebieg. Odkrycie zalezno$ci migdzy tymi parametrami jest wysoce skomplikowane i prawie
niemozliwe, szczegolnie w przypadku parametréw pochodzacych z roznych etapéw produkcji
odlewu. Oprécz wyzej opisanej objetosci danych, druga zauwazona cecha charakteryzujaca
dane przemystowe, to ich bezposrednia zalezno$¢ od czynnika ludzkiego Iub od czynnosci
kontrolnych lub pomiarowych wykonywanych w trakcie procesu produkcyjnego [90].
Zalezno$¢ procesu od wplywu ludzkiego polega na bezposrednim wpltywie cztowieka na
wytwarzany produkt lub na polprodukty uzyte do wytworzenia ostatecznego produktu.
Wspomniana zalezno$¢ od czynnosci kontrolnych lub pomiarowych zalezy od jakosci wskazan
aparatury kontrolno-pomiarowej. W obu przypadkach, mozna zauwazy¢ tworzenie si¢
niezwykle szerokich albo bardzo ograniczonych zakresow wartosci okre$lonych parametrow
procesu. W praktyce, proces odlewania, proces kontroli jakosci i wytwarzania odlewow, (z
ktorych kazdy posiada wlasny uktad wlewowy, indywidualng mas¢ rdzeniowa 1 mase
formierska), przebiega w rdéznych warunkach i obstugiwany jest przez wielu pracownikéw,
pracujacych w réznych komorkach 1 dziatach. Istnieje wigc szansa, ze jest wysoce zalezny od
wplywu operatorow, oraz od wskazan aparatury kontrolno-pomiarowej, co zostanie rozwinigte
w badaniach realizowanych w ramach niniejszej rozprawy doktorskiej. Kolejng potwierdzona
w niniejszej rozprawie cecha danych przemystowych to zauwazalne czeste wspotwystepowanie
obserwacji réznigcych si¢ o jeden, dwa, a nawet wigcej rzedow wielkosci (np. zawartosé
okreslonego pierwiastka w roznych stopach zeliwa) [90]. Nastgpna cecha zwigzana z poziomem
pomiaru dotyczy istnienia w zbiorze danych do badan, wielu typow skali pomiarowych, takich
jak skala nominalna (np. nazwy surowcow, nazwy brygad), skala porzadkowa (np. kolejnos¢

probek pobranych do badan), skala przedziatowa (np. daty pobrania danej probki) [90]. Ostatnia
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cecha danych przemystowych konieczna do przywotania to niedoskonato$¢ danych polegajaca
na wystgpowaniu brakujacych wartosci, btednych wartosci (widocznych na wykresach
przebiegu zmiennych oraz ukrytych np. bledow pomiarowych), wartosci odstajacych,
nieprecyzyjnych lub niedokladnych, oraz duplikujacych si¢ wartosci. Cecha ta powoduje
konieczno$¢ przeprowadzenia procesu czyszczenia danych (ang. Data Cleaning), z
wykorzystaniem zaawansowanej wiedzy o procesie. W tym przypadku dobrze znane narzedzia
statystyczne moga okaza¢ si¢ niewystarczajace lub niecodpowiednie. Opis przeprowadzonego
procesu czyszczenia danych rozszerzono w rozdziale 5.2.1..

Waznym punktem jest rOwniez zwrocenie uwagi na mozliwos$ci zbierania danych w czasie
rzeczywistym przez przedsigbiorstwa produkcyjne. Obecnie znane jest wiele systemow i
rozwigzan umozliwiajacych gromadzenie wynikéw i wykonywanie pomiaréw wybranych
istotnych parametrow technologicznych procesu odlewania. Czasami pomiary wymagaja
organizacji dodatkowych proceséw kontroli i manualnych badan prowadzonych przez zaloge
odlewni Iub automatycznych badan jedynie nadzorowanych. Takie pomiary to mi¢dzy innymi
warto$¢ temperatury i czasu zalewania, badania metalograficzne, analiza sktadu chemicznego
wytopu, oraz analiza wlasciwos$ci mechanicznych. Automatyczny monitoring warunkéw
klimatycznych czyli temperatury i wilgotnosci powietrza w obszarach formowania i
przygotowywania mas formierskich. Fakt zbierania danych $wiadczy o braku problemu z
samymi pomiarami, czy ich przesytaniem i zapisem. W badanym procesie wystepuje inny
problem, ktorym jest identyfikacja zapisanej obserwacji i konkretnym fizycznym odlewem.
Obecnie punktem odniesienia moze by¢ dana seria produkcyjna, co istotnie utrudnia szybka
identyfikacje przyczyn powstawania wad wyrobow. Zbierane dane mogg by¢ rowniez
usredniane, co tez moze powodowac problemy z wydobywaniem wiedzy z danych.

Budowa modeli na podstawie metod uczenia maszynowego wykorzystujacych dane
rzeczywiste pochodzace z proceséw produkcyjnych stanowi pewnego rodzaju wyzwanie.
Powoduje to wiele czynnikdéw, miedzy innymi samo ich zebranie moze by¢ trudne, nastgpnie
nalezy zwroci¢ uwage z jakiego okresu pochodza dane, czy jest on referencyjny, a wiec czy
dane reprezentuja w odpowiedni sposob caty badany proces produkcyjny. Nalezy zwrocié
uwage czy zmienno$¢ danych nie jest zbyt wysoka, czy nie wystepuja nietypowe przerwy
czasowe pomigdzy obserwacjami, czy zbierane dane sg powigzane z produkowanym wyrobem
na wszystkich etapach przeplywu, tak aby warunki procesu byly powigzane z jego jakoscig
[92]. Odlewnie daza wiec do budowy coraz dokladniejszych systemow zbierajacych
szczegOlowe dane online, gdyz monitoring ten mim, ze jest kosztowny, to przynosi realne

korzy$ci. Zwigzane jest to z coraz powszechniejszym stosowaniem zaawansowanych metod
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modelowania bazujacych na systemach uczacych sie. W wyniku im lepsze i doktadniejsze dane
beda posiadad przedsigbiorstwa produkcyjne tym lepsze i doktadniejsze wyniki 1 wnioski moga

z nich otrzymac.
2.7.  Przyklady zastosowania SSN w procesach wytwarzania

Rozwdj metod sztucznej inteligencji pozwolil na coraz powszechniejsze stosowanie
sztucznych sieci neuronowych w sektorze produkcji. Nawigzujac do cigglych zmian procesow
produkcyjnych wynikajacych ze zmian potrzeb klientow ostatecznych, a wiec miedzy innymi
popytu na dane produkty oraz skroceniu cyklu zycia produktu, obszar ten wymaga
zastosowania metod i technologii, ktore sg w stanie tatwo dostosowywac si¢ do takich zmian.

W opisywanym kontek$cie SSN stanowig odpowiednig technologie, gdyz sa zdolne do
radzenia sobie z zakloceniami, niepelnymi i znieksztatlconymi danymi, ponadto sg zdolne do
uczenia si¢ 1 tworzenia przyblizonych regut ekspertowych na bazie przyktadowych zestawow
danych, co pozwala unikng¢ czasochtonnych badan wykonywanych bezposrednio przez
ekspertow. Dodatkowo sg one od dawna stosowane do proceséw decyzyjnych [93],
projektowania, monitorowania i identyfikacji [94], [96], [26], [95], [97], planowania [98] i
kontroli [97], [99] procesow wytworczych. Jest to trudne zadanie, gdyz ztozono$¢ procesow
produkcyjnych jest czesto wysoka, procesy sa opisywane przez wiele zmiennych parametrow,
w ktorych wartoSciach mogg wystepowacé zaklocenia. Dlatego w wielu przypadkach bardzo
trudne jest zdiagnozowanie zaleznos$ci mi¢dzy jakoscig produktu ostatecznego a wartosciami
parametrow wejsciowych. Autorzy zwrdcili szczegdlng uwage na elastycznos¢ i ztozonos¢
metody SSN, oraz mozliwo$¢ skutecznej integracji jej z innymi metodami inzynierii produkcji.

Przechodzac do procesé6w odlewniczych, ktorych modelowanie z zastosowaniem
zaawansowanych metod uczacych si¢ jest uzasadnione przez ztozony charakter tych procesow.
Poczatkowym celem tworzonych modeli byta predykcja wartosci wyjsciowej w oparciu o
zmieniajace si¢ wartosci parametrow wejsciowych. Tego typu badania wykonywane byty przy
uzyciu metod opartych na twierdzeniu Bayesa, na metodach statystycznych lub logice
rozmytej, jednak najbardziej powszechne byty sztuczne sieci neuronowe. Wzrost oczekiwan i
wymagan spowodowal, ze chciano juz nie tylko przewidywac warto$§¢ zmiennej wyjsciowej,
ale zaczgto stosowac metode SSN do poznawania przyczyn wystepowania okreslonych sytuacji
1 zjawisk w procesach wytworczych. Nadal jednak te zastosowanie stanowi nie do konca
rozpoznany obszar, bedac jedynie uzupelieniem do klasycznych celow metody, czyli
prognozowania wynikéw. Z tego powodu naukowcy poswigcili wiele publikacji zagadnieniom
zwigzanym z zastosowaniem SSN do odkrywania wiedzy z danych.
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Publikacjg takg jest artykut [100] po$wigcony zastosowaniu metody SSN do rozwigzywania
probleméw o wysokiej ztozono$ci bez mozliwosci stosowania pewnych uproszczen. Autorzy
zaznaczyli, ze tworzone modele fizyczne maja mozliwo$¢ opisu klasy obserwacji oraz
umozliwiajg prognozowanie tatwe do weryfikacji, jednak w wielu ztozonych problemach tego
typu modele nie istniejg. Waznym odniesieniem jest praca [101], w ktorej rozwazono wady i
zalety metody SSN, z szczegdlnym nawigzaniem do zastosowania metody do zadan
klasyfikacji 1 regresji nieliniowej. Praca byta znaczaca, poniewaz autorzy przedstawili opis
procesu za pomocg funkcji, zawierajacej zdefiniowane wspdtczynniki wynikajace z wag sieci.
Zaznaczajac, ze procesy te nie sg juz czarng skrzynka, co w kolejnych publikacjach zostato
wielokrotnie podwazone. Nastepna istotna praca [102], w ktorej autorzy probowali wykry¢
btedy w procesach produkcyjnych w trakcie przejsciowych faz procesu, uzywajac
wielowarstwowych jednokierunkowych SSN. Gtéwnym celem pracy byto stworzenie metody
odnoszacej si¢ do wielu proceséw przemystowych. W publikacji poréwnano rézne typy SSN
wskazujac sie¢ typu MLP jako lepsza od pozostatych, zaznaczajac szczegélnie jej wysoka
odpornos¢ na zakldcenia wystepujace w danych procesowych. Jedng z publikacji, ktorej celem
byto okreslenie zrodta wad odlewow byt artykut [103], w ktorym wskazano, ze istotng
trudnoscia, z ktora mialy radzi¢ sobie SSN jest wptyw wielu losowo zmieniajacych si¢
parametroéw na formowanie wady odlewu.

Kolejne publikacje w tematyce odlewania cisnieniowego dotyczyly [104] wykorzystania
SSN do przewidywania procentowej wartosci porowatosci w odlewach tworzonych ze stopu
aluminium z krzemem (Al — Si). Metoda SSN pozwolita na skorelowanie sktadu chemicznego
i szybkosci chlodzenia z warto$cig porowatosci odlewu. W tym samym roku powstata
publikacja [105], ktérej celem bylo zastosowanie metody SSN do symulacji zaleznoSci
parametrow procesu od czasu krzepnigcia czy powstawania defektu. Nastepnie w artykule [106]
zaproponowano generyczny model oparty o metode SSN do estymacji optymalnych wartosci
parametréOw procesu odlewania wysokocisnieniowego, obliczanych w czasie rzeczywistym. W
2009r. [107] pojawita si¢ publikacja, ktora zaproponowata system oceny odlewu pod wzgledem
okreslenia iloSciowego wystepowania wad powierzchniowych na podstawie metody SSN, ktora
skorelowala wady powierzchniowe z parametrami procesu. Autorzy, podobnie jak [108]
wykorzystali do badan algorytm wstecznej propagacji btedu do stworzenia sieci ztozonej z
trzech warstw, zawierajacej trzy neurony na wejsciu 1 jeden na wyjsciu oraz trzy do pieciu
neuronow w warstwie ukrytej. W publikacji [108] w oparciu 0 duze zbiory symulowanych
danych opisujacych proces odlewania wysokocisnieniowego, opracowano plan szkolenia SSN

przez wybor w sposob losowy zbiorow wartosci wejsciowych. Wykazano wowczas, ze defekty
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zwigzane z porowatoscig odlewow mogg by¢ spowodowane przez temperatury poczatkowe
stopu i formy i predkosci pierwszej i drugiej fazy. Jednak wyniki nie byly wystarczajace aby
wyjasni¢  wszystkie zjawiska zachodzace w rzeczywistym procesie odlewania
wysokocisnieniowego (HPDC), w ktéorym relacje pomiedzy zmiennymi procesu sg ztozone i
czesto ukryte. Kolejnym przyktadem jest [109] zastosowanie modeli predykcyjnych do
poprawy jakosci odlewow aluminiowych celem minimalizacji odpadéw produkcyjnych
spowodowanych wystepowaniem porowatosci. Autorzy zastosowali opracowane systemy
rozmyte optymalizowane algorytmem genetycznym i symulowanym wyzarzaniem.

Znaczna cz¢$¢ artykuldw rozwaza metod¢ modelowania proceséOw z wykorzystaniem
sztucznych sieci neuronowych. Metoda ta pozwala na uzyskanie wydajnosci predykcji na
bardzo wysokim poziomie dlatego tez zdominowata inne techniki zaawansowanego
modelowania opartego na danych. W zwigzku z tym w niniejszej rozprawie doktorskiej badania
rozpoczeto od zastosowania wiasnie tej metody zaawansowanego modelowania opartego na
danych celem wykrycia przyczyn powstawania wad wyrobow. Warto rowniez zwroci¢ uwage
na mozliwos$ci prowadzenia badan z wykorzystaniem technik hybrydowych taczacych w sobie
rézne metody modelowania, ktore moga prowadzi¢ ku zwigkszeniu doktadnosci
przewidywania okre$lonego parametru.

Analiza literaturowa kazdorazowo pozwala zrozumie¢ temat z wielu stron i pod wzgledem
wielu aspektow. W przypadku niniejszej rozprawy doktorskiej analiza ta pozwolita na poznanie
historii powstawania i rozwoju sztucznej inteligencji oraz zrozumienie obecnych trendow
stosowanych w r6znych sektorach przemystu jednak ze skupieniem si¢ na sektorze produkeji i
wytwarzania a dokladniej na procesie odlewania wysokocisnieniowego. Najwazniejsze
techniki zaawansowanego modelowania opartego na danych zostaty uwzglgdnione w analizie
literaturowej celem wskazania ich kluczowej i waznej roli w przemysle produkcyjnym w

ostatnich dwoch dekadach.
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3. Drzewa decyzyjne
3.1.  Wprowadzenie

Historia powstania drzew decyzyjnych sigga 1963 roku, kiedy to Morgan 1 Sonquist na
Wydziale Statystyki Uniwersytetu Wisconsin-Madison zaproponowali nowg metode
dopasowania drzew regresji do przewidywania wartosci zmiennej ilo$ciowej. Ten pierwszy
analityczny algorytm, nazwany zostal AID, jako skrét od angielskich stow ,,Automatyczne
Wykrywanie Interakcji” (ang. Automatic Interaction Detection) [110]. Nastepnie w 1966 r.
Instytut Informatyki Politechniki Poznanskiej zaprezentowat jedng z pierwszych publikacji na
temat modelu drzewa decyzyjnego autorstwa Hunta [111]. W psychologii wowczas metode
drzew decyzyjnych wykorzystywano do modelowania koncepcji ludzkiego uczenia sig.
Badajac umyst cztowieka, naukowcy odkryli, ze algorytm drzew decyzyjnych moze by¢
przydatny w technikach programowania [112]. Kolejnym waznym krokiem byto pojawienie si¢
w 1973 r. pierwszego drzewa klasyfikacyjnego w projekcie THAID, autorstwa Messagera i
Mandella, stanowigcego rozszerzenie metody AID. Rok pdzniej profesorowie nauk
statystycznych Breiman i Stone z Berkeley oraz Friedman i1 Olshen ze Stanford rozpocz¢li
rozw¢j algorytmu drzewa klasyfikacji 1 regresji (CART), w 1977 r. opracowujac pierwsza
propozycje algorytmu CART.

W 1984 r. nastgpita swego rodzaju rewolucja Swiata algorytmoéw, gdyz oficjalnie
opublikowano oprogramowanie oparte na algorytmie CART. Od tamtego momentu drzewa
decyzyjne staty si¢ jednym z najczgsciej stosowanych metod analizy danych. Dwa lata pdzZniej
w 1986 r. John Ross Quinlan zaprezentowat nowa koncepcje wprowadzajaca mozliwosé
stworzenia drzewa z wieloma odpowiedziami. Do tego czasu zakladano, ze wszystkie
algorytmy klasyfikacji drzew decyzyjnych moga mie¢ tylko dwie odpowiedzi na kazde pytanie
(zwane byty drzewami binarnymi) [113].

Metoda drzew decyzyjnych jako jedna z metod klasyfikacyjnych, ma na celu odkrycie
zaleznos$ci miedzy zmienng celu a zmiennymi objasniajagcymi zwanymi predykcyjnymi, tak jak
wigkszos$¢ metod budowy klasyfikatorow. Wspomniana zaleznos¢ zawarta jest w strukturze,
nazywanej modelem. Modele maja zadanie opisu i reprezentacji ukrytych w zbiorach danych
zjawisk oraz predykcji na podstawie wartosci atrybutoéw warunkowych, wartosci atrybutu

decyzyjnego. Utworzone modele w oparciu o zadania klasyfikacji dzielg przestrzen poprzez
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wyznaczenie granic migdzy klasami na obszary odpowiadajgce okreslonym klasom [114].
Proces klasyfikacji obejmuje dwa etapy, czyli uczenia oraz klasyfikacji wtasciwej [115].
Latwo wywnioskowaé, ze do zbudowania modelu predykcyjnego potrzebny jest zbior
obiektow, posiadajacych okreslone zmienne celu i zmienne predykcyjne. Taki zbidr nazywany
jest zbiorem uczacym, gdyz na jego podstawiec mozna przewidzie¢ warto$¢ zmiennej celu, dla
kazdej nowej wartosci zmiennej predykcyjnej. Tworzenie takiego modelu moze odbywac si¢
na przyktad przez wygenerowanie zestawu regut, badz drzew decyzyjnych, lub wlasciwego
okreslenia parametrow rozktadu (regresja). Drzewa regresji sa odmiang drzew decyzyjnych
opracowanych na podstawie zmiennych przyjmujacych wartosci ciagglte lub uporzadkowane
dyskretne. Zawieraja jedng zmienng wyjsciowa (numeryczng), nazywang odpowiedzig i jedng
lub wiecej zmiennych wejsciowych, nazywanych predyktorami. W wyniku dziatania drzew
regresji przewidziane warto$ci zmiennej wyjsciowej beda zawarte w koncowych weztach

drzewa decyzyjnego.
3.2.  Przyklady zastosowania DT w procesach wytwarzania

Metoda drzew decyzyjnych znajduje swoje zastosowanie w procesach decyzyjnych
dotyczacych ztozonych probleméw, z wieloma mozliwymi wariantami dzialania oraz
wystepujacych w warunkach wysokiego ryzyka. Ta zaawansowana metoda analizy danych
umozliwia reprezentacj¢ hipotez, poprzez utworzenia graficznej reprezentacji badanego
procesu lub zjawiska klasyfikujacego skutecznie badane obserwacje. Stworzone drzewo
zawiera wowczas jak najmniejszy btad predykcji 1 ma jak najbardziej zoptymalizowany
rozmiar.

Drzewa decyzyjne wykorzystuje si¢ migdzy innymi w ekonomii 1 bankowosci do analizy
zdolnosci kredytowej [116], [117], w przemysle do predykcji wydajnosci produkeyjnej [118],
w energetyce do planowania konsumpcji energii [119], w medycynie do pogle¢bionej
diagnostyki medycznej [120], [121] , do predykcji cen [122] i wielu innych. Drzewa decyzyjne
sg uwazane za tatwiejsze do interpretacji niz inne metody uczenia maszynowego. Struktura
drzewiasta utatwia sprawdzenie wynikéw zadan, pytan na kazdym poziomie utworzonego
drzewa. Metoda ta jest uznawana, roéwniez przez zdolnos¢ do analizy zmiennych zbioréw
danych, zawierajacych kategoryczne lub ciagle wartosci zmiennych, a nawet zawierajace braki
w danych [123].

W procesach wytwarzania a doktadniej w przemysle odlewniczym praca nad redukcja
wadliwych produktow byta zawsze tematem bardzo waznym ze wzgledu na prace nad ciggtym
doskonaleniem przedsigbiorstw. Obecnie dodatkowo wzmocniona przez zalozenia koncepcji
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Przemystu 4.0.. W 2022 roku autorzy artykutu [124] skupili si¢ na wpltywie parametrow
maszyny na defekty wystepujace w odlewach pochodzacych z procesu odlewania
wysokocisnieniowego. Skupiono si¢ na sprawdzeniu réznych technik modelowania opartych
na danych, sprawdzajac mozliwosci drzew decyzyjnych, regresji liniowej i lasow losowych,
wskazujgc drzewa decyzyjne jako metode zapewniajacg najlepsza skutecznos$¢. Autorzy
zaznaczyli jednak, ze temat zastosowania drzew decyzyjnych nadal wymaga poglebienia i
optymalizacji. Miedzy innymi z tego wzgledu znalazt on swoje zastosowanie w niniejszej
rozprawie doktorskiej.

Kolejng wazng publikacja byt artykul [125], w ktorym chciano stworzy¢ system
przewidywania i diagnozowania wad wyrobdéw celem pracy nad poprawg produktywnosci w
procesie odlewania. Autorzy postanowili poradzi¢ sobie z problemem z brakiem réwnowagi
danych stosujac metode lasow losowych oraz drzew decyzyjnych. Uzyskane doktadnosci
wskazywaly na duzy potencjal metody drzew decyzyjnych do wspierania procesow
decyzyjnych personelu inzynierskiego, celem pracy nad jakoscig odlewdw ci$nieniowych.

Artykut [126] wskazatl konieczno$¢ budowy inteligentnych fabryk nakierowanych na
doktadne gromadzenie danych, celem ich analizy i interpretacji przy uzyciu metod eksploracji
danych. Oczekuje si¢, ze wszystkie przedsigbiorstwa produkcyjne chcace poprawiaé swoje
wyniki beda przeksztatlcaé si¢ w inteligentne fabryki systematycznie wdrazajac nowe
rozwigzania mi¢dzy innymi wykrywanie optymalnych parametrow procesu celem na przyktad
ustalenia plandw zarzadzania produktami ubocznymi procesu. Autorzy uzyli migdzy innymi
metod¢ drzew decyzyjnych w stworzonym systemie zaawansowanego modelowania opartego
na danych, wskazujac t¢ metode jako wlasciwg do probleméw zwigzanych z zaawansowang
strukturg danych.

Zidentyfikowane przez autoré6w wady drzew decyzyjnych, to miedzy innymi brak
stabilnosci, czyli przy zmianie zbioru uczacego zmieniaja si¢ reguty decyzyjne ustalone w
wezlach drzewa decyzyjnego oraz stosunkowo niska skuteczno$¢, czyli wystepowanie w
ztozonych zbiorach danych pojedynczych drzew osiggajacych niska skutecznos$c
klasyfikowania [127]. Mimo to drzewa decyzyjne maja wiele zalet, przede wszystkim
pozwalaja na osiagganie coraz lepszych wynikéw zaawansowanych analiz, co wptywa na coraz
czestsze wykorzystywanie ich w procesach produkcyjnych. Liczne zastosowania metody do
rozwigzywania probleméw zwigzanych z procesem odlewania wysokoci$nieniowego wptyneto
na zastosowanie drzew decyzyjnych w niniejszej rozprawie celem zbadania przyczyn
powstawania wad w wyrobach a doktadniej w odlewach wytwarzanych w procesie HPDC.

Przebieg badan oraz wyniki i wnioski zostaty przedstawione w rozdziale 5.2.5..
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4, Maszyna wektorow wspierajacych
4.1. Wprowadzenie

Maszyna wektorow wspierajacych (ang. support vector machine) (SVM) stanowi metode
maszynowego uczenia nadzorowanego, ktora jest zdolna do identyfikacji ukrytych wzorcow w
zbiorach danych, ktore sg zaszumione i wysoce ztozone. Powstanie tej metody si¢ga potowy
XX wieku, kiedy to publikacja z 1950 r. [128] i prace Warrena McCullocha i Waltera Pittsa
[28] zainspirowaly Franka Rosenblatt do odkrycia w 1957 r. perceptronu, z ktérego miaty
narodzi¢ si¢ oraz doskonali¢ SSN. Po uplywie szesciu lat w 1963 r. Vapnik i Lerner ogtosili
,Uogodlniony algorytm portretowy” [129], ktory stanowil inspiracj¢ dla Bosera, Guyona i1
Vapnika, ktorzy w 1992 r. podczas konferencji COLT (Computational Learning Theory)
wprowadzili pojeciec SVM [130]. Nastgpnie Vapnik pracujac nad tg dziedzing statystyki,
prowadzil niezliczong ilo§¢ wybitnych wykladow, a w 1995 r., z udzialem Cortesa odkryt
miekki margines klasyfikatora. Zaktadat on, ze ograniczenie maksymalizacji marginesu linii
oddzielajacej klasy musi zosta¢ zrelatywizowane, aby niektore punkty w danych treningowych
mogly narusza¢ lini¢ rozdzielajacag. Dodatkowo w tym samym roku rozszerzyt jego
zastosowanie na analiz¢ regresji [131]. Trzy lata pdzniej Taylor, Shawe 1 inni w znaczacy
sposob uogodlnili metod¢ SVM z twardym marginesem klasyfikatora. W 2000 roku podali
réwniez granice statystyczne dla uogolnienia migkkiego marginesu SVM. Od tego czasu
metoda SVM zyskuje na popularnosci i jest wykorzystywana w wielu zastosowaniach,
opisanych w rozdziale 4.2..

Maszyna wektorow wspierajacych jest jednym z najpopularniejszych i bardziej ztozonym
klasyfikatorem, ktorego uczenie polega na znalezieniu hiperptaszczyzny, czyli swego rodzaju
granicy decyzyjnej, ktora rozdzieli przestrzen zmiennych wejsciowych przynalezacych do
dwoch roznych klas z najlepsza mozliwa zdolnoscia do generalizacji i zachowujac
optymalnos$¢. Dazac do zachowania przy tym maksymalnej warto$ci marginesu btedu, czyli
maksymalizuje margines separacji jednocze$nie minimalizujgc btad klasyfikacji [130]. Wazne
jest zapewnienie maksymalnej szerokosci marginesu wystepujacego pomigdzy probkami
pochodzacymi z roéznych klas (rys.4.1.1.). Celem maksymalizacji szerokosci marginesu
pomiedzy probkami pochodzacymi z roznych klas, nalezy zminimalizowa¢ parametry
hiperptaszczyzny. Szerszy margines daje mozliwo$¢ do osiagania lepszych wlasnosci
generalizacji oraz zmniejsza podatno$¢ na ewentualne przeuczenie (ang. overfitting). Wezszy

margines powoduje malg zmiane¢ granicy i radykalne zmiany klasyfikacji [132].
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Rys.4.1.1. Przyklad problemu podzielonego na dwuwymiarowg przestrzen z
optymalnym marginesem [131]

SVM realizuje zadania klasyfikacyjne, jednak mozna uzy¢ tej metody rowniez do regresji.
Buduje si¢ wowczas optymalng hiperptaszczyzne w iteracyjnym algorytmie uczacym,
minimalizujagcym funkcje bledu. Modele mozna rozrézni¢ ze wzglgdu na przynalezno$¢ do
czterech grup ustalonych wedtlug uzytej funkcji btedu, czyli typ pierwszy klasyfikacyjny, typ
drugi klasyfikacyjny, typ pierwszy regresyjny i typ drugi regresyjny [133]. W regresji typu
pierwszego i dugiego uzytych podczas badan niniejszej rozprawy szukana jest zaleznosc¢
zmiennej zaleznej a od zbioru zmiennych niezaleznych b, biorac pod uwage szum losowy.
Funkcja jest obliczana wedlug ponizszego rownania:

a = f(b) + szum losowy (4.2)

Celem tych funkcji btedu jest znalezienie postaci funkcji f(b), podajacej jak najbardziej
przyblizone warto$ci zmiennej zaleznej y dla nowych przypadkéw. Proces ten bazuje na
minimalizowaniu funkcji btedu co jest realizowane w oparciu o dwa typy regresji, obliczane z
dwoch roznych postaci rownania (5.2.) [131], [134].

B
m1r’1f EW w+C z &
i=1

w,b

yiw p(x) +b) 21—

(4.2))
§i=20
gdzie: wib —wspoétczynniki optymalnej hiperptaszczyzny,
¢ - funkcja jadrowa bazowa,
C - parametr wysokosci kary,
& - zmienna rozluzniajaca
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X - cechy wzorcow
y - 0znaczenia wzorcow
Zastosowano nast¢pujace funkcje jadowe dostepne w oprogramowaniu Statistica:

o liniowa, obliczang wg wzoru (5.3)

b = xix; (4.3)
o wielomianowa, obliczang wg wzoru (5.4)
¢ = (yxixj+1)%4y >0 (4.4)

o radialng (RBF), obliczang wg wzoru (5.5)

2
¢ = exp(—y|xi - xj| ), y>0 (45)

o sigmoidalng , obliczang wg wzoru (5.6)
¢ = tan(x;x; +71) (4.6.)

gdzie: yir — parametry funkcji jadrowych.

SVM sg stosowane powszechnie do zaawansowanej analizy poprzez klasyfikacj¢ duzych
zbiorow danych. Metod¢ t¢ mozna rozpatrywaé w trzech wariantach klasyfikatora SVM:
zawierajacego funkcje jadra, liniowego, dedykowanych dla klas separowanych oraz liniowego
z funkcja btedu dedykowanych dla klas nie w pelni liniowo separowanych. Metoda SVM
sprawdza si¢ lepiej niz pozostale metody uczenia maszynowego w braku nadmiernej
generalizacji, gdyz celem tej metody jest wlasnie zdolnos¢ do poprawnego klasyfikowania

danych.

4.2.  Przyklady zastosowania SVM w procesach wytwarzania

Metoda maszyn wektorow wspierajagcych (SVM) cieszy si¢ duzym zainteresowaniem w
roznych dziedzinach nauki. Stosowana jest celem prawidtowej klasyfikacji danych. Jej zalety
sa zwigzane z mozliwo$cig zastosowania do rozwigzywania problemow zaréwno o liniowym
1 nieliniowym charakterze, ponadto jest efektywna obliczeniowo, jej zlozonos¢ wzrasta wraz
ze wzrostem liczby wymiarow, modelowanie oparte na danych, jest stosunkowo szybkie,
ponadto jest ona w stanie poradzi¢ sobie z duzg liczba atrybutdw oraz matg liczbg przyktadow
uczacych [135]. Wszystkie te cechy wplywaja na zainteresowanie naukowcow aplikacja
metody w procesach wytwarzania.

Jedng z ostatnich prac zwigzanych z procesem odlewania wysokoci$nieniowego byla seria

artykutow [136], [137], [138], w ktorych podjeto probe zbadania wiasciwosci mechanicznych
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preta powstajagcego w procesie HPDC, podjeto tez probe klasyfikacji dobrych 1 ztych
produktow. Skupiono si¢ gltownie na sprawdzeniu relacji pomiedzy wytrzymatoscig na
rozciaganie 1 cechami procesu wytwarzania. Zgromadzono w tym celu duzy zbiér danych
obejmujgcy miesigce produkcji. W pracy wykorzystano metody zaawansowanego
modelowania oparte na danych, takie jak maszyny wektorow wspierajacych (SVM), lasy
losowe, regresje, sztuczne sieci neuronowe (SSN) i XGBoost, czyli algorytm uczenia
maszynowego, ktory wykorzystuje struktur¢ wzmacniajaca gradient. Oceniono skuteczno$é¢
zastosowanych metod poréwnujac ich wyniki z danymi historycznymi. Wskazano, ze metody
nadzorowanego uczenia maszynowego okazaly si¢ by¢ skuteczne do klasyfikacji dobrych i
ztych wyrobow. Prace te jednak skupiaty si¢ na modelowaniu opartym na duzych zbiorach
danych, pod wzgledem cech procesu i ich wplywu na wyrdb ostateczny, jednak nie rozszerzaty
one rozwazan w kierunku wskazania warto$ci okre§lonych parametrow procesu sprzyjajacych
wytwarzaniu produktu bez wady, co stanowi wyzwanie niniejszej rozprawy doktorskiej.

Nalezy rowniez wspomnie¢ o artykule [139], w ktorym autorzy przedstawili zastosowanie
metod nadzorowanego uczenia maszynowego w tym SSN i SVM do sterowania procesami
metalurgicznymi, charakteryzujacych si¢ wystepowaniem nieliniowych zaleznosci pomiedzy
poszczegdlnymi parametrami procesu. Glownym celem pracy bylo przewidzenie ilosci
dodatkow stopowych aby przewidzie¢ wlasciwy sktad chemiczny Zeliwa bialego. Badania
powstaly na podstawie danych rzeczywistych pochodzacych z procesu odlewniczego.
Opracowano modele 1 wybrano spos$rod nich w oparciu o wynik btedu Sredniokwadratowego
modele o najlepszej wydajnosci. Wyniki pokazaly, ze zaré6wno metoda sztucznych sieci
neuronowych, jak 1 maszyn wektorow wspierajacych jest odpowiednia i niezawodna do
kontroli procesu. Metody te zostaly jednak Sprawdzone dla stosunkowo matych zbioréw
danych zawierajacych 300 obserwacji, artykul nie rozwaza badah w kierunku sprawdzenia
skuteczno$ci modeli na duzych zbiorach danych.

W 2022 roku powstata kolejna znaczaca publikacja [92], w ktorej autorzy skupili si¢ na
stworzeniu modeli celem poprawy jakosci produktow w wyniku optymalizacji zmiennych
procesu odlewania niskoci$nieniowego (LPDC). Modelowanie oparto o0 metody XGBoost,
regresj¢ oraz maszyny wektorow wspierajacych (SVM). Wyniki modelowania przy uzyciu
r6znych metod poréwnano ze soba i wskazano, ze SVM zapewnita wystarczajaca doktadnos¢
klasyfikacji wadliwych cz¢éci. Zaznaczono jednak, ze metoda SVM uzyskala niskg
skutecznos¢ w przewidywaniu dobrych produktéw. Sprawia to, ze zastosowanie jej w
rzeczywistym przedsigbiorstwie produkcyjnym moze spowodowac bledng klasyfikacje

dobrych odlewdéw, co wygeneruje wysoki koszt dodatkowych czynno$ci kontrolnych. Jednak
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zastosowanie metody i uzyskane wyniki byly obiecujace i wptynety na zastosowanie metody
w niniejszej rozprawie doktorskiej.

Liczne zastosowania metody do rozwigzywania probleméw zwigzanych z obszarem
wytwarzania a w szczegolnosci zwigzanych z procesem odlewania wysokoci$nieniowego
wplynelo na zastosowanie metody maszyn wektorow wspierajagcych w niniejszej rozprawie
celem zbadania przyczyn powstawania wad w wyrobach a dokladniej w odlewach
wytwarzanych w procesie HPDC. Przebieg badan oraz wyniki i wnioski zostaly przedstawione

w rozdziale 5.2.6..
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5. Badania wlasne
5.1.  Sformulowanie problemu

Niniejsza rozprawa skupia si¢ na rozwigzaniu ogolnego problemu badawczego w postaci
pytania: w jaki sposdb przy uzyciu zaawansowanego modelowania opartego na duzych
zbiorach danych mozna diagnozowac przyczyny powstawania wad wyrobow?

Ponadto niniejsza rozprawa doktorska zamierza udowodni¢ og6lng hipotez¢ badawcza, ktora
zaktada, iz diagnozowanie przyczyn powstawania wad wyrobow wymaga zastosowania
okreslonych w metodologii zbioru metod zaawansowanego modelowania opartego na duzych
zbiorach danych. Hipoteza jako przypuszczenie naukowe wymagajace sprawdzenia jest
uzasadniona, czyli oparta na wcze$niejszych obserwacjach, badaniach lub teoriach oraz
testowalna, czyli dotyczaca istotnych zmiennych, ktore sg manipulowane i mierzalne, gdyz
podczas badan wlasnych sprawdzany bedzie wplyw réznych zbiordéw i zakreséw zmiennych na
zmienng zalezna.

Dane, ktore uzyto do badan pochodza z procesu odlewania ciSnieniowego,
charakteryzujacego si¢ wysokim stopniem skomplikowania, zlozonos$cig, nieliniowym
charakterem i niewyjasniong naturg fizyczng [42]. Obecnie przedsi¢biorstwa wytworcze
produkujace odlewy zbieraja dane procesowe na podstawowym poziomie technologii
informacyjno-komunikacyjnych [125], [140], co oznacza, ze obecnie nie ma systematycznej
metodyki lub systemu predykcji i diagnozowania wad wyrobow oraz ich przyczyn, poniewaz
informacje oparte na technologiach informacyjno-komunikacyjnych nie sa wlasciwie
rozpoznane i rozwini¢te. Dlatego potrzebna jest metodologia, ktora wspiera podejscie
analityczne, aby konkretnie identyfikowac i reagowac na problemy w procesie odlewania [141].
Diagnostyka wad jako$ciowych jest jedng z metod kontroli jako$ci, ktora pozwala skutecznie
rozwigza¢ problemy jakosciowe wyroboéw w procesie produkcyjnym 1 wzbudza coraz wigksze
zainteresowanie w srodowisku naukowym [142]. Dlatego tez postawiono istotne pytania
badawcze w niniejszej rozprawie: czy zaawansowane metody analizy danych beda w stanie
skutecznie przewidzie¢ pojawienie si¢ wady w wyrobie? oraz czy wielowymiarowa
optymalizacja parametrow procesu bedzie w stanie wskaza¢ wartosci parametréw okreslonych
zmiennych, wptywajace na powstanie wady w produkcie?

Zauwazono potrzebe skutecznego przewidywania dobrych produktow, defektow i

stworzenia w przysztosci procesu do inteligentnego podejmowania decyzji przez maszyng
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odlewniczg w czasie zblizonym do rzeczywistego. Potrzeba ta wymaga stworzenia zestawu
narzedzi zawierajacego metody opartego na danych, zaawansowanego modelowania, ktore
otwierajag drzwi do wielowymiarowej analizy danych w procesach wytworczych. Stale
podejmowane sg proby przewidywania porowato$ci odlewu [143], oraz wplywu ksztattu
odlewu na porowato$¢ [144], mimo to nadal nie sg znane rzeczywiste przyczyny lub
kombinacja przyczyn wystapienia wad w wyrobach [92]. Dodatkowo mimo licznych publikacji
poréwnujacych skutecznos¢ roznych metod [137], [145] uczenia maszynowego, nadal brakuje
opracowanej skutecznej 1 kompleksowej metodyki diagnozowania wad wyroboéw mozliwej do
zastosowania w rzeczywistej odlewni, co stanowi szanse¢ dla przemystu oraz $rodowiska
akademickiego aby przyspieszy¢ lub umozliwi¢ postep w tym obszarze. Istotng nowoscia pracy
jest migdzy innymi stworzenie metodyki zawierajacej metody eksploracji danych w sektorze
produkcji i wytwarzania, w mysl koncepcji tzw. ,,Przemystu 4.0.”, istotny wptyw na stworzenie
sprawnego systemu kontroli procesu celem diagnostyki wadliwych produktow realizujac cele

koncepcji inteligentnej fabryki.
5.2.  Przebieg badan
5.2.1. Wstepne przetwarzanie danych

W niniejszym rozdziale zaprezentowane zostang wyniki praktycznego zastosowania
wstepnego przetwarzania danych, wykonanego w celu poprawy jakosci danych i
przygotowania ich do dalszych analiz.

Badania oparte beda na danych rzeczywistych pochodzacych z procesu odlewania
wysokoci$nieniowego, blokoéw cylindrowych przez jedng ze wspotpracujacych odlewni. Krok
ten jest niezbedny 1 wymaga wiedzy o procesie celem prawidtowej klasyfikacji danej probki

jako wartos$ci odstajacej, bledu pomiarowego lub waznej z punktu widzenia procesu wartosci.
5.2.1.1. Metodyka i wyniki badan

Wstepne przetwarzanie danych rozpoczgto od procesu czyszczenia danych poprzez
normalizacje danych, a doktadniej poprzez podzial warto$ci 56 zmiennych (pomijajac dwie
zmienne a doktadnie zmienng informujaca 0 dacie i godzinie powstania odlewu oraz zmiany
roboczej na ktorej powstat) na zakresy od 0,1 do 1 oraz dodanie w trzech kolumnach,
informacji, ile w danym zakresie bylo wartosci $wiadczacej o braku wady, ile wartosci
$wiadczacych o odlewie naprawialnym oraz ile wartosci §wiadczacych o wadzie odlewniczej

niemozliwej do naprawy - powodujacej odpad. W tabelach przedstawiajacych wyniki (tab.5.1.-
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tab.5.56.) dodano réwniez kolumne prezentujacg procentowy udzial obserwacji w kazdym z
zakresow, aby wskaza¢ proponowane zakresy wartos$ci z najwigkszym udziatem obserwacji.
Dodatkowo stworzono wykresy przebiegu oraz wykresy warto$ci posortowanych celem
wizualnej analizy (rys.5.2.1.1.- rys.5.2.1.56.). Dane zostang dzi¢ki temu wybrane na podstawie
najwickszego iloSciowego udziatu w danych zakresach warto$ci oraz na podstawie iloSci
wytworzonego odlewu naprawialnego i odlewu niemozliwego do naprawy (ztomu), czyli
odlewu z wadg odlewnicza. Zaproponowane podejscie pozwoli zoptymalizowac zbidr danych
poprzez klasyfikacje danej probki jako warto$ci odstajacej, btedu pomiarowego lub waznej z
punktu widzenia procesu wartosci, majacej wplyw na warto$¢ wyjsciowa, czyli na powstawanie
wady w produkcie.

Podczas etapu przygotowania danych skupiono si¢ na weryfikacji podejrzanych wartosci,
ktére mogly by¢ wynikiem wystgpowania usterek czujnikdw, roznymi kodami bledow
raportowanych przez maszyne, btednie obliczonymi warto$ciami, ktore klasyfikuja si¢ jako

wartosci odstajace, mogace reprezentowac problemy.
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Rys.5.2.1.43. Wykres przebiegu zmiennej niezaleznej: temperatura tulei 2, z
posortowanymi warto§ciami
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Rys.5.2.1.44. Wykres przebiegu zmiennej niezaleznej: temperatura tulei 3, z
posortowanymi warto$ciami
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Rys.5.2.1.45. Wykres przebiegu zmiennej niezaleznej: temperatura tulei 4, z
posortowanymi warto$ciami
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Rys.5.2.1.46. Wykres przebiegu zmiennej niezaleznej: temperatura w obwodzie
chiodzenia 1, z posortowanymi warto$ciami
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Rys.5.2.1.47. Wykres przebiegu zmiennej niezaleznej: temperatura w obwodzie
chiodzenia 13, z posortowanymi wartosciami
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Rys.5.2.1.48. Wykres przebiegu zmiennej niezaleznej: temperatura w obwodzie
chiodzenia 14, z posortowanymi warto$ciami
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Rys.5.2.1.49. Wykres przebiegu zmiennej niezaleznej: temperatura w obwodzie
chiodzenia 15, z posortowanymi wartosciami
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Rys.5.2.1.50. Wykres przebiegu zmiennej niezaleznej: temperatura w obwodzie
chiodzenia 17, Z posortowanymi wartosciami
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Rys.5.2.1.51. Wykres przebiegu zmiennej niezaleznej: temperatura w obwodzie
chiodzenia 7, z posortowanymi warto$ciami
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Rys.5.2.1.52. Wykres przebiegu zmiennej niezaleznej: temperatura wody miejskiej, z
posortowanymi warto$ciami
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Rys.5.2.1.53. Wykres przebiegu zmiennej niezaleznej: temperatura wody w instalacji, z
posortowanymi warto$ciami
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Rys.5.2.1.54. Wykres przebiegu zmiennej niezaleznej: wartos¢ prézni 1, Z
posortowanymi warto$ciami
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Rys.5.2.1.55. Wykres przebiegu zmiennej niezaleznej: wartos¢ prozni 2, z
posortowanymi warto§ciami
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Rys.5.2.1.56. Wykres przebiegu zmiennej niezaleznej: zuzycie smaru, Z posortowanymi
warto$ciami
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Rys.5.2.1.57. Wykres przebiegu zmiennej zaleznej: przeciek w obwodzie wysokiego
cisnienia, z posortowanymi warto$ciami

Tab. 5.1.: Wyniki normalizacji dla zmiennej niezaleznej: cisnienie sprezonego powietrza, W
odniesieniu do zmiennej zaleznej, Z oznaczeniem procentowego udzialu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Mos¢ Ilosc’ Mo$¢ produktow . Udzial
. produktow z Tlos¢
. produktow z wadg .. | procentowy
Przedzial wada . ; obserwacji -
bez wady . nienaprawialna obserwacji
naprawialna [szt.] o
[szt.] [s7t] [szt.] [%%6]
0.0-0.1 2664 20 1 2685 26,60
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-0.4 0 0 0 0 0,00
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0.4-05 0 0 0 0
0.5-0.6 0 0 0 0
0.6-0.7 0 0 0 0
0.7-0.8 0 0 0 0
0.8-0.9 0 0 0 0
0.9-1 0 0 0 0
1.0 7360 38 11 7409 73,40
Suma: 10024 58 12 10094 100

Tab. 5.2.: Wyniki normalizacji dla zmiennej niezaleznej: cisnienie wody miejskiej, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé los¢ Tlos¢ . Udzial
) produktéw produktow z | produktow z Ilosé | procentowy
Przedzial b wada wada obserwacji -2
ez wady . . . obserwacji
naprawialng | nienaprawialng [szt.]
[szt] [szt] [szt] [%0]
0.0-0.1 84 0 0 84 0,83
0.1-0.2 1750 15 1 1766 17,50
0.2-0.3 0 0 0 0
0.3-04 6361 36 7 6404 63,44
0.4-0.5 1801 7 4 1812 17,95
0.5-0.6 0 0 0
0.6-0.7 18 0 0
0.7-0.8 0 0 0
0.8-0.9 4 0 0
0.9-1 0 0 0
1.0 6 0 0
Suma: 10024 58 12 10094 100

Tab. 5.3.: Wyniki normalizacji dla zmiennej niezaleznej: cisnienie wody obiegowej, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Hos¢ Ilosc’ Tlo$¢ produktow x Udzial
. produktow z Hos¢
Przedzial pl;‘ oduktow wadg 2 wadz% obserwacji procentovx_/y
ez wady naprawialna nienaprawialna [szt] obserwacji
[szt.] [s7t] [szt.] ' [%%0]
0.0-0.1 5201 35 5 5241 51,92
0.1-0.2 0 0 0 0
0.2-0.3 0 0 0 0
0.3-0.4 0 0 0 0
0.4-0.5 0 0 0 0
0.5-0.6 0 0 0 0
0.6-0.7 0 0 0 0
0.7-0.8 0 0 0 0
0.8-0.9 0 0 0 0
0.9-1 0 0 0 0
1.0 4823 23 7 4853 48,08
Suma: 10024 58 12 10094 100
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Tab. 5.4.: Wyniki normalizacji dla zmiennej niezaleznej: czas pierwszej fazy wtrysku, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktéow | produktow z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 145 0 0 145 1,44
0.1-0.2 440 3 0 443 4,39
0.2-0.3 1575 7 1 1583 15,68
0.3-0.4 2091 18 6 2115 20,95
0.4-0.5 2798 18 1 2817 27,91
0.5-0.6 2282 6 4 2292 22,71
0.6-0.7 616 6 0 622 6,16
0.7-0.8 59 0 0 59 0,58
0.8-0.9 13 0 0 13 0,13
0.9-1 4 0 0 4 0,04
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.5.: Wyniki normalizacji dla zmiennej niezaleznej: czas chliodzenia obwodu, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ y Udzial
) produktéw produktow | produktow z Hlos¢ | procentowy
Przedzial z wada wada obserwacji 2
bez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [s7t] [s2t] [%]
0.0-0.1 44 1 0 45 0,45
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-0.4 0 0 0 0 0,00
0.4-0.5 0 0 0 0 0,00
0.5-0.6 9915 57 12 9984 98,91
0.6-0.7 0 0 0 0 0,00
0.7-0.8 0 0 0 0 0,00
0.8-0.9 0 0 0 0 0,00
0.9-1 0 0 0 0 0,00
1.0 65 0 0 65 0,64
Suma: 10024 58 12 10094 100

Tab. 5.6.: Wyniki normalizacji dla zmiennej niezaleznej: czas cyklu, w odniesieniu do zmiennej
zaleznej, z oznaczeniem procentowego udzialu obserwacji w kazdym z zakreséw od
najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktéow z | produktow z Tos¢
. produktow .. | procentowy
Przedzial wadg wada obserwacji )
bez wady . . . obserwacji
[s2t] naprawialng | nienaprawialng [szt.] [%]
' [szt.] [szt.]
0.0-0.1 6 0 0 6 0,06
0.1-0.2 9400 50 11 9461 93,73
0.2-0.3 338 6 1 345 3,42
0.3-0.4 143 2 0 145 1,44
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0.4-0.5 91 0 0 91 0,90
0.5-0.6 29 0 0 29 0,29
0.6-0.7 10 0 0 10
0.7-0.8 1 0 0 1
0.8-0.9 4 0 0 4
0.9-1 1 0 0 1
1.0 1 0 0 1
Suma: 10024 58 12 10094 100,00

Tab. 5.7.: Wyniki normalizacji dla zmiennej niezaleznej: czas cyklu smarowania, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlosé . Udzial
. produktéw produktow z | produktéw z Hosé¢ | procentowy
Przedzial b wada wada obserwacji -2
ez wady . . . obserwacji
naprawialng | nienaprawialna [szt.]
[szt] [szt] [szt] [%0]
0.0-0.1 9983 56 12 10051 99,57
0.1-0.2 14 1 0 15 0,15
0.2-0.3 18 1 0 19 0,19
0.3-04 5 0 0 5
0.4-0.5 2 0 0 2
0.5-0.6 0 0 0 0
0.6-0.7 0 0 0 0
0.7-0.8 1 0 0 1
0.8-0.9 0 0 0 0
0.9-1 0 0 0 0
1.0 1 0 0 1
Suma: 10024 58 12 10094 100

Tab. 5.8.: Wyniki normalizacji dla zmiennej niezaleznej: czas dozowania stopu, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlosé Tlos¢ Udzial
. produktéow | produktéw z Hosé
. produktow .. | procentowy
Przedzial z wadg wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 9859 56 12 9927
0.1-0.2 36 0 0 36 0,36
0.2-0.3 31 1 0 32 0,32
0.3-04 49 1 0 50 0,50
0.4-0.5 35 0 0 35 0,35
0.5-0.6 5 0 0 5
0.6-0.7 7 0 0 7 0,07
0.7-0.8 0 0 0 0
0.8-0.9 1 0 0 1
0.9-1 0 0 0 0
1.0 1 0 0 1
Suma: 10024 58 12 10094
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Tab. 5.9.: Wyniki normalizacji dla zmiennej niezaleznej: czas dozowania stopu 2, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktéow | produktéw z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialna [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 41 0 0 41 0,41
0.1-0.2 8340 35 10 8385 83,07
0.2-0.3 1541 22 2 1565 15,50
0.3-0.4 21 0 0 21 0,21
0.4-0.5 4 0 0 4 0,04
0.5-0.6 19 1 0 20 0,20
0.6-0.7 46 0 0 46 0,46
0.7-0.8 5 0 0 5 0,05
0.8-0.9 2 0 0 2 0,02
0.9-1 5 0 0 5 0,05
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100

Tab. 5.10.: Wyniki normalizacji dla zmiennej niezaleznej: czas krzepniecia t2, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ o Udzial
' produktéw produktow | produktow z Hos¢ . | procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[s2t] [s7t] [s2t] [%]
0.0-0.1 7457 21 11 7489 74,19
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-04 0 0 0 0 0,00
0.4-0.5 0 0 0 0 0,00
0.5-0.6 0 0 0 0 0,00
0.6-0.7 0 0 0 0 0,00
0.7-0.8 0 0 0 0 0,00
0.8-0.9 0 0 0 0 0,00
0.9-1 0 0 0 0 0,00
1.0 2567 37 1 2605 25,81
Suma: 10024 58 12 10094 100

Tab. 5.11.: Wyniki normalizacji dla zmiennej niezaleznej: czas przedmuchu, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
[szt] naprawialng | nienaprawialng [szt.] [%]
' [szt.] [szt.]
0.0-0.1 1 0 0 1 0,01
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-0.4 21 0 0 21 0,21
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0.4-0.5 67 0 0 67 0,66
0.5-0.6 9281 47 10 9338 92,51
0.6-0.7 129 0 0 129 1,28
0.7-0.8 11 0 0 11 0,11
0.8-0.9 262 6 1 269 2,66
0.9-1 251 5 1 257 2,55
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.12.: Wyniki normalizacji dla zmiennej niezaleznej: czas smarowania, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwickszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Ilosc, Hlo$¢ produktow A Udzial
. produktow produktow z zwada Tlose .. | procentowy
Przedzial b wada . . obserwacji -2
ez wady . nienaprawialng obserwacji
naprawialng [szt.]
[szt.] [szt] [szt.] [%0]
0.0-0.1 31 0 0 31 0,31
0.1-0.2 0 0 0 0 0,00
0.2-0.3 1 0 0 1 0,01
0.3-0.4 0 0 0 0 0,00
0.4-05 0 0 0 0 0,00
0.5-0.6 9747 49 11 9807 97,16
0.6-0.7 0 0 0 0 0,00
0.7-0.8 0 0 0 0 0,00
0.8-0.9 0 0 0 0 0,00
0.9-1 240 9 1 250 2,48
1.0 5 0 0 5 0,05
Suma: 10024 58 12 10094 100

Tab. 5.13.: Wyniki normalizacji dla zmiennej niezaleznej: dzienny numer wtrysku, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 1853 20 2 1875 18,58
0.1-0.2 1814 9 3 1826 18,09
0.2-0.3 1553 8 1 1562 15,47
0.3-04 1382 4 1 1387 13,74
0.4-0.5 1219 7 3 1229 12,18
0.5-0.6 949 6 1 956 9,47
0.6-0.7 533 2 0 535 5,30
0.7-0.8 455 1 1 457 4,53
0.8-0.9 203 1 0 204 2,02
0.9-1 63 0 0 63 0,62
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100
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Tab. 5.14.: Wyniki normalizacji dla zmiennej niezaleznej: filtr prézni 1, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwickszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ los¢ Tlos¢ Udzial
. produktéw | produktow z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 112 1 0 113 1,12
0.1-0.2 293 0 0 293 2,90
0.2-0.3 43 0 0 43 0,43
0.3-0.4 32 1 0 33 0,33
0.4-0.5 763 1 0 764 7,57
0.5-0.6 3801 14 8 3823 37,87
0.6-0.7 2745 29 3 2777 27,51
0.7-0.8 1038 8 1 1047 10,37
0.8-0.9 1071 4 0 1075 10,64
0.9-1 126 0 0 126 1,25
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100

Tab. 5.15.: Wyniki normalizacji dla zmiennej niezaleznej: grubos¢ pietki uktadu wlewowego,
w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakres6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ . Udzial
) produktéw produktow | produktow z Hlos¢ . | procentowy
Przedzial b z wada wada obserwacji 2
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [s7t] [s2t] [%]
0.0-0.1 86 0 1 87 0,86
0.1-0.2 356 0 0 356 3,53
0.2-0.3 997 3 3 1003 9,93
0.3-0.4 2789 9 3 2801 21,75
0.4-0.5 3362 25 5 3392 33,60
0.5-0.6 1757 20 0 1777 17,60
0.6-0.7 529 1 0 530 5,25
0.7-0.8 131 0 0 131 1,29
0.8-0.9 15 0 0 15 0,15
0.9-1 1 0 0 1 0,01
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.16.: Wyniki normalizacji dla zmiennej niezaleznej: koncentrat, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktéow | produktéw z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 8 0 0 8 0,08
0.1-0.2 16 0 0 16 0,16
0.2-0.3 83 0 0 83 0,82
0.3-0.4 213 1 0 214 2,12
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0.4-0.5 312 0 0 312 3,09
0.5-0.6 921 4 1 926 9,17
0.6-0.7 586 6 0 592 5,86
0.7-0.8 514 1 0 515 5,10
0.8-0.9 2791 17 5 2813 21,87
0.9-1 3462 18 6 3486 34,54
1.0 1118 11 0 1129 11,18
Suma: 10024 58 12 10094 100

Tab. 5.17.: Wyniki normalizacji dla zmiennej niezaleznej: cisnienie maksymalne, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlose Tlose . Udzial
) produktéw produktow | produktow z Tlosé .| procentowy
Przedzial b z wada wada obserwacji -2
ez wady . . . obserwacji
naprawialna | nienaprawialng [szt.]
[szt] [szt] [szt] [70]
0.0-0.1 249 2 0 251 2,49
0.1-0.2 1333 17 0 1350 13,37
0.2-0.3 2314 16 4 2334 23,12
0.3-0.4 2652 12 3 2667 26,42
0.4-0.5 1938 7 2 1947 19,29
0.5-0.6 1029 2 3 1034 10,24
0.6-0.7 364 2 0 366 3,63
0.7-0.8 125 0 0 125 1,24
0.8-0.9 19 0 0 19 0,19
0.9-1 0 0 0 0 0,00
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.18.: Wyniki normalizacji dla zmiennej niezaleznej, predkos¢ wtrysku maksymalna, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 5 0 0 5 0,05
0.1-0.2 11 0 0 11 0,11
0.2-0.3 38 1 0 39 0,39
0.3-0.4 540 7 1 548 5,43
0.4-0.5 1 0 0 1 0,01
0.5-0.6 4597 35 5 4637 45,94
0.6-0.7 38 1 0 39 0,39
0.7-0.8 4615 14 6 4635 45,92
0.8-0.9 5 0 0 5 0,05
0.9-1 106 0 0 106 1,05
1.0 68 0 0 68 0,67
Suma: 10024 58 12 10094 100

93



Tab. 5.19.: Wyniki normalizacji dla zmiennej niezaleznej: opdznienie multiplikacji, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktéw | produktow z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 2 0 0 2 0,02
0.1-0.2 2 0 0 2 0,02
0.2-0.3 54 0 0 54 0,53
0.3-0.4 127 0 0 127 1,26
0.4-0.5 412 2 0 414 4,10
0.5-0.6 2494 6 5 2505 24,82
0.6-0.7 2214 11 3 2228 22,07
0.7-0.8 3820 26 4 3850 38,14
0.8-0.9 752 10 0 762 7,55
0.9-1 135 3 0 138 1,37
1.0 12 0 0 12 0,12
Suma: 10024 58 12 10094 100

Tab. 5.20.: Wyniki normalizacji dla zmiennej niezaleznej: stata temperatura chiodzenia ptyty,
w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢é Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
Przedzial ptl)‘ oduktow z wada wada obserwacji procentOV\_/y
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [s7t] [s2t] [%]
0.0-0.1 21 0 0 21 0,21
0.1-0.2 643 3 1 647 6,41
0.2-0.3 5793 13 9 5815 57,61
0.3-04 2539 11 1 2551 25,27
0.4-0.5 0 0 0 0 0,00
0.5-0.6 316 7 0 323 3,20
0.6-0.7 496 18 0 514 5,09
0.7-0.8 194 6 1 201 1,99
0.8-0.9 7 0 0 7 0,07
0.9-1 0 0 0 0 0,00
1.0 15 0 0 15 0,15
Suma: 10024 58 12 10094 100
Tab. 5.21.: Wyniki normalizacji dla zmiennej niezaleznej: poziom stopu w piecu

podgrzewczym, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu
obserwacji w kazdym z zakreséw od najwickszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 9397 58 12 9467 93,79
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-0.4 0 0 0 0 0,00
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0.4-0.5 0 0 0 0 0,00
0.5-0.6 0 0 0 0 0,00
0.6-0.7 0 0 0 0 0,00
0.7-0.8 0 0 0 0 0,00
0.8-0.9 0 0 0 0 0,00
0.9-1 627 0 0 627 6,21
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100

Tab. 5.22.: Wyniki normalizacji dla zmiennej niezaleznej: poziom wody w strumieniu
chtodzqcym, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu
obserwacji w kazdym z zakreséw od najwickszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlose Tlose . Udzial
' produktéw produktow | produktow z Tlosé . | procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [szt] [szt] [70]
0.0-0.1 528 1 2 531 5,26
0.1-0.2 390 1 1 392 3,88
0.2-0.3 861 2 0 863 8,55
0.3-0.4 1215 2 0 1217 12,06
0.4-0.5 1497 10 4 1511 14,97
0.5-0.6 1636 14 2 1652 16,37
0.6-0.7 1487 10 3 1500 14,86
0.7-0.8 1863 8 0 1871 18,54
0.8-0.9 508 7 0 515 5,10
0.9-1 35 3 0 38 0,38
1.0 4 0 0 4 0,04
Suma: 10024 58 12 10094 100

Tab. 5.23.: Wyniki normalizacji dla zmiennej niezaleznej: czas drugiej fazy wtrysku, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 6 0 0 6 0,06
0.1-0.2 292 2 0 294 2,91
0.2-0.3 0 0 0 0 0,00
0.3-0.4 3059 22 2 3083 30,54
0.4-0.5 0 0 0 0 0,00
0.5-0.6 4896 24 8 4928 48,82
0.6-0.7 1603 9 2 1614 15,99
0.7-0.8 0 0 0 0 0,00
0.8-0.9 166 1 0 167 1,65
0.9-1 0 0 0 0 0,00
1.0 2 0 0 2 0,02
Suma: 10024 58 12 10094 100
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Tab. 5.24.: Wyniki normalizacji dla zmiennej niezaleznej: profil prozni 1, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwickszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ los¢ losé¢ Udzial
. produktéow | produktow z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 7964 48 10 8022 79,47
0.1-0.2 1478 7 2 1487 14,73
0.2-0.3 558 3 0 561 5,56
0.3-0.4 3 0 0 3 0,03
0.4-0.5 2 0 0 2 0,02
0.5-0.6 2 0 0 2 0,02
0.6-0.7 15 0 0 15 0,15
0.7-0.8 1 0 0 1 0,01
0.8-0.9 0 0 0 0 0,00
0.9-1 1 0 0 1 0,01
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100

Tab. 5.25.: Wyniki normalizacji dla zmiennej niezaleznej: profil prozni 2, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakresow od
najwickszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ o Udzial
' produktéw produktow | produktow z Hos¢ . | procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [s7t] [s2t] [%]
0.0-0.1 2428 3 0 2431 24,08
0.1-0.2 1161 1 6 1168 11,57
0.2-0.3 6313 54 6 6373 63,14
0.3-0.4 98 0 0 98 0,97
0.4-0.5 4 0 0 4 0,04
0.5-0.6 0 0 0 0 0,00
0.6-0.7 9 0 0 9 0,09
0.7-0.8 9 0 0 9 0,09
0.8-0.9 0 0 0 0 0,00
0.9-1 1 0 0 1 0,01
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.26.: Wyniki normalizacji dla zmiennej niezaleznej: przeplyw chiodzenia tloka, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
[szt] naprawialng | nienaprawialng [szt.] [%]
' [szt.] [szt.]
0.0-0.1 1 0 0 1 0,01
0.1-0.2 135 0 0 135 1,34
0.2-0.3 10 0 0 10 0,10
0.3-0.4 189 0 1 190 1,88
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0.4-0.5 322 0 0 322 3,19
0.5-0.6 782 2 0 784 7,77
0.6-0.7 5751 11 8 5770 57,16
0.7-0.8 91 2 0 93 0,92
0.8-0.9 523 9 0 532 5,27
0.9-1 1946 31 3 1980 19,62
1.0 274 3 0 277 2,74
Suma: 10024 58 12 10094 100

Tab. 5.27.: Wyniki normalizacji dla zmiennej niezaleznej: przeplyw w obwodzie chlodzenia I,
W odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakreso6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlose Tlose . Udzial
' produktéw produktow | produktow z Hlos¢ .| procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[st] [szt] [szt] [%0]
0.0-0.1 22 0 0 22 0,22
0.1-0.2 286 10 0 296 2,93
0.2-0.3 684 17 0 701 6,94
0.3-0.4 0 0 0 0 0,00
0.4-0.5 1347 17 1 1365 13,52
0.5-0.6 4875 7 6 4888 48,42
0.6-0.7 0 0 0 0 0,00
0.7-0.8 2341 6 4 2351 23,29
0.8-0.9 367 1 1 369 3,66
0.9-1 102 0 0 102 1,01
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100

Tab. 5.28.: Wyniki normalizacji dla zmiennej niezaleznej: przephyw w obwodzie chtodzenia 13,
w odniesieniu do zmienne] zaleznej, z oznaczeniem procentowego udziatu obserwacji w
kazdym z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialna | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 2 0 0 2 0,02
0.1-0.2 57 0 0 57 0,56
0.2-0.3 114 0 0 114 1,13
0.3-0.4 67 0 0 67 0,66
0.4-0.5 45 0 0 45 0,45
0.5-0.6 98 0 1 99 0,98
0.6-0.7 5581 7 7 5595 55,43
0.7-0.8 189 4 0 193 1,91
0.8-0.9 2148 33 3 2184 21,64
0.9-1 1718 14 1 1733 17,17
1.0 5 0 0 5 0,05
Suma: 10024 58 12 10094 100
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Tab. 5.29.: Wyniki normalizacji dla zmiennej niezaleznej: przepbyw w obwodzie chlodzenia 14,
w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w
kazdym z zakreso6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ los¢ losé¢ Udzial
. produktéow | produktow z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 2 0 0 2 0,02
0.1-0.2 22 0 0 22 0,22
0.2-0.3 67 0 0 67 0,66
0.3-0.4 0 0 0 0 0,00
0.4-0.5 788 18 0 806 7,98
0.5-0.6 2443 28 1 2472 24,49
0.6-0.7 0 0 0 0 0,00
0.7-0.8 5590 10 10 5610 55,58
0.8-0.9 1095 2 1 1098 10,87
0.9-1 0 0 0 0 0,00
1.0 17 0 0 17 0,17
Suma: 10024 58 12 10094 100

Tab. 5.30.: Wyniki normalizacji dla zmiennej niezaleznej: przeptyw w obwodzie chtodzenia 15,
w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakres6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ llos¢ . Udzial
) produktéw produktow | produktow z Hlos¢ .| procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialng [szt.]
[s2t] [s7t] [s7t] [%]
0.0-0.1 37 0 0 37 0,37
0.1-0.2 133 0 0 133 1,32
0.2-0.3 2023 17 0 2040 20,21
0.3-0.4 4849 14 7 4870 48,25
0.4-0.5 2475 7 4 2486 24,63
0.5-0.6 403 19 1 423 4,19
0.6-0.7 84 0 0 84 0,83
0.7-0.8 0 0 0 0 0,00
0.8-0.9 0 0 0 0 0,00
0.9-1 1 0 0 1 0,01
1.0 19 1 0 20 0,20
Suma: 10024 58 12 10094 100

Tab. 5.31.: Wyniki normalizacji dla zmiennej niezaleznej: przeptyw w obwodzie chtodzenia 17,
w odniesieniu do zmienne] zaleznej, z oznaczeniem procentowego udziatu obserwacji w
kazdym z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ los¢ Tlos¢ Udzial
. produktow | produktéw z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
[s2t] naprawialna | nienaprawialng [szt.] [%]
' [szt.] [szt.]
0.0-0.1 35 0 0 35 0,35
0.1-0.2 67 3 0 70 0,69
0.2-0.3 15 0 0 15 0,15
0.3-0.4 544 17 0 561 5,56
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0.4-0.5 1469 5 0 1474 14,60
0.5-0.6 2033 14 2 2049 20,30
0.6-0.7 182 1 0 183 1,81
0.7-0.8 301 2 0 303 3,00
0.8-0.9 3669 15 5 3689 36,55
0.9-1 1475 1 5 1481 14,67
1.0 234 0 0 234 2,32
Suma: 10024 58 12 10094 100

Tab. 5.32.: Wyniki normalizacji dla zmiennej niezaleznej: przepbyw w obwodzie chlodzenia 20,
w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w
kazdym z zakresow od najwickszego (zielonego) do najmniejszego (Czerwonego)

Tlos¢ Tlosé¢ los¢ Udzial
. produktéow z | produktéw z Iosé
. produktow .. | procentowy
Przedzial wada wada obserwacji -
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt] [szt] [70]
0.0-0.1 36 0 0 36 0,36
0.1-0.2 0 0 0 0 0,00
0.2-0.3 174 1 0 175 1,73
0.3-0.4 0 0 0 0 0,00
0.4-0.5 1492 29 1 1522 15,08
0.5-0.6 0 0 0 0 0,00
0.6-0.7 5265 20 7 5292 52,43
0.7-0.8 0 0 0 0 0,00
0.8-0.9 2949 8 3 2960 29,32
0.9-1 0 0 0 0 0,00
1.0 108 0 1 109 1,08
Suma: 10024 58 12 10094 100

Tab. 5.33.: Wyniki normalizacji dla zmiennej niezaleznej: przeptyw w obwodzie chlodzenia 6,
w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakres6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
Przedzial pgoduktow z wadg wada obserwacji procentowy
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [s7t] [s2t] [%]
0.0-0.1 2 0 0 2 0,02
0.1-0.2 0 0 0 0 0,00
0.2-0.3 4 0 0 4 0,04
0.3-04 549 1 0 550 5,45
0.4-05 1857 2 2 1861 18,44
0.5-0.6 600 4 1 605 5,99
0.6-0.7 2328 28 0 2356 23,34
0.7-0.8 3227 22 6 3255 32,25
0.8-0.9 345 1 0 346 3,43
0.9-1 1075 0 2 1077 10,66
1.0 37 0 1 38 0,38
Suma: 10024 58 12 10094 100
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Tab. 5.34.:

Wyniki

normalizacji

dla zmiennej niezaleznej: predkos¢ we wlewach

doprowadzajgcych, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu
obserwacji w kazdym z zakreséw od najwickszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktéw | produktow z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 4 0 0 4 0,04
0.1-0.2 9 0 0 9 0,09
0.2-0.3 153 1 0 154 58
0.3-0.4 547 5 0 552 5,46
0.4-0.5 2010 8 3 2021 20,02
0.5-0.6 3434 21 3 3458 34,26
0.6-0.7 2605 13 4 2622 25,98
0.7-0.8 1100 8 2 1110 10,99
0.8-0.9 156 2 0 158 1,57
0.9-1 5 0 0 5 0,05
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.35.: Wyniki normalizacji dla zmiennej niezaleznej: suw pierwszej fazy wtrysku, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé flos¢ llos¢ o Udzial
) produktéw produktow | produktow z Hos¢ | procentowy
Przedzial b z wadg wada obserwacji -
ez wady . . . obserwacji
naprawialng | nienaprawialng [szt.]
[szt] [s2t] [s7t] [%]
0.0-0.1 1 0 0 1 0,01
0.1-0.2 11 0 0 11 0,11
0.2-0.3 220 0 0 220 2,18
0.3-0.4 2649 20 2 2671 26,46
0.4-0.5 0 0 0 0 0,00
0.5-0.6 4411 23 6 4440 43,99
0.6-0.7 2399 13 3 2415 23,93
0.7-0.8 299 2 1 302 2,99
0.8-0.9 29 0 0 29 0,29
0.9-1 0 0 0 0 0,00
1.0 5 0 0 5 0,05
Suma: 10024 58 12 10094 100

Tab. 5.36.: Wyniki normalizacji dla zmiennej niezaleznej: suw docisku po multiplikacji, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

L. Tosé Iosé .
Hos¢ . . ‘x Udzial
. produktow | produktow z Tlos¢
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
[szt] naprawialna | nienaprawialng [szt.] [9%]
' [szt.] [szt.]
0.0-0.1 3 1 0 4 0,04
0.1-0.2 7 0 0 7 0,07
0.2-0.3 0 0 0 0 0,00
0.3-0.4 179 3 1 183 1,81

100




0.4-0.5 0 0 0 0 0,00
0.5-0.6 2151 20 1 2172 21,52
0.6-0.7 6139 27 9 6175 61,18
0.7-0.8 0 0 0 0 0,00
0.8-0.9 1538 7 1 1546 15,32
0.9-1 0 0 0 0 0,00
1.0 7 0 0 7 0,07
Suma: 10024 58 12 10094 100

Tab. 5.37.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura chtodzenia ttoka, W
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlose Tlose . Udzial
) produktéw produktow | produktow z Tlosé . | procentowy
Przedzial b z wada wada obserwacji -2
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [szt] [szt] [70]
0.0-0.1 91 0 1 92 0,91
0.1-0.2 178 1 0 179 1,77
0.2-0.3 1503 21 2 1526 15,12
0.3-0.4 3109 13 0 3122 30,93
0.4-0.5 4016 21 7 4044 40,06
0.5-0.6 1003 2 2 1007 9,98
0.6-0.7 6 0 0 6 0,06
0.7-0.8 24 0 0 24 0,24
0.8-0.9 61 0 0 61 0,60
0.9-1 27 0 0 27 0,27
1.0 6 0 0 6 0,06
Suma: 10024 58 12 10094 100

Tab. 5.38.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura stopu, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 2 0 0 2 0,02
0.1-0.2 16 0 1 17 0,17
0.2-0.3 356 0 0 356 3,53
0.3-0.4 1604 7 5 1616 16,01
0.4-0.5 2959 21 3 2983 29,55
0.5-0.6 2382 20 0 2402 23,80
0.6-0.7 1766 5 2 1773 17,56
0.7-0.8 759 4 0 763 7,56
0.8-0.9 164 1 1 166 1,64
0.9-1 15 0 0 15 0,15
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100
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Tab. 5.39.: Wyniki normalizacji dla zmiennej temperatura termoregulatora 2.1., w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktéw | produktow z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 12 1 0 13 0,13
0.1-0.2 15 0 0 15 0,15
0.2-0.3 2757 21 4 2782 27,56
0.3-0.4 1932 14 1 1947 19,29
0.4-0.5 1352 2 1 1355 13,42
0.5-0.6 2490 11 3 2504 24,81
0.6-0.7 1330 7 3 1340 13,28
0.7-0.8 130 1 0 131 1,29
0.8-0.9 6 0 0 6 0,06
0.9-1 0 0 0 0 0,00
1.0 0 1 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.40.: Wyniki normalizacji dla zmiennej temperatura termoregulatora 2.2., w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w kazdym z zakresow
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ llos¢ . Udzial
' produktéw produktow | produktow z Hlos¢ | procentowy
Przedzial b z wada wada obserwacji -2
ez wady . . . obserwacji
naprawialna | nienaprawialng [szt.]
[s2t] [s7t] [s7t] [%]
0.0-0.1 7 0 0 7 0,07
0.1-0.2 34 0 0 34 0,34
0.2-0.3 73 0 0 73 0,72
0.3-0.4 1346 7 1 1354 13,41
0.4-0.5 1807 7 2 1816 17,99
0.5-0.6 1951 10 3 1964 19,46
0.6-0.7 4719 33 6 4758 47,14
0.7-0.8 44 0 0 44 0,44
0.8-0.9 28 0 0 28 0,28
0.9-1 13 0 0 13 0,13
1.0 2 1 0 3 0,03
Suma: 10024 58 12 10094 100

Tab. 5.41.: Wyniki normalizacji dla zmiennej temperatura termoregulatora 3.2., w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

L. Tlos¢ Hosé .
Hos¢ . . . Udzial
. produktow | produktow z Hos¢
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
[szt] naprawialng | nienaprawialng [szt.] [%]
' [szt.] [szt.]
0.0-0.1 0 1 0 1 0,01
0.1-0.2 1 0 0 1 0,01
0.2-0.3 1 0 0 1 0,01
0.3-0.4 1 0 0 1 0,01
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0.4-05 3 0 0 3 -
0.5-0.6 4 0 0 4

0.6-0.7 191 0 0 191 1,89
0.7-0.8 3982 30 4 4016 39,79
0.8-0.9 3120 15 3 3138 31,09
0.9-1 2494 12 3 2509 24,86
1.0 227 0 2 229 2,27
Suma: 10024 58 12 10094 100

Tab. 5.42.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura tulei 1, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w kazdym z zakresow
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé llos¢ Tlos¢ . Udzial
. produktéw produktow | produktéw z Ilosé . | procentowy
Przedzial b z wada wada obserwacji -2
ez wady . . . obserwacji
naprawialng | nienaprawialng [szt.]
[szt] [szt] [szt] [%0]
0.0-0.1 3 0 0
0.1-0.2 0 0 0
0.2-0.3 0 0 0
0.3-04 0 0 0
0.4-0.5 0 0 0
0.5-0.6 1 0 0
0.6-0.7 0 0 0
0.7-0.8 37 1 1
0.8-0.9 8930 46 10
0.9-1 1052 11 1
1.0 1 0 0
Suma: 10024 58 12

Tab. 5.43.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura tulei 2, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Hosé
. produktow .. | procentowy
Przedzial z wadg wada obserwacji -2
bez wady . . . obserwacji
naprawialna | nienaprawialna [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 3 0 0 3
0.1-0.2 0 0 0 0
0.2-0.3 0 0 0 0
0.3-0.4 0 0 0 0
0.4-0.5 0 0 0 0
0.5-0.6 1 0 0 1
0.6-0.7 0 0 0 0
0.7-0.8 1 0 0 1
0.8-0.9 352 1 0 353
0.9-1 9665 57 12 9734
1.0 2 0 0 2
Suma: 10024 58 12 10094 100
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Tab. 5.44.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura tulei 3, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakreséw
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlosé¢ losé¢ Udzial
. produktéow z | produktow z Hosé
. produktow .. | procentowy
Przedzial wada wada obserwacji -
bez wady . . . obserwacji
naprawialng | nienaprawialna [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 3 0 0 3 0,03
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-0.4 0 0 0 0 0,00
0.4-0.5 1 0 0 1 0,01
0.5-0.6 0 0 0 0 0,00
0.6-0.7 0 0 0 0 0,00
0.7-0.8 63 1 0 64 0,63
0.8-0.9 9406 49 10 9465 93,77
0.9-1 550 8 2 560 5,55
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.45.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura tulei 4, w odniesieniu
do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w kazdym z zakresow
od najwiekszego (zielonego) do najmniejszego (czerwonego)

Tlosé flos¢ llos¢ . Udzial
' produktéw produktow | produktow z Hlos¢ .| procentowy
Przedzial b z wadg wada obserwacji 2
ez wady . . . obserwacji
naprawialng | nienaprawialng [szt.]
[szt] [s2t] [s7t] [%]
0.0-0.1 3 0 0 3 0,03
0.1-0.2 0 0 0 0 0,00
0.2-0.3 0 0 0 0 0,00
0.3-0.4 0 0 0 0 0,00
0.4-0.5 1 0 0 1 0,01
0.5-0.6 0 0 0 0 0,00
0.6-0.7 0 0 0 0 0,00
0.7-0.8 4 0 0 4 0,04
0.8-0.9 7259 33 8 7300 72,32
0.9-1 2755 25 4 2784 27,58
1.0 2 0 0 2 0,02
Suma: 10024 58 12 10094 100

Tab. 5.46.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura w obwodzie chlodzenia
1, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktow | produktéow z Tlos¢
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
[s2t] naprawialng | nienaprawialna [szt.] [%]
' [szt.] [szt.]
0.0-0.1 1455 3 1 1459 14,45
0.1-0.2 5461 18 8 5487 54,36
0.2-0.3 2352 19 0 2371 23,49
0.3-0.4 464 14 2 480 4,75
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0.4-0.5 56 0 0 56 0,55
0.5-0.6 62 1 0 63 0,62
0.6-0.7 130 2 1 133 1,32
0.7-0.8 29 0 0 29 0,29
0.8-0.9 9 1 0 10 0,10
0.9-1 5 0 0 5 0,05
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.47.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura w obwodzie chlodzenia
13, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakreso6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlose Tlose . Udzial
' produktéw produktow | produktow z Hlos¢ .| procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[st] [szt] [szt] [%0]
0.0-0.1 7 1 0 8 0,08
0.1-0.2 90 4 1 95 0,94
0.2-0.3 879 4 0 883 8,75
0.3-0.4 6552 38 9 6599 65,38
0.4-0.5 0 0 0 0 0,00
0.5-0.6 2024 7 1 2032 20,13
0.6-0.7 252 4 0 256 2,54
0.7-0.8 184 0 1 185 1,83
0.8-0.9 34 0 0 34 0,34
0.9-1 0 0 0 0 0,00
1.0 2 0 0 2 0,02
Suma: 10024 58 12 10094 100

Tab. 5.48.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura w obwodzie chtodzenia
14, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w
kazdym z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlosé Tlos¢ Udzial
. produktéow | produktéw z Ilosé
. produktow .. | procentowy
Przedzial z wadg wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 25 0 0 25 0,25
0.1-0.2 521 7 1 529 5,24
0.2-0.3 4465 10 6 4481 44,39
0.3-0.4 0 0 0 0 0,00
0.4-0.5 4152 28 4 4184 41,45
0.5-0.6 800 11 1 812 8,04
0.6-0.7 0 0 0 0 0,00
0.7-0.8 57 2 0 59 0,58
0.8-0.9 3 0 0 3 0,03
0.9-1 0 0 0 0 0,00
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100
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Tab. 5.49.: Wyniki normalizacji dla zmiennej niezaleznej. temperatura w obwodzie chlodzenia
15, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakreso6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ los¢ Tlos¢ Udzial
. produktow | produktéw z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 65 4 0 69 0,68
0.1-0.2 1111 7 0 1118 11,08
0.2-0.3 3680 19 8 3707 36,72
0.3-0.4 4183 22 3 4208 41,69
0.4-0.5 789 3 0 792 7,85
0.5-0.6 123 2 1 126 1,25
0.6-0.7 61 1 0 62 0,61
0.7-0.8 8 0 0 8 0,08
0.8-0.9 3 0 0 3 0,03
0.9-1 0 0 0 0 0,00
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.50.: Wyniki normalizacji dla zmiennej niezaleznej. temperatura w obwodzie chlodzenia
17, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakres6w od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ llos¢ . Udzial
) produktéw produktow | produktow z Hlos¢ .| procentowy
Przedzial b z wada wada obserwacji -
ez wady . . . obserwacji
naprawialna | nienaprawialng [szt.]
[s2t] [s7t] [s7t] [%]
0.0-0.1 469 6 0 475 4,71
0.1-0.2 2596 12 1 2609 25,85
0.2-0.3 734 8 1 743 7,36
0.3-0.4 476 1 2 479 4,75
0.4-0.5 1134 5 1 1140 11,29
0.5-0.6 2899 7 7 2913 28,86
0.6-0.7 1306 11 0 1317 13,05
0.7-0.8 283 6 0 289 2,86
0.8-0.9 108 2 0 110 1,09
0.9-1 17 0 0 17 0,17
1.0 2 0 0 2 0,02
Suma: 10024 58 12 10094 100

Tab. 5.51.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura w obwodzie chlodzenia
7, w odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udzialu obserwacji w
kazdym z zakresow od najwickszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Iosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 37 0 0 37 0,37
0.1-0.2 926 6 1 933 9,24
0.2-0.3 5856 21 8 5885 58,30
0.3-0.4 0 0 0 0 0,00
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0.4-0.5 2813 27 2 2842 28,16
0.5-0.6 292 2 1 295 2,92
0.6-0.7 0 0 0 0 0,00
0.7-0.8 72 2 0 74 0,73
0.8-0.9 22 0 0 22 0,22
0.9-1 0 0 0 0 0,00
1.0 6 0 0 6 0,06
Suma: 10024 58 12 10094 100

Tab. 5.52.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura wody miejskiej, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlose Tlose . Udzial
' produktéw produktow z| produktow z Hlos¢ | procentowy
Przedzial b wada wada obserwacji 2
ez wady . . . obserwacji
[szt] naprawialng | nienaprawialng [szt.] [%]
[szt.] [szt.]
0.0-0.1 42 0 0 42 0,42
0.1-0.2 618 1 0 619 6,13
0.2-0.3 1872 17 2 1891 18,73
0.3-0.4 4591 30 3 4624 45,81
0.4-0.5 1210 4 4 1218 12,07
0.5-0.6 1538 5 3 1546 15,32
0.6-0.7 138 1 0 139 1,38
0.7-0.8 11 0 0 11 0,11
0.8-0.9 0 0 0 0 0,00
0.9-1 0 0 0 0 0,00
1.0 4 0 0 4 0,04
Suma: 10024 58 12 10094 100

Tab. 5.53.: Wyniki normalizacji dla zmiennej niezaleznej: temperatura wody w instalacji, w
odniesieniu do zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym
z zakresOw od najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlos¢ Udzial
. produktow | produktéw z Ilosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 20 0 0 20 0,20
0.1-0.2 0 0 0 0 0,00
0.2-0.3 368 1 1 370 3,67
0.3-0.4 0 0 0 0 0,00
0.4-0.5 0 0 0 0 0,00
0.5-0.6 4569 23 7 4599 45,56
0.6-0.7 0 0 0 0 0,00
0.7-0.8 4866 30 4 4900 48,54
0.8-0.9 0 0 0 0 0,00
0.9-1 0 0 0 0 0,00
1.0 201 4 0 205 2,03
Suma: 10024 58 12 10094 100
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Tab. 5.54.: Wyniki normalizacji dla zmiennej niezaleznej: wartos¢ prézni 1, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwickszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ los¢ Tlos¢ Udzial
. produktéw | produktow z Hosé
. produktow .. | procentowy
Przedzial z wada wada obserwacji -2
bez wady . . . obserwacji
naprawialng | nienaprawialng [szt.] o
[szt] [szt.] [szt.] [%]
0.0-0.1 1440 1 4 1445 14,32
0.1-0.2 2597 7 4 2608 25,84
0.2-0.3 4129 42 4 4175 41,36
0.3-0.4 1553 8 0 1561 15,46
0.4-0.5 291 0 0 291 2,88
0.5-0.6 10 0 0 10 0,10
0.6-0.7 0 0 0 0 0,00
0.7-0.8 0 0 0 0 0,00
0.8-0.9 0 0 0 0 0,00
0.9-1 4 0 0 4 0,04
1.0 0 0 0 0 0,00
Suma: 10024 58 12 10094 100

Tab. 5.55.: Wyniki normalizacji dla zmiennej niezaleznej: wartos¢ prézni 2, w odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakresow od
najwickszego (zielonego) do najmniejszego (czerwonego)

Tlosé Tlos¢ Tlos¢ y Udzial
' produktéw produktow | produktow z Hlos¢ . | procentowy
Przedzial z wada wada obserwacji -
bez wady . . . obserwacji
naprawialna | nienaprawialna [szt.]
[szt] [s7t] [s2t] [%]
0.0-0.1 1124 3 0 1127 11,17
0.1-0.2 1440 1 5 1446 14,33
0.2-0.3 1905 3 0 1908 18,90
0.3-0.4 5533 51 7 5591 55,39
0.4-0.5 15 0 0 15 0,15
0.5-0.6 3 0 0 3 0,03
0.6-0.7 0 0 0 0 0,00
0.7-0.8 0 0 0 0 0,00
0.8-0.9 1 0 0 1 0,01
0.9-1 2 0 0 2 0,02
1.0 1 0 0 1 0,01
Suma: 10024 58 12 10094 100

Tab. 5.56.: Wyniki normalizacji dla zmiennej niezaleznej: zuzycie smaru, W odniesieniu do
zmiennej zaleznej, z oznaczeniem procentowego udziatu obserwacji w kazdym z zakres6w od
najwigkszego (zielonego) do najmniejszego (czerwonego)

Tlos¢ Tlos¢ Tlosé¢ Udzial
. produktéow z | produktéow z Hosé
. produktow .. | procentowy
Przedzial wadg wada obserwacji -2
bez wady . . . obserwacji
naprawialna | nienaprawialna [szt.] o
[s2t] [szt.] [szt.] [%]
0.0-0.1 8255 49 11 8315 82,38
0.1-0.2 0 0 0 0 0,00
0.2-0.3 1534 8 1 1543 15,29
0.3-0.4 0 0 0 0 0,00
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0.4-0.5 209 1 0 210 2,08
0.5-0.6 0 0 0 0 0,00
0.6-0.7 20 0 0 20 0,20
0.7-0.8 0 0 0 0 0,00
0.8-0.9 4 0 0 4 0,04
0.9-1 0 0 0 0 0,00
1.0 2 0 0 2 0,02
Suma: 10024 58 12 10094 100

Po stworzeniu wykresow i normalizacji zakresow dla kazdej zmiennej wejsciowej, na
podstawie najwigkszego ilosciowego udziatu w danych zakresach wartosci i najwigkszej liczby
odlewoéw naprawialnych 1 nienaprawialnych, mozna wywnioskowaé zakresy dla kazdego
parametru danych, majace znaczacy wplyw na powstawanie wady produktu. Na podstawie
przeprowadzonej zastgpiono zidentyfikowane wartosci bledne lub odstajace za pomoca
teoretycznych warto$ci minimalnych i maksymalnych danej zmiennej, wyznaczonych bez

brania pod uwage warto$ci odstajacych [146] i za pomocg Srednich warto$ci danej zmiennej.

Tab. 5.59.: Wybrane zakresy zmiennych niezaleznych:

Nazwa zmiennej niezaleznej Wybrany zakres wartosci
Cisnienie sprezonego powietrza [Bar] >=0.0<=1.0

Cisnienie wody miejskiej [Bar] >=0.1 <0.5

Cisnienie wody obiegowej [Bar] >=0.0<=1.0

Czas pierwszej fazy wtrysku [ms] >=0.1<0.7

Czas chtodzenia obwodu 1 [s] >=0.0<=1.0

Czas cyklu [s] >=0.1<0.4

Czas cyklu smarowania [s] >=0.0<0.1

Czas dozowania stopu [s] >=0.0<0.1

Czas dozowania stopu 2 [s] >=0.1<0.3

Czas krzepniecia t2 [s] >=0.0<=1.0

Czas przedmuchu [s] >=0.5 <0.6, >=0.8 <1.0
Czas smarowania [s] >=0.5<0.6, >=0.9<1.0
Dzienny numer wtrysku [j.] >=0.0<0.9

Filtr prézni 1 [mBar] >=0.4 <0.9

Grubos¢é pietki uktadu wlewowego [mm] >=0.1<0.8

Koncentrat [%] >=0.3<=1.0

Cisnienie maksymalne [Bar] >=0.0 <0.8
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Predkosé wirysku maksymalna [m/s]

>=0.3 <0.4, >=0.5 <0,6, >=0.7 <0,8,

Opéznienie multiplikacji [ms] >=0.3<1.0
Stata temperatura chlodzenia plyty [°C] >=0.1 <0.4, >=0.5<0.8
Poziom stopu w piecu podgrzewczym [mm] >=0.0<0.1
Poziom wody w strumieniu chtodzqcym [mm] >=0.0<0.9
Czas drugiej fazy wtrysku [ms] >=0.3<0.4, >=0.5<0.7
Profil prézni 1 [mBar] >=0.0 <0.3
Profil prozni 2 [mBar >=0.0<0.3

Przepbyw chiodzenia tioka [1]

>=0.3 <0.7, >=0.8 <=1.0

Przeptyw w obwodzie chtodzenia 1 [I]

>=0.1 <0.3, >=0.4 <0.6, >=0.7 <0.9

Przeptyw w obwodzie chtodzenia 13 [I] >=0.5<1.0

Przeptyw w obwodzie chtodzenia 14 [I] >=0.4 <0.6, >=0.7 <0.9
Przeplyw w obwodzie chlodzenia 15 [I] >=0.2 <0.6

Przeptyw w obwodzie chtodzenia 17 [I] >=0.3<=1.0

Przepbyw w obwodzie chiodzenia 20 [1]

>=0.2 <0.3, >=0.4 <0.5, >=0.6 <0.7,

>=0.8 <0.9,<=1.0

Przepbyw w obwodzie chiodzenia 6 [I]

>=0.3<=1.0

Predkosé we wlewach doprowadzajgcych [m/s]

>=0.2 <0.9

Suw pierwszej fazy wtrysku [mm]

>=0.2 <0.4, >=0.5<0.8

Suw docisku po multiplikacji [mm]

>=0.3<0.4, >=0.5<0.7, >=0.8 <0.9

Temperatura chlodzenia ttoka [°C] >=0.0 <0.6
Temperatura stopu [°C] >=0.1<0.9
Temperatura termoregulatora 2.1 [°C] >=0.2 <0.8
Temperatura termoregulatora 2.2 [°C] >=0.3<0.7
Temperatura termoregulatora 3.2 [°C] >=0.6 <=1.0
Temperatura tulei 1 [°C] >=0.7 <1.0
Temperatura tulei 2 [°C] >=0.8 <1.0
Temperatura tulei 3 [°C] >=0.7 <1.0
Temperatura tulei 4 [°C] >=0.8 <1.0
Temperatura w obwodzie chlodzenia 1 [°C] >=0.0 <0.8

Temperatura w obwodzie chiodzenia 13 [°C]

>=0.1 <0.4, >=0.5<0.9

Temperatura w obwodzie chiodzenia 14 [°C]

>=0.1 <0.3, >=0.4 <0.6

Temperatura w obwodzie chiodzenia 15 [°C]

>=0.1 <0.6
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Temperatura w obwodzie chtodzenia 17 [°C] >=0.0<0.8

Temperatura w obwodzie chtodzenia 7 [°C] >=0.1 <0.3, >=0.4 <0.6

Temperatura wody miejskiej [°C] >=0.1<0.7

Temperatura wody w instalacji [°C] >=0.2 <0.3, >=0.5 <0.6, >=0.7 <0.8,
Wartosé prozni 1 [mBar] >=0.0 <0.5

Wartosé¢ prozni 2 [mBar] >=0.0 <0.5

Zuzycie smaru [1] >=0.0 <0.1, >=0.2 <0.3, >=0.4 <0.5,

5.2.1.2. Whnioski

Na podstawie przeprowadzonej analizy i optymalizacji wartosci danych parametrow
zastgpiono zidentyfikowane wartosci btgdne lub odstajace za pomocg teoretycznych wartosci
minimalnych i maksymalnych danej zmiennej, wyznaczonych bez brania pod uwage wartosci
odstajacych [146] i czgs¢ zmiennych (tj. czas cyklu smarowania [s] i poziom stopu w piecu
podgrzewczym [mm]) za pomoca $rednich wartosci danej zmienne;.

Przeprowadzona analiza potwierdzita cechy danych przemystowych, czyli:

e niedoskonata jakos$¢ danych,

e brak rownowagi w reprezentacji wartosci,

e roznorodnos¢ typow rozktadow zmiennych,

e wystepowanie korelacji pomi¢dzy réznymi parametrami procesu.

Pierwsza cecha jest zwigzana z zauwazonymi warto§ciami odstajacymi oraz brakujacymi,
zdublowanymi, nieprecyzyjnymi danymi widocznymi na wykresach. Przyktadem moze by¢
wykres zmiennej poziom stopu w piecu podgrzewczym [mm] na ktorym widoczne sg warto$ci
zawierajace si¢ w przedziale od 0 do 600 i dodatkowo 6% wartos$ci w przedziale od 6533 do
6548 (rys. 5.2.1.58.). Drugim przyktadem moze by¢ wykres zmienne;j filtr prozni 1 [mBar] (rys.
5.2.1.59.), na ktorym wartosci odstajgce widoczne sg doskonale. Cecha nazywana niedoskonata
jakoscig jest rowniez definiowata ukryte niepoprawnosci, ktore wydawaty si¢ by¢ uzasadnione
1 poprawne z punktu widzenia wartosci zmiennej jednak okazaly si¢ by¢ kodami btedu
aparatury kontrolno-pomiarowej. Przyktadem jest wykres zmiennej zaleznej, ktorej wartosci

zawieraly warto$¢ rowng 91, bedaca bardzo racjonalng, gdyz z srodka zakresu (rys. 5.2.1.60).

111



7000

[ )]
o o
o o
o o

w B
o o
o o
o o

= N
o o
o o
o o

Poziom stopu w piecu podgrzewczym [mm]

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Numer obserwacji

Rys.5.2.1.58. Wykres przebiegu zmiennej wejsciowej: poziom stopu w piecu
podgrzewczym, z posortowanymi warto$ciami zawierajacy niepoprawne wartosci
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Rys.5.2.1.59. Wykres przebiegu zmiennej wejsciowej: filtr prozni 1, z posortowanymi
warto$ciami zawierajacy niepoprawne wartosci
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Rys.5.2.1.60. Wykres przebiegu zmiennej zaleznej: przeciek w obwodzie wysokiego
cisnienia, z posortowanymi wartoSciami zawierajacy ukryte niepoprawne wartosci

Druga cechg danych przemystowych jest roznorodnos¢ typow rozktadéw zmiennych, takich
jak rozktad zblizony do normalnego (Gaussa), rozktad zblizony do Gamma i inne (rys.5.2.1.61.,
rys.5.2.1.62.).
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Rys.5.2.1.61. Wykres przebiegu zmiennej zaleznej: grubosé pietki uktadu wlewowego, z
posortowanymi warto$ciami, z rozktadem zblizonym do rozktadu normalnego
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Rys.5.2.1.62. Wykres przebiegu zmiennej zaleznej: przeciek w obwodzie wysokiego
cisnienia, z posortowanymi wartosciami z rozktadem zblizonym do rozktadu gamma

Druga cecha, czyli brak rownowagi w reprezentacji warto$ci stanowi istotny problem
badawczy, gdyz z jednej strony dostepna jest duza ilos¢ danych procesowych, z drugiej
natomiast mata ilos¢ danych o stanach krytycznych, czyli mala reprezentacja niektorych
krytycznych wartosci. Cecha ta jest widoczna na posortowanym wykresie przebiegu zmiennej
zaleznej (rys.5.2.1.57.). Wykres wskazuje (zalamanie na krzywej), ze mamy do czynienia z
dwoma jako$ciowo i ilo§ciowo roznymi zakresami wartosci zmiennej zaleznej, gdzie warto$cia
graniczng jest 7,5. Wazne jest, ze mamy az 10 024 probek w zakresie do 7,5, co stanowi 99,3%
wynikéw i tylko 70 probek od 7,5 do 171,86, co stanowi 0,7% wynikow. Te rzadkie przypadki
moga zosta¢ zignorowane przez niektére modele oparte na danych.

Ostatnia cecha moze zostac rozszerzona ze wzgledu na rodzaj i pochodzenie wskazywanych
korelacji ktore zostang doktadnie zbadane w kolejnym rozdziale wyrdzniajgc korelacje:

e naturalne (fizyczne), na przyktad migedzy dwiema temperaturami
mierzonymi w s3gsiednich obszarach odlewu lub miedzy przeplywem
wody a jej temperaturg w tym samym kanale chtodzacym. Tego rodzaju
skorelowane zmienne mozna latwo zastapi¢ jedng zmienng, bardziej
widoczng z punktu widzenia jakoSci produktu.

e celowe, bedace wynikiem dziatan operatorow lub personelu
inzynierskiego. Tego rodzaju korelacje powinny zosta¢ uzasadnione lub
wyeliminowane.

e przypadkowe, czyli wynikajace z jednoczesnego wystepowania

pewnych warto$ci w niektérych okresach.
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5.2.2. Podzial danych na zbiory do badan i dyskretyzacja danych

W niniejszym rozdziale zaprezentowane zostang wyniki podziatu zbioru danych na pig¢
zbiorow danych do badan, wraz z uzasadnieniem zastosowanego podziatu oraz metodyka
przeprowadzonej dyskretyzacji wartosci zmiennych zaleznych 1 niezaleznych dla kazdego z
pieciu zestawdéw danych do badan. Krok ten jest niezbedny i wymaga wiedzy o procesie celem
przygotowania danych do analizy istotno$ci parametrow oraz do zaawansowanego

modelowania opartego na zbiorach danych.
5.2.2.1. Metodyka i wyniki badan

W przypadku analizy zbioru danych, w ktérym liczba rekordéw reprezentujacych krytyczne
warto$ci wynikéw procesu jest mata, niektore korelacje pomigdzy zmiennymi wejsciowymi i
wyjsciowymi moga by¢ przypadkowe. Zalezno$ci te moga przestania¢ wazne zalezno$ci
fizyczne w procesie, ze wzglgdu na stabo$¢ i ztozonos$¢ tych ostatnich. Wartosci niektorych
zmiennych wejSciowych moga by¢ celowo wprowadzane przez pracownikoéw jako reakcja na
warto$ci innych zmiennych lub po prostu na podstawie ich indywidualnych doswiadczen, co
prowadzi do "lokalnych" korelacji z danymi wyjsciowymi pojawiajagcymi si¢ w danych.
Ostatecznie model procesu wejscie-wyjscie (ang. input-output) moze wigc tatwo
odzwierciedla¢ nieistniejace zaleznosci.

Tego typu wnioskowanie doprowadzito nas do koncepcji przestaniania rzeczywistych relacji
w procesie przez relacje przypadkowe czy sztucznie wprowadzone do danych, ktore modele
beda wskazywac jako rownie wazne. Identyfikacja takich "pasozytniczych" zmiennych jest
trudna. Mozna zastosowa¢ w tym przypadku podziat gldwnego zbioru danych na zbiory
testowe zawierajgce rozne zakresy wartosci zmiennej zaleznej. Dlatego w niniejszym rozdziale
zaprezentowana zostanie metodyka podzialu badanego rzeczywistego zbioru danych na pigé
zbioréw danych do badan, z ktérych kazdy zawierat inng liczbe obserwacji i z inng proporcja
rekordow o mniejszych warto$ciach zmiennej zalezne;.

Pierwszy zbior danych do badan zawieral wszystkie dane ze zbioru danych rzeczywistych
(rys.5.2.1.57.). Drugi zbior danych do badan natomiast zawierat tylko obserwacje, dla ktorych
zmienna zalezna przyjmowata wartosci >=7,5 (rys.5.2.2.1). W niniejszym zbiorze mozna
zaobserwowaé wysoka zmienno$¢ warto$ci zmiennej zaleznej (rys.5.2.2.2). Z uwagi na te¢
wysoka zmienno$¢, modelowanie oparte na tym zbiorze danych do badan, moze da¢

wartosciowe wyniki dla niniejszej rozprawy.
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Rys.5.2.2.2. Histogram zmiennej zaleznej, w drugim zbiorze danych do badan

Trzeci zbiér danych do badan zawieral tylko obserwacje, dla ktorych zmienna zalezna
przyjmowala wartosci < 7,5 (rys.5.2.2.3.). W niniejszym zbiorze rowniez mozna zaobserwowac
wysoka zmienno$¢ wartosci zmiennej zaleznej (rys.5.2.2.4.). Rozktad zmiennej zaleznej jest
zblizony do normalnego, ale zaznacza si¢ zwigkszone wystepowanie warto$ci podwyzszonych.
Modelowanie oparte na tym zbiorze danych do badan moze da¢ interesujace wyniki dotyczace

trendow wystepujacych w danych powszechnie.
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Rys.5.2.2.3. Wykres przebiegu zmiennej zaleznej, z posortowanymi wartosciami, W
trzecim zbiorze danych do badan
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Przeciek w obwodzie wysokiego cisnienia [cm3]

Rys.5.2.2.4. Histogram zmiennej zaleznej w trzecim zbiorze danych do badan

Czwarty zbior danych do badah zawierat w sobie wartosci zbioru drugiego, czyli
obserwacje, dla ktorych zmienna zalezna przyjmowata wartosci < 7,5 oraz takg samg ilo$¢
obserwacji pochodzacych z goérnego zakresu zbioru trzeciego (rys.5.2.2.5.). Modelowanie
oparte na tym zbiorze danych, pozwoli na najbardziej warto§ciowe wnioski, w temacie wptywu
okreslonych parametrow na zwigkszenie warto$ci zmiennej zaleznej w niepozadanym stopniu,

a wigc na powstanie wady w produkcie.
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Rys.5.2.2.5. Wykres przebiegu zmiennej zaleznej, z posortowanymi warto$ciami, W
czwartym zbiorze danych do badan

Piaty zbiér danych do badan zawieral w sobie warto$ci zbioru drugiego, czyli obserwacje,
dla ktérych zmienna zalezna przyjmowata wartosci < 7,5 oraz taka samg ilo$¢ obserwacji
pochodzacych ze zbioru trzeciego, wybranych losowo, co 144 rekordy (rys.5.2.2.6.).
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Rys.5.2.2.6. Wykres przebiegu zmiennej zaleznej, z posortowanymi wartosciami, W
piatym zbiorze danych do badan

Zbiory pierwszy i trzeci nazywane sa dalej zbiorami duzymi, za$ drugi, czwarty i piaty —
zbiorami matymi.

Dane wejsciowe i wyjsciowe zostaly nastepnie zdyskretyzowane (celem przygotowania ich

do dalszych analiz), dla kazdego z pigciu zestawoéw danych, w celu wykrycia wplywu

parametrow procesu na warto$¢ przecieku. Zakresy przedzialow okreslono poprzez wizualna

oceng, uporzadkowanych wedtug wartosci przyjmowanych przez dany parametr (wartosci

typowe, podwyzszone i obnizone). Celem przeprowadzenia tej analizy stworzono plik w
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programie Microsoft Excel przedstawiony na rys.5.2.2.7..

(6)

(D PODZIAL na zadane przedzim
Gorne wartosci “
Nr EQ&OZIGM rzedziatow Licznosci w przedziatach
| e 5 2685
2 ] 7409
3
4
5
3
7
8
2 9
10
| Liczba przedziatow recznych: 2
Liczba rekordéw:| @ 10004 /N 10004
3
I May: | 6|
7 | Min- | ® 5 5
Wartosci ciagle: Wartosei dyskretne\ Nr przedziats
Cisnienie b \
sprezonego Cisnienie sprezonego
powietrza [Bar] |~ Lgowuetrz: [Bar] bl 1 2 3 4 5 ] 7 8 g 10
5 1 1 o 0 o 0 0 0 0 0 o
& 2 0 1 [ o 0 0 [ 0 0 0
1 ] 5 1 1 0] 0 0] 0 0 0 0 0 0]
{ B 2 0 1 0 [ 0 0 0 0 0 0]
[ 2 a 1 1] 1] 1] 1] a 0 a 0
‘e 3 2 0 1 0 0 0 0 ] 0 0 0
& 2 [ 1 [ 0 0 0 [ 0 [ 0
5 1 1 0 Q0 0 0 0 Q 1) a 0
6 2 g 1 0 [1] 0 1] o L) a a
6 2 a 1 1] 0 0 ] a 1] a 0
6 2 0 1 [ 0 0 0 [ 0 0 0|

Rys.5.2.2.7. Tabele umozliwiajace dyskretyzacje warto$ci zmiennych zaleznych 1
niezaleznych

W celu otrzymania zdyskretyzowanych wartosci zmiennej nalezy:
e w punkcie 1, wprowadzi¢ wartosci ciggte okreslonej zmiennej,
e w punkcie 2, wprowadzi¢ liczbe obserwacji,
e w punkcie 3 otrzyma¢ najmniejsza i najwigkszg wartos¢ ze zbioru liczb
typu cigglego wprowadzonych w punkcje 1, obliczang w oparciu 0
funkcje =MAX () i funkcje =MIN (),
e W punkcie 4, zada¢ gérne wartosci przedzialow,
e w punkcie 5, otrzyma¢ wynik, czy dana warto$¢ typu ciagltego znajduje
sie w danym przedziale, obliczony w oparciu o funkcje =JEZELI (),
e w punkcie 6, otrzymaé licznosci wartosci zawartych w zadanych
przedzialach, w oparciu o funkcje =LICZ.JEZELI(),
e w punkcie 7, otrzyma¢ wynikowe zdyskretyzowane wartosci zmiennej.
Na podstawie otrzymanych danych tworzone sg ponizsze wykresy (rys.5.2.2.8., rys.5.2.2.9.)
umozliwiajace weryfikacj¢ zadanych przedziatow poprzez wizualng ocene, uporzadkowanych
wedlug warto$ci przyjmowanych przez dany parametr (warto$ci typowe, podwyzszone i

obnizone).
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Histogram automatyczny dla wartosci oryginalnych (ciagtych)
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Rys.5.2.2.8. Histogram automatyczny dla warto$ci oryginalnych (typu ciagltego) dla
zmiennej niezaleznej: cisnienie sprezonego powietrza
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Rys.5.2.2.9. Wykres ilosci obserwacji w poszczegolnych przedziatach dla zmiennej
niezaleznej: cisnienie sprezonego powietrza

Opisang procedurg dyskretyzacji danych powtorzono 290 razy, gdyz obliczenia wykonano
dla 56 zmiennych niezaleznych dla kazdego utworzonych pigciu zestawoéw danych dodatkowo
dla zmiennej niezaleznej wedtug 2 1 4 przedziatéw, rowniez dla kazdego z utworzonych pieciu

zbiorow danych. Wyniki zapisano w tab.5.60.-tab.5.64..
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Tab. 5.60.: Ustalane przedziaty i wystgpienia danych wartosci w przedziatach dla pierwszego

zbioru danych do badan

przedzialow

Wartos¢
zdyskretyzowana 1 2 3 4
Gorne granice 5 6
Cisnienie sprezonego powietrza przedzialow
[Bar] Liczby wystapien | 2685 | 7409
Gorne granice
al6 3 4 5
Cisnienie wody miejskiej [Bar] przedzialow
Liczby wystapien 1850 6404 1840
Gorne granice 2 3
Cisnienie wody obiegowej [Bar] przedzialow
Liczby wystgpien 5241 | 4853
_ _ Gorne granice 2241 | 2266 | 2289 2333
Czas pierwszej fazy wtrysku [ms] przedzialow
Liczby wystapien 2594 | 2584 | 2495 2421
Gorne granice 30 31 32
Czas chiodzenia obwodu 1 [s] przedzialow
Liczby wystapien 45 9984 65
Gorne granice 85 | 100 | 172,61
Czas cyklu [s] przedzialow
Liczby wystapien 7 9460 627
. Gérne granice 23 275 315
Czas cyklu smarowania [s] przedzialow
Liczby wystapien 9705 336 53
_ Gérne granice 111 | 32 33
Czas dozowania stopu [s] przedzialow
Liczby wystapien 9420 504 170
_ Gorne granice 65 75 106,6
Czas dozowania stopu 2 [s] przedzialow
Liczby wystapien 163 9534 397
Gorne granice 10 1
Czas krzepniecia t2 [s] przedzialéw
Liczby wystapien 7527 2567
Gérne granice 67 | 75 11,7
Czas przedmuchu [s] przedzialéw
Liczby wystgpien 163 9315 616
- Gorne granice 6 9,30
Czas smarowania [s] przedzialow
Liczby wystapien 9839 255
_ _ Gorne granice 100 | 210 349 663
Dzienny numer wtrysku [j.] przedzialéw
Liczby wystapien 2549 2501 2527 2517
Gorne granice 1350 | 1400 | 1460 1613
Filtr prozni 1 [mBar] przedzialow
Liczby wystapien 2561 | 2508 2503 2522
Gorne granice
Grubos¢ pietki uktadu wlewowego przedzialow 355 41,5 45
[mm] Liczby wystapien | 1446 | 7970 | 678
Gorne granice 21 26 27
Koncentrat [%] przedzialow
Liczby wystapien 633 4846 4615
Cisnienie maksymalne [Bar] Gérne granice 340 | 344 346
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Liczby wystapien 1601 7982 511
Gorne granice 59 6
Predkos¢ wirysku maksymalna [m/s] przedzialow :
Liczby wystapien 5233 | 4861
Gorne granice
L 170 175 176
Opéznienie multiplikacji [ms] przedzialow
Liczby wystapien 1477 8467 150
Gorne granice 28 32
Stata temperatura chlodzenia ptyty przedzialow
e Liczby wystapien 6483 | 3611
Gorne granice
Poziom stopu w piecu przedzialéw 1000 | 6548,6
podgrzewczym [mm] Liczby wystapien | 9467 | 627
Gorne granice
Poziom wody w strumieniu przedzialéw 246 269 298
chiodzqcym [mm] Liczby wystapieh | 3367 | 3451 | 3276
Gorne granice
A 88 89 90
Czas drugiej fazy wtrysku [ms] przedzialow
Liczby wystapien 3383 | 4928 1783
Gérne granice 1170 | 1300 | 1384
Profil prézni 1 [mBar] przedzialow
Liczby wystapien 8328 | 1724 42
Gérne granice 1050 | 1170 | 1321
Profil prézni 2 [mBar przedzialow
Liczby wystapien 1554 | 2013 6527
Gorne granice 15 20 26
Przephyw chiodzenia tloka [1] przedzialow
Liczby wystapien 336 6876 2882
Gorne granice
Przeplyw w obwodZzie chlodzenia 1 przedzialow 24 26 28
[ Liczby wystapien 1019 6253 2822
Gorne granice
Przeplyw w obwodzie chlodzenia 13 przedzialow 15 17 19 20
i Liczby wystapien 384 5595 2377 1738
Gorne granice
Przeplyw w obwodzie chiodzenia 14 przedzialow 26 27 28 29
y Liczby wystapien 897 2472 5610 1115
Gorne granice
Przeplyw w obwodzie chlodzenia 15 przedzialow 25 26 27 28
i Liczby wystapien 2210 | 4870 2486 528
Gorne granice
Przeplyw w obwodzie chlodzenia 17 przedzialow 23 26 32 33 36
1 Liczby wystapien 2155 | 2049 2417 1758 1715
Gorne granice
Przeplyw w obwodzie chiodzenia 20 przedzialéw 22 23 25
[ Liczby wystapien 1733 | 5292 3069
Gorne granice
Przeplyw w obwodzie chlodzenia 6 przedzialow 28 29 30 33
[ Liczby wystapien 3022 2356 3255 1461
Gorne granice
Predkos¢ w'e wlewach przedzialow 38,10 | 38,80 39,43
doprowadzajgcych [m/s] Liczby wystapien 386 | 7098 | 2610
o Gorne granice 53 | 537 | 538 539 | 540
Suw pierwszej fazy wtrysku [mm] przedzialéw
Liczby wystapien 232 2671 4440 2415 336
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Gorne granice

. o L . 17 18 19 20
Suw docisku po multiplikacji [mm] przedzialow
Liczby wystapien 194 2172 6175 1553
Gorne granice 32 33 35
Temperatura chtodzenia toka [°C] przedzialow
Liczby wystapien 4919 4044 1131
Gorne granice 674 | 684 | 6892
Temperatura stopu [°C] przedzialow
Liczby wystapien 402 8687 1005
Gorne granice
Temperatura termoregulatora 2.1 przedzialow 68 72 75
e Liczby wystapich | 2810 | 5806 | 1478
Gorne granice
Temperatura termoregulatora 2.2 przedzialéw 1 73 74
r°ci Liczby wystapien 3284 5836 974
Gérne granice
Temperatura termoregulatora 3.2 przedzialéw 148 152 156
e Liczby wystapich | 2890 | 4466 | 2738
Gérne granice 205 | 223 242
Temperatura tulei 1 [°C] przedzialow
Liczby wystapien 722 8763 609
Gorne granice 215 | 224 | 235
Temperatura tulei 2 [°C] przedzialow
Liczby wystapien 1158 | 7678 1258
Gérne granice 212 | 230 256
Temperatura tulei 3 [°C] przedzialow
Liczby wystapien 719 8716 659
Gorne granice 220 | 239 | 258
Temperatura tulei 4 [°C] przedzialow
Liczby wystapien 716 8656 722
Gorne granice
Temperatura W obwodzie chlodzenia przedzialow 29 33 39
rrd Liczby wystapien 90 9625 379
Gorne granice
Temperatura w obwodzie chlodzenia przedzialow 32 37 40
B3 Liczby wystgpien 103 9770 221
Gorne granice
Temperatura w obwodzie chlodzenia przedzialow 31 32 33 34
147°c Liczby wystapien 554 4481 4184 875
Gorne granice
Temperatura w obwodzie chlodzenia przedzialow 32 33 34 35 36
I31°c] Liczby wystgpien 1187 3707 4208 792 200
Gorne granice
Temperatura w obwodzie chlodzenia przedzialow 28 33 35
171°¢q Liczby wystapich | 3827 | 5695 | 572
Gorne granice
Temperatura w obwodzie chlodzenia przedzialéw 27 28 29 30
7rd Liczby wystapien 970 5885 2842 397
Gorne granice 18 o5 27
Temperatura wody miejskiej [°C] przedzialow
Liczby wystapien 209 9731 154
Gorne granice 23 24 o5
Temperatura wody w instalacji [°C] przedzialéw
Liczby wystapien 390 4599 5105
Wartos¢ proéni 1 [mBar] Goérne granice 235 | 435 | 599

przedzialow
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Liczby wystapien 1528 | 7287 1279

Gorne granice
przedzialow

Liczby wystapien 3532 | 6263 299

Gorne granice
przedzialow

Liczby wystapien 8315 1543 236

Gorne granice
Przeciek w obwodzie wysokiego przedzialow 7,4999 | 171,86

cisnienia [cm3] Leakage 2CAT Liczby wystapief 10024 70

Gorne granice
Przeciek w obwodzie wysokiego przedzialéw 3 7,4999 15 171,86

cisnienia [cm3] Leakage 4CAT Liczby wystapien 8965 1059 39 31

400 500 659
Wartos¢ prozni 2 [mBar]

0 1 2
Zuzycie smaru [l]

Tab. 5.61.: Ustalane przedzialy i wystgpienia danych warto$ci w przedziatach dla drugiego
zbioru danych do badan

Wartos¢
zdyskretyzowana 1 2 3 4
Gorne granice
Cisnienie sprezonego powietrza przedzialéw 5 6
[Bar] Liczby wystapien 21 49
Gorne granice
Cisnienie wody miejskiej [Bar] | PYzedzialow 3 4 5
Liczby wystapien 16 43 11
Gorne granice
Cisnienie wody obiegowej [Bar] | Przedzialow 2 3
Liczby wystapien 40 30
Gorne granice
Czas pierwszej fazy wtrysku [ms] |Przedzialow 2240 2280 2340
Liczby wystapien 13 41 16
Gorne granice
Czas chlodzenia obwodu I [s] | Przedzialow 31
Liczby wystapien 70
Gorne granice
Czas cyklu [s] przedzialéw 100| 165,55
Liczby wystapien 61 9
Gorne granice
Czas cyklu smarowania [s] przedziatow 23 315
Liczby wystapien 58 12
Gorne granice
Czas dozowania stopu [s] przedzialow 111 33
Liczby wystapien 67 3
Gorne granice
Czas dozowania stopu 2 [s] przedzialow 61 80 106,6
Liczby wystapien 3 62 5
Gorne granice
Czas krzepnigcia t2 [s] przedzialow 10 11
Liczby wystapien 32 38
Gorne granice
Czas przedmuchu [s] przedziatow 8 11,7
Liczby wystapien 57 13
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Gorne granice

Czas smarowania [s] przedziatow 6] 930
Liczby wystapien 60 10
Gorne granice
Dzienny numer wtrysku [j.] przedzialow 100 300 652
Liczby wystapien 28 20 22
Gorne granice
Filtr prézni 1 [mBar] przedzialow 1300 1500 1592
Liczby wystapien 3 58 9
Gorne granice
Grubos¢ pigtki[uklz?ldu wlewowego | przedzialéw 355 42
mm
Liczby wystapien 7 63
Gorne granice
Koncentrat [%] prZedZial(’)W 2,3 2,7
Liczby wystapien 12 58
Gorne granice
Cisnienie maksymalne [Bar] przedzialow 340 343 345
Liczby wystgpien 19 44 7
Gorne granice
Predkosé Wt?/sl/cu] maksymalna przedzialéw 5,85 5,9 6
m/s
Liczby wystapien 9 40 21
Gorne granice
Opéznienie multiplikacji [ms] | Przedzialow 171 174 176
Liczby wystapien 13 44 13
Gorne granice
Stala tempj;atu[rac ;hlodzenia przedzialéw 28 32
phity [ . .
Liczby wystapien 26 44
. . Gorne granice
Poziom stopu w piecu przedzialéw 500 600
podgrzewczym [mm] ] ]
Liczby wystapien 11 59
. o Gorne granice
Poziom wody w strumieniu przedzialéw 260 208
chiodzgcym [mm] - )
Liczby wystapien 31 39
Gorne granice
Czas drugiej fazy wtrysku [ms] | Przedzialow 88 89 90,0
Liczby wystapien 26 32 12
Gorne granice
Profil prézni 1 [mBar] przedzialow 1100 1298
Liczby wystapien 25 45
Gorne granice
Profil prézni 2 [mBar przedzialow 1200 1317
Liczby wystapien 10 60
Gorne granice
Przeplyw chiodzenia tloka [1] | Przedzialow 24 26
Liczby wystapien 33 37
) | Gorne granice
Przeplyw w obr/ﬁ?lizte chtodzenia | pyzedzialow 25 28
Liczby wystapien 45 25
) | Gorne granice
Przeplyw w oliv?’vo[ﬁzte chtodzenia | pyzedzialow 18 19 20
Liczby wystapien 19 36 15
Gorne granice
Przephyw w olﬂvo[ﬁzie chiodzenia przedzialéw 26 27 29
Liczby wystapien 18 29 23
Gorne granice
Przeplyw w oligvo[ﬁzie chtodzenia | przedzialow 25 26 27 28
Liczby wystapien 17 21 11 21
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Gorne granice

Przeptyw w obwodzie chtodzenia przedzialéw 20 30 35
17 1]
Liczby wystapien 18 25 27
Gorne granice
Przeplyw w obwodzie chiodzenia | przedzialéw 22 23 25
20 1]
Liczby wystapien 31 27 12
Gorne granice
Przeptyw w obwodzie chtodzenia przedzialow 29 33
6l
Liczby wystapien 38 32
N Goérne granice
Predkosé we wlewach przedzialéw 384| 388 39,27
doprowadzajgcych [m/s] ] )
Liczby wystapien 13 37 20
Gorne granice
Suw pierwszej fazy wtrysku [mm] | Przedzialow 537 538 540
Liczby wystapien 22 29 19
. o Gorne granice
Suw d00|sku[ po Enultlpllkacu przedzialow 17 18 19 20
mm
Liczby wystapien 5 21 36 8
Gorne granice
Temperatura chlodzenia tloka przedzialéw 30 33 35
°C
e/ Liczby wystapien 9 57 4
Gorne granice
Temperatura stopu [°C] przedzialow 678 | 6885
Liczby wystapien 30 40
Gorne granice
Temperatura termoregulatora 2.1 | rzedzialow 67 72 75
°C
rd Liczby wystapien 17 41 12
Gorne granice
Temperatura termoregulatora 2.2 przedzialéw 72 74
°C
rda Liczby wystapien 30 40
Gorne granice
Temperatura te[l;rgjoregulatora 3.2 przedzialow 150 156
Liczby wystapien 44 26
Gorne granice
Temperatura tulei 1 [°C] przedzialéw 208 218 229
Liczby wystapien 14 37 19
Gorne granice
Temperatura tulei 2 [°C] przedzialow 218 226 232
Liczby wystapien 15 42 13
Gorne granice
Temperatura tulei 3 [°C] przedzialow 218 228 236
Liczby wystapien 18 36 16
Gorne granice
Temperatura tulei 4 [°C] przedzialow 228 236 245
Liczby wystapien 20 34 16
. Gorne granice
Temperatu raw obwodzie przedzialow 30 33 39
chlodzenia 1 [°C]
Liczby wystapien 4 58 8
. Gorne granice
Temperatura w obwodzie przedzialow 34 35 38
chtodzenia 13 [°C]
Liczby wystapien 26 31 13
. Gorne granice
Temperatura w obwodzie przedzialow 31 32 33 34
chlodzenia 14 [°C] ]
Liczby wystapien 8 16 32 14
. Gorne granice
Temperatura w obwodzie przedzialow 32 34 36
chlodzenia 15 [°C]
Liczby wystapien 11 52 7
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. Gérne granice
Temperatura w obwodzie przedzialow 28 33 35
chiodzenia 17 [°C]
Liczby wystapien 28 32 10
. Goérne granice
Temperatura w obwodzie przedzialow 27 28 29 30
chlodzenia 7 [°C]
Liczby wystapien 7 29 29 5
Gorne granice
Temperatura wody miejskiej [°C] | Przedzialow 20 22 26
Liczby wystapien 20 33 17
. . | Gérne granice
Temperatura wody w instalacji przedzialow 24 25
r°cy
Liczby wystapien 32 38
Gorne granice
Wartos¢ prézni 1 [mBar] przedzialow 300 400 490
Liczby wystapien 10 49 11
Gorne granice
Wartos¢ prézni 2 [mBar] przedzialow 450 480 526
Liczby wystapien 14 45 11
Gorne granice
Zuzycie smaru [1] przedzialow 0 2
Liczby wystapien 60 10
. ) . Gorne granice
Przeciek w obwodzie wysokiego przedzialow 25| 171,86
cisnienia [cm3] Leakage 2CAT - -
Liczby wystapien 52 18
. . . Gorne granice
Przeciek w obwodzie wysokiego przedzialéw 10 25 100 171,86
cisnienia [cm3] Leakage 4CAT - -
Liczby wystapien 25 27 9 9

Tab. 5.62.: Ustalane przedzialy i wystapienia danych warto$ci w przedziatach dla trzeciego
zbioru danych do badan

Warto$¢é
zdyskretyzowana 1 2 3 4 5
o ) ) Gorne granice
Cisnienie sprezonego powietrza przedzialow 5 6

[Bar] i .
Liczby wystapien 2664 7360

Gorne granice
Cisnienie wody miejskiej [Bar] | Przedzialow 3 4 5
Liczby wystapien 1834 6361 1829
Gorne granice
Cisnienie wody obiegowej [Bar] | PrzZedzialow 2 3
Liczby wystapien 5201 4823
Gorne granice
Czas pierwszej fazy wtrysku [ms] | Przedzialow 2241 2266 2289 | 2333

Liczby wystapien 2581 2553 2480 | 2410
Gorne granice

Czas chtodzenia obwodu 1 [s] przedzialéw 30 31 32
Liczby wystapien 44 9915 65
Gorne granice
Czas cyklu [s] przedzialow 85 100 | 172,61
Liczby wystapien 7 9399 618
Gorne granice
Czas cyklu smarowania [s] przedzialéw 23 315

Liczby wystapien 9647 377
Gorne granice
przedzialow 11,1 32 33

Czas dozowania stopu [s]
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Liczby wystapien 9353 503 168
Gorne granice
Czas dozowania stopu 2 [s] przedziatow 65 75| 1066
Liczby wystapien 160 9472 392
Gorne granice
Czas krzepnigcia t2 [s] przedzialow 10 11
Liczby wystapien 7457 2567
Gorne granice
Czas przedmuchu [S] prZedZial(’)W 6,7 7,5 11,7
Liczby wystapien 163 9258 603
Gorne granice
Czas smarowania [s] przedzialow 6 9,30
Liczby wystapien 9779 245
Gorne granice
Liczby wystapien 2521 2487 2512 | 2504
Gorne granice
Filtr prézni 1 [mBar] przedzialow 1350 1400 1460 | 1613
Liczby wystapien 2553 2491 2472 | 2508
o Gorne granice
Grubos¢ ngtkz[uklc:zldu wlewowego przedzialéw 35,5 41,5 45
mm
Liczby wystapien 1439 7908 677
Gorne granice
Koncentrat [%] przedzialow 2,1 2,6 2,7
Liczby wystapien 632 4812 4580
Gorne granice
Cisnienie maksymalne [Bar] przedzialow 340 344 346
Liczby wystapien 1582 7933 509
Gorne granice
Predkos¢ wtr[ys;cu] maksymalna | przedzialow 5,9 6
m/s
Liczby wystapien 5184 4840
Gorne granice
OpéZnienie multiplikacji [ms] przedzialow 170 175 176
Liczby wystapien 1473 8404 147
) Gorne granice
Stata temperatu[i;% ;’hlodzema P | przedzialéw 28 32
Liczby wystapien 6457 3567
. . Gorne granice
Poziom stopu w piecu przedzialow 1000 | 6548,6
podgrzewczym [mm] ] ]
Liczby wystapien 9397 627
. o Gorne granice
Poziom wody w strumieniu przedzialéw 246 269 298
chlodzqcym [mm] ] ]
Liczby wystapien 3355 3420 3249
Gorne granice
Czas drugiej fazy wtrysku [ms] | Przedzialow 88 89 90,0
Liczby wystapien 3357 4896 1771
Gorne granice
Profil prézni 1 [mBar] przedzialow 1170 1300 1384
Liczby wystapien 8265 1717 42
Gorne granice
Profil prézni 2 [mBar przedzialow 1050 1170 1321
Liczby wystapien 1551 2007 6466
Gorne granice
Przeplbyw chiodzenia tloka [1] przedzialow 15 20 26
Liczby wystapien 335 6855 2834
Przeplyw w obwodzie chlodzenia 1 | Gérne granice
[ przedzialow 24 26 28
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Liczby wystapien 992 6222 2810
Gorne granice
Przeptyw w obwodzie chtodzenia przedzialéw 15 17 19 20
1311 Liczby wystapien 383 5581 2337 | 1723
Gorne granice
Przeplyw w obwodzie chtodzenia przedzialéw 26 27 28 29
1l Liczby wystapien 879 2443 5590 | 1112
Gorne granice
Przeptyw w obwodzie chtodzenia przedzialéw 25 26 27 28
o1l Liczby wystapien 2193 4849 2475| 507
Gorne granice
Przeplyw w obwodzie chtodzenia przedzialéw 23 26 32 33 36
171l Liczby wystapien 2130 2033 2399 | 1753 | 1709
Gorne granice
Przeptyw w obwodzie chtodzenia przedzialéw 22 23 25
2011 Liczby wystapien 1702 5265 3057
Gorne granice
Przeptyw w obwodzie chiodzenia 6 | nrzedzialéw 28 29 30 33
" Liczby wystapien 3012 2328 3227 1457
Gorne granice
Predkosc we wlewach przedzialéw 38,10| 38,80| 3943
doprowadzajqcych [m/s]
Liczby wystapien | 381,00 | 7053,00 | 2590,00
Gorne granice
Suw pierwszej fazy wtrysku [mm] przedzialow 536 537 538 | 539| 540
Liczby wystapien 232 2649 4411] 2399 | 333
Gorne granice
Suw docisku po multiplikacji [mm] | przedzialow 17 18 19| 20
Liczby wystapien 189 2151 6139 | 1545
Gorne granice
Temperatura chtodzenia tloka [°C] przedzialow 32 33 35
Liczby wystapien 4881 4016 1127
Gorne granice
Temperatura stopu [°C] przedzialow 674 684 | 689,2
Liczby wystapien 401 8624 999
Gorne granice
Temperatura termoregulatora 2.1 | przedzialéw 68 72 75
rdg Liczby wystapien 2784 5774 1466
Gorne granice
Temperatura termoregulatora 2.2 | pyzedzialéw 71 73 74
e Liczby wystapien 3267 5787 970
Gorne granice
Temperatura termoregulatora 3.2 | pyzedzialéw 148 152 156
rdg Liczby wystapien 2863 4440 2721
Gorne granice
Temperatura tulei 1 [°C] przedzialow 205 223 242
Liczby wystapien 718 8704 602
Gorne granice
Temperatura tulei 2 [°C] przedzialow 215 224 235
Liczby wystapien 1153 7637 1234
Gorne granice
Temperatura tulei 3 [°C] przedzialow 212 230 256
Liczby wystapien 716 8659 649
Gorne granice
Temperatura tulei 4 [°C] przedzialow 220 239 258
Liczby wystapien 714 8596 714
Temperatura w obwodzie Gérne granice
chlodzenia 1 [°C] przedzialow 29 33 39
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Liczby wystapien 90 9563 371
. Gorne granice
Temperatura w obwodzie przedzialow 32 37 40
chlodzenia 13 [°C]
Liczby wystapien 97 9707 220
. Gorne granice
Temperatura w obwodzie przedzialow 31 32 33| 34
chlodzenia 14 [°C]
Liczby wystapien 546 4465 4152 | 861
. Gorne granice
Temperatura w obwodzie przedzialow 32 33 34| 35| 36
chlodzenia 15 [°C] ] ]
Liczby wystapien 1176 3680 4183 789| 196
. Gorne granice
Temperatura w obwodzie przedzialéw 28 33 35
chiodzenia 17 [°C]
Liczby wystapien 3799 5663 562
. Gorne granice
Temperatura w obwodzie przedzialow 27 28 29| 30
chlodzenia 7 [°C] ] ]
Liczby wystapien 963 5856 2813 | 392
Gorne granice
Temperatura wody miejskiej [°C] przedzialow 18 25 27
Liczby wystapien 209 9662 153
. . Gorne granice
Temperatura }/ch]iy winstalacji | przedzialow 23 24 25
Liczby wystapien 388 4569 5067
Gorne granice
Wartos¢ prézni 1 [mBar] przedzialow 235 435 599
Liczby wystapien 1523 7228 1273
Gorne granice
Wartos¢ prézni 2 [mBar] przedzialow 400 500 659
Liczby wystapien 3523 6204 297
Gorne granice
Zuzycie smaru [l] przedzialow 0 1 2
Liczby wystapien 8255 1534 235
. . . Gorne granice
Przeciek w obwodzie wysokiego | nrzedzialow 2 7,49
cisnienia [cm3] Leakage 2CAT
Liczby wystapien 7985 2039
. . . Gorne granice
Przeciek w obwodzie wysokiego | bi-zedzialow 1 2 3| 749
cisnienia [cm3] Leakage 4CAT ] ]
Liczby wystapien 1730 6255 980 | 1059

Wartos¢
zdyskretyzowana 1 2 3 4
Gorne granice
Cisnienie sprezonego powietrza | przedzialéw 5 6
[Bar] Liczby wystapien 46 94
Gorne granice
Cisnienie wody miejskiej [Bar] | Przedzialow 3 4 )
Liczby wystapien 28 92 20
Gorne granice
Cisnienie wody obiegowej [Bar] | Przedzialow 2 3
Liczby wystapien 74 66
Gorne granice
Czas pierwszej fazy wtrysku [ms] | Przedzialow 2240 | 2280| 2330
Liczby wystapien 36 63 41
Czas chiodzenia obwodu 1 [s] g;;?;gizalce 31
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Liczby wystapien 140
Gorne granice
Czas cyklu [s] przedzialow 100 165,5
Liczby wystapien 126 14
Gorne granice
Czas cyklu smarowania [s] przedzialow 23 315
Liczby wystapien 125 15
Gorne granice
Czas dozowania stopu [s] przedzialow 111 33
Liczby wystapien 136 4
Gorne granice
Czas dozowania stopu 2 [s] przedzialow 61 80| 1066
Liczby wystapien 5 125 10
Gorne granice
Czas krzepnigcia t2 [s] przedzialow 10 11
Liczby wystapien 94 46
Gorne granice
Liczby wystapien 123 17
Gorne granice
Czas smarowania [s] przedzialow 6] 930
Liczby wystapien 129 11
Gorne granice
Liczby wystapien 49 48 43
Gorne granice
Filtr prézni 1 [mBar] przedzialow 1300 1500 1613
Liczby wystapien 8 115 17
Gorne granice
Grubos¢ pigtki[uklcidu wlewowego | przedzialéw 35,5 45
mm
Liczby wystapien 15 125
Gorne granice
Koncentrat [%] przedzialow 2,3 2,7
Liczby wystapien 29 111
Gorne granice
Cisnienie maksymalne [Bar] przedzialow 340 343 345
Liczby wystapien 26 101 13
Gorne granice
Predkosé wtrl?/sl;aa maksymalna przedzialéw 5,85 5,9 6
m/s
Liczby wystapien 13 75 52
Gorne granice
Opéznienie multiplikacji [ms] | Przedzialow 171 174 176
Liczby wystapien 37 80 23
Gorne granice
Stata temperatu[i;zé ;hlodzem’a Py | przedzialéw 28 32
Liczby wystapien 78 62
. . Gorne granice
Poziom stopu w piecu przedzialow 500 | 6533,6
podgrzewczym [mm] ] ]
Liczby wystapien 40 100
. L Gorne granice
Poziom wody w strumieniu przedzialéw 260 208
chiodzgcym [mm] - -
Liczby wystapien 61 79
Gorne granice
Czas drugiej fazy wtrysku [ms] | Przedzialow 88 89| 900
Liczby wystapien 51 62 27
oo Gorne granice
Profil prozni I [mBar] przedzialéw 1100| 1298
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Liczby wystgpien 36 104
Gorne granice
Profil prézni 2 [mBar przedzialow 1200 1321
Liczby wystapien 39 101
Gorne granice
Przeplyw chiodzenia tloka [1] przedzialow 20,6 26
Liczby wystapien 73 67
Gorne granice
Przeptyw w obwodzie chlodzenia 1 przedzialéw 25 27 28
|
1 Liczby wystapien 56 77 7
Gorne granice
Przeptyw w obwodzie chlodzenia przedzialéw 18 19 20
1311
i Liczby wystapien 65 52 23
Gorne granice
Przeplyw w obwodzie chlodzenia przedzialéw 26 27 29
1411
i Liczby wystapien 23 45 72
Gorne granice
Przeplyw w obwodzie chlodzenia przedzialéw 25 26 27 28
1511
1 Liczby wystapien 33 53 33 21
Gorne granice
Przeptyw w obwodzie chlodzenia przedzialéw 20 30 36
17l
" Liczby wystapien 20 39 81
Gorne granice
Przeptyw w obwodzie chlodzenia przedzialéw 22 23 25
201l
" Liczby wystapien 40 63 37
Gorne granice
Przeplyw w obwodzie chlodzenia 6 przedzialéw 29 33
[
Liczby wystapien 72 68
N Gorne granice
Predkos¢ we wlewach przedzialow 384| 388| 3927
doprowadzajqcych [m/s] - )
Liczby wystapien 30 69 41
Gorne granice
Suw pierwszej fazy wtrysku [mm] | Przedzialow 537 538 540
Liczby wystapien 38 62 40
Gorne granice
Suw docisku po multiplikacji [mm] | Przedzialéw 17 18 19 20
Liczby wystapien 8 45 70 17
Gorne granice
Temperatura chlodzenia tloka [°C] | PYZedzialow 30 33 35
Liczby wystapien 18 107 15
Gorne granice
Temperatura stopu [°C] przedzialow 678 | 6885
Liczby wystapien 60 80
Gorne granice
Temperatura termoregulatora 2.1 przedzialéw 67 72 75
recy . .
Liczby wystapien 28 93 19
Gorne granice
Temperatura termoregulatora 2.2 przedzialéw 72 74
recy . .
Liczby wystapien 73 67
Gérne granice
Temperatura termoregulatora 3.2 | przedzialéw 150 156
°cr . .
Liczby wystapien 80 60
Gorne granice
Temperatura tulei 1 [°C] przedzialow 208 218 234
Liczby wystapien 25 83 32
s o Gorne granice
Temperatura tulei 2 [°C] przedzialéw 218 226 232

132




Liczby wystapien 48 77 15
Gorne granice
Temperatura tulei 3 [°C] przedzialow 218 228 240
Liczby wystapien 37 78 25
Gorne granice
Temperatura tulei 4 [°C] przedzialow 228 236 246
Liczby wystapien 49 66 25
] Gorne granice
Temperatura w obwodzie przedzialéw 30 33 39
chtodzenia 1 [°C] Licsb . 16 112 12
1czby wystapien
] Gorne granice
Temperatura w obwodzie przedzialéw 34 35 39
chiodzenia 13 [°C] Licsb . 48 50 3
1czby wystgpien
. Gorne granice
Temperatura w obwodzie przedzialow 31 32 33 34
chiodzenia 14 [°C] Licsb . 13 4 62 ’1
1czby wystapien
. Gorne granice
Temperatura w obwodzie przedzialow 32 34 36
chiodzenia 15 [°C] Licsb . 1 108 17
1czby wystapien
. Gorne granice
Temperatura w obwodzie przedzialow 28 33 35
chtodzenia 17 [°C] Licsb - 1 o5 13
iczby wystapien
. Gérne granice
Temperatura w obwodzie przedzialéw 27 28 29| 30
chiodzenia 7 [°C] - -
Liczby wystapien 15 72 46 7
Gorne granice
Temperatura wody miejskiej [°C] | Przedzialow 20 22 26
Liczby wystapien 38 59 43
. .| Gérne granice
Temperatura }/Zocc]iy w instalacji przedzialow 24 25
Liczby wystapien 66 74
Gorne granice
Warto$¢ prézni 1 [mBar] przedzialow 300 400 534
Liczby wystapien 39 75 26
Gorne granice
Warto$¢ prézni 2 [mBar] przedzialow 450 480 526
Liczby wystapien 36 90 14
Gorne granice
Zuzycie smaru [1] przedzialow 0 2
Liczby wystapien 116 24
] ] . Gorne granice
Przeciek w obwodzie wysokiego przedzialow 7,49 | 171,86
cisnienia [cm3] Leakage 2CAT Licsb . 70 20
1czby wystgpien
. . . Gorne granice
Przeciek w obwodzie wysokiego przedzialéw 10 25 100 | 171,86
cisnienia [cm3] Leakage 4CAT ; ;
Liczby wystapien 95 27 9 9

Tab. 5.64.: Ustalane przedzialy i wystgpienia danych wartosci

zbioru danych do badan

w przedziatach dla pigtego

Wartos¢
zdyskretyzowana 1 2 3 4
Gorne granice

Cisnienie sprezonego powietrza | przedzialéw 5 6

[Bar]
Liczby wystapien 37 103
Lo . Gorne granice
Cisnienie wody miejskiej [Bar] przedzialow 3 4 5
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Liczby wystapien 30 86 24
Gorne granice
Cisnienie wody obiegowej [Bar] | Przedzialow 2 3
Liczby wystapien 71 69
Gorne granice
Czas pierwszej fazy wtrysku [ms] przedzialow 2240 2280 2330
Liczby wystapien 31 70 39
Gorne granice
Czas chlodzenia obwodu 1 [s] | Przedzialow 31
Liczby wystapien 140
Gorne granice
Czas cyklu [s] przedzialow 100| 172,61
Liczby wystapien 125 15
Gorne granice
Czas cyklu smarowania [s] | Przedzialéw 23] 315
Liczby wystapien 122 18
Gorne granice
Czas dozowania stopu [s] przedzialéw 111 33
Liczby wystapien 136 4
Gorne granice
Czas dozowania stopu 2 [s] | Przedzialow 61 80| 1066
Liczby wystapien 3 129 8
Gorne granice
Czas krzepnigcia 12 [s] przedzialow 10 11
Liczby wystapien 82 58
Gorne granice
Czas przedmuchu [s] przedzialow 8,0 11,7
Liczby wystapien 121 19
Gorne granice
Czas smarowania [s] przedzialow 6] 930
Liczby wystapien 126 14
Gorne granice
Dzienny numer wtrysku [j.] przedzialow 100 300 663
Liczby wystapien 44 50 46
Gorne granice
Filtr prézni 1 [mBar] przedzialow 1300 1500 1593
Liczby wystapien 7 113 20
Gorne granice
Grubos¢ pigtki ukiadu wlewowego | przedzialéw 355 45
[mm] Liczby wystapien 17 123
Gorne granice
Koncentrat [%] przedzialow 2,3 2,7
Liczby wystapien 27 113
Gorne granice
Cisnienie maksymalne [Bar] przedzialow 340 343 345
Liczby wystapien 27 97 16
Gorne granice
Predkosé wtrysku maksymalna przedzialéw 5,85 5,9 6
[ms] Liczby wystapien 13 77 50
Gorne granice
Opéznienie multiplikacji [ms] | Przedzialow 171 174 176
Liczby wystapien 35 86 19
Gérne granice
Stata temperatu;;a chlodzenia plyty przedzialéw 28 32
rd Liczby wystapien 67 73
Poziom stopu w piecu Gérne granice
podgrzewczym [mm] przedzialow 500 | 6543,6
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Liczby wystapien 40 100
] Lo Gorne granice
Poziom wody w strumieniu przedzialow 260 298
chlodzgcym [mm] ] )
Liczby wystapien 68 72
Gorne granice
Czas drugiej fazy wtrysku [ms] | Przedzialow 88 89| 900
Liczby wystapien 45 65 30
Gorne granice
Profil prézni 1 [mBar] przedzialow 1100 1298
Liczby wystapien 35 105
Gorne granice
Profil prézni 2 [mBar przedzialow 1200 1321
Liczby wystapien 42 98
Gorne granice
Przeplyw chiodzenia tloka [1] przedzialow 24 26
Liczby wystapien 87 53
) ) Gorne granice
Przeplyw w obw[olilzze chlodzenia I | przedzialéw 25 28
Liczby wystapien 65 75
Gorne granice
Przeplyw w ol])-vsvo[ﬁzie chlodzenia | przedzialéw 18 19 20
Liczby wystapien 62 54 24
Gorne granice
Przeplyw w ol])r:o[ﬁzie chlodzenia | przedzialéw 26 27 29
Liczby wystapien 25 46 69
Gorne granice
Przeplyw w oligwiﬁzie chiodzenia | przedzialéw 25 26 27 28
Liczby wystapien 30 52 33 25
Gorne granice
Przeplyw w oliv;o[ﬁzie chlodzenia | przedzialéw 20 30 36
Liczby wystapien 22 48 70
. _ | Gérne granice
Przeplyw w 01;1(/)1/0[?’]21@ chiodzenia | przedzialow 22 23 25
Liczby wystapien 48 61 31
) ) Gorne granice
Przeplyw w obwl?gzze chiodzenia 6 | przedzialéw 29 33
Liczby wystapien 76 64
N Gorne granice
Predkosé we wlewach przedzialéw 384| 388| 3927
doprowadzajqcych [m/s] - )
Liczby wystapien 35 73 32
Gorne granice
Suw pierwszej fazy wtrysku [mm] | Przedzialow 537 538 540
Liczby wystapien 44 60 36
Gorne granice
Suw docisku po multiplikacji [mm] | Przedzialéw 17 18 19 20
Liczby wystapien 7 32 88 13
Gorne granice
Temperatura chlodzenia tloka [°C] | Przedzialow 30 33 35
Liczby wystapien 17 106 17
Gorne granice
Temperatura stopu [°C] przedzialow 678 689
Liczby wystapien 57 83
Gorne granice
Temperatura te[zrg})regulatora 21 przedzialow 67 72 75
Liczby wystapien 28 88 24
Temperatura termoregulatora 2.2 | Gorne granice
[°C] przedzialow 72 74
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Liczby wystapien 66 74
Gorne granice
Temperatura termoregulatora 3.2 przedzialow 150 156
°C
e/ Liczby wystgpien 83 57
Gorne granice
Temperatura tulei 1 [°C] przedzialow 208 218 234
Liczby wystapien 24 84 32
Gorne granice
Temperatura tulei 2 [°C] przedzialow 218 226 232
Liczby wystapien 46 76 18
Gorne granice
Temperatura tulei 3 [°C] przedzialow 218 228 242
Liczby wystapien 41 71 28
Gorne granice
Temperatura tulei 4 [°C] przedzialow 228 236 250
Liczby wystapien 48 69 23
. Gorne granice
Temperatura w obwodzie przedzialéw 30 33 39
chlodzenia 1 [°C] ] ]
Liczby wystapief 13 117 10
. Gérne granice
Temperatura w obwodzie przedzialéw 34 35 38
chiodzenia 13 [°C]
Liczby wystapien 50 65 25
. Gérne granice
Temperatura w obwodzie przedzialéw 31 32 33 34
chiodzenia 14 [°C] ] ]
Liczby wystapien 13 50 60 17
. Gérne granice
Temperatura w obwodzie przedzialéw 32 34 36
chiodzenia 15 [°C]
Liczby wystapien 23 103 14
. Gérne granice
Temperatura w obwodzie przedzialéw 28 33 35
chtodzenia 17 [°C] ] ]
Liczby wystapien 51 75 14
. Gorne granice
Temperatura w obwodzie przedzialow 27 28 29 30
chiodzenia 7 [°C] ] ]
Liczby wystapien 12 69 53 6
Gorne granice
Temperatura wody miejskiej [°C] | Przedzialow 20 22 26
Liczby wystapien 40 63 37
) | Gorne granice
Temperatura }/gocc]iy w instalacji przedzialow 24 25
Liczby wystapien 71 69
Gorne granice
Wartosé prézni 1 [mBar] przedzialow 300 400 552
Liczby wystapien 36 79 25
Gorne granice
Wartosé prézni 2 [mBar] przedzialow 450 480 526
Liczby wystapien 59 68 13
Gorne granice
Zuzycie smaru [I] przedzialow 0 2
Liczby wystapien 110 30
. . . Gérne granice
Przeciek w obwodzie wysokiego przedzialéw 7.49| 171,86
cisnienia [cm3] 2CAT ] ]
Liczby wystapien 70 70
. . . Gorne granice
Przeciek w obwodzie wysokiego przedzialow 10 25 100| 171,86
cisnienia [cm3] 4CAT ; ;
Liczby wystapien 95 27 9 9
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5.2.2.2. WhnioskKi

Opisang procedure zastosowano w celu przygotowania danych do dalszej identyfikacji
ukrytych zalezno$ci, ktore si¢ w nich znajduja. Zastosowana dyskretyzacja umozliwita zamiang
atrybutow liczbowych na okreslone atrybuty symboliczne typu porzadkowego [147].
Przeprowadzona zostata poprzez podziat dziedziny kazdego badanego atrybutu liczbowego na
zgodna z opracowanym planem badawczym liczbe przedziatow oraz zapisana jako przypisana
tym przedziatom liczbe porzadkowa.

Sposréd wielu znanych metod dyskretyzacji takich jak podziat rowny mi¢dzy przedziatami,
przedziat o rownej czestosci, czyli zawierajacy mniej wigcej taka samg liczbe obserwacji 1
innych, zdecydowano na zastosowanie podzialu w odniesieniu do wizualnej oceny,
uporzadkowanych wedlug wartos$ci przyjmowanych przez dany parametr (warto$ci typowe,
podwyzszone i obnizone).

Gléwnym wnioskiem z przeprowadzonej analizy jest jej waga 1 wptyw na kolejne etapy
badan, gdyz decyduja ona o jakosci wynikow dalszych analiz. Wymagata ona poswigcenia jej
duzej iloSci czasu, co jest uzasadnione, poniewaz caty proces modelowania opartego na danych,
bylby bezcelowy bez wiasciwego ich przygotowania, stad przygotowanie moze stanowi¢ klucz
do sukcesu, czyli do osiggnigcia jak najlepszych wynikéw przewidywania powstawania wady
w produkcie poprzez prawidlowa diagnostyke jej przyczyn. Niektore dzialania moga by¢
okreslone sztuka, jako, ze realizowana jest wizja twoércy w oparciu o jego eksperckie

doswiadczenie niz podgzanie za formalnymi procedurami bgdace niejako rutynowym.
5.2.3. Analiza istotnos$ci zmiennych

W niniejszym rozdziale zaprezentowane zostang wyniki statystycznego okreslenia istotnych
parametroOw procesu dla kazdego z utworzonych 5 zbiorow danych do badan. Do oceny
istotnosci uzyto analizy ANOVA w czterech wariantach.

Pierwszy wariant to klasyczna jednoczynnikowa ANOVA, ktorg zastosowano W celu
okreslenia wplywu charakterystycznych poziomow parametrow procesu (wartosci
wejsciowych) obserwowanych w danych. Drugi wariant to test Kruskala — Wallisa
(Jednoczynnikowa ANOVA w wersji rangowej), stosowany, gdy zmienna zalezna ma rozktad
inny niz normalny. Trzeci wariant to ANOVA klasyczna, odwrdcona, wykonana celem
sprawdzenia, czy w grupach o wysokiej i1 niskiej wartosci zmiennej zaleznej — przecieku,
wystepuje silne zrdznicowanie ktorego$ z parametréw procesu, co moze potencjalnie

sugerowac jego zwigzek z wadg. Problemem w tym przypadku moga by¢ rézne rozktady
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zmiennych niezaleznych np. dwupunktowe (np. czas krzepniecia t2 [s]), dlatego stosowanie
analizy wariancji w tym przypadku moze by¢ problematyczne.
Krok ten jest niezbedny i wymaga wiedzy o procesie celem przygotowania danych do

zaawansowanego modelowania procesu.
5.2.3.1. Metodyka i wyniki badan

Kolejnym krokiem analizy danych jest wybor zmiennych do zaawansowanego modelowania
opartego na danych, przeprowadzony poprzez analize ich istotno$ci, przy zastosowaniu analizy
ANOVA w czterech wariantach. Idea wspomnianego podejsécia statystycznego skupia si¢ na
tym, ze w przypadku gdy w grupach obserwacji zawierajacych zréznicowane poziomy
zmiennej niezaleznej, to rowniez warto$ci zmiennej zaleznej sg istotnie zréznicowane,
woweczas t¢ zmienng niezalezng powinno si¢ uznaé za istotng z punktu widzenia jej wptywu na
warto$¢ zmiennej zaleznej.

Kolejnym wariantem jest zastosowanie wnioskowania odwrotnego zaktadajacego, ze jezeli
w danej grupie obserwacji zawarte sa zréznicowane poziomy zmiennej zaleznej, to mozna
zaobserwowa¢ wowczas istotnie rézne wartosci okre§lonej zmiennej niezaleznej, wtedy nalezy
uznaé t¢ zmienng za istotng. Nalezy pamietac, iz dla pierwszego jak i dla drugiego zatozenia
mozliwa jest identyfikacja jedynie potencjalnie istotnych zmiennych. W niniejszej analizie nie
uwzglednia si¢ rowniez jednoczesnego wplywu kilku parametrow procesu czy to
synergicznego, czy konkurencyjnego, gdyz rozpatrywana jest tylko jedna zmienna niezalezna
w danym momencie. Z uwagi na ten fakt, proces redukcji wymiarowosci zbiorow danych
powinien by¢ przeprowadzony ze szczegdlng ostroznoscig. W konsekwencji w zbiorze
uczacym mogg znalez¢ si¢ dane, ktore nie majg istotnego wptywu zamiast tych, ktore wptywaja
na wydajno$¢ danego procesu. W zwigzku z tym wykryte zmienne niezalezne, ktore zostang
ocenione jako nieistotne z punktu widzenia zmiennej zaleznej mogtyby by¢ zmieniane bez
wptywu na jako$¢ odlewanych produktéw, co mogloby wptynaé na obnizenie kosztéw kontroli
jakosci.

Analiza majgca na celu zidentyfikowanie najbardziej istotnych zmiennych zostata
zaimplementowana dzigki oprogramowaniu Statistica opracowanym przez StatSoft Inc.,
wspomagajagcym zaawansowang analize danych. Jak wspomniano do wyboru istotnych
zmiennych zastosowano analiz¢ wariancji ANOVA (ang. analysis of variance) w czterech
wariantach. Pierwszy z nich to jednokierunkowa (jednoczynnikowa) (ang. one-way) ANOVA,
ktora trudno jest jednak zaaplikowa¢ do zbioréw danych niemajacych rozktadow bliskich do
rozkladu normalnego. Mimo to istnieje mozliwo$¢ zastosowania tej metody dla zbiorow o
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wickszej liczbie punktéw [148]. Miarg istotno$ci zmiennej jest obliczona statystyka F,

obliczana wedlug wzoru (1) poprzez porownanie dwoch wariancji s1 1 Sz, poprzez ich podziat:

(5.1)

Drugi wariant zastosowany w niniejszych badaniach, to test Kruskala-Wallisa, czyli
jednokierunkowa ANOV A w wersji rangowej, sprawdzajaca si¢ w przypadkach kiedy zmienna
posiada rozklad inny niz normalny. Trzeci wariant to, klasyczna odwrocona ANOVA
pozwalajaca dla badanych przypadkéw okresli¢, czy wystepuje znaczace zrdéznicowanie
ktoregos$ parametru procesu w okreslonych grupach o podwyzszonych wartosciach przecieku,
lub niskich wartos$ciach przecieku. Czwartym wariantem jest odwrocona ANOVA w wersji
rangowej, znana rowniez jako test Kruskala-Wallisa w wersji odwrdconej, znajdujaca swoje
zastosowanie dla dowolnych rozktadéw zmiennych.

Procedura wykonywania badan zostala przeprowadzona zgodnie z opisami z rys.5.2.3.1.-
rys.5.2.3.3. dla wariantu pierwszego i trzeciego, oraz zgodnie z opisami z rys.5.2.3.4. dla

wariantu drugiego i czwartego.
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analizy ANOVA klasycznej jednoczynnikowej 1 odwrdconej
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W celu przeprowadzenia testu ANOVA klasycznej i odwrdconej nalezy:
e W punkcie 1, wybra¢ zaktadke ,,Statistics”,
e W punkcie 2, wybra¢ test ,ANOVA”,
e W punkcie 3, wybra¢ typ analizy ,,One-way ANOVA”,
e W punkcie 4, wybra¢ specyfikacje metody ,,Quick specs dialog”,

e W punkcie 5, zatwierdzi¢ wybrane ustawienia.
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Rys.5.2.3.2. Okno programu przedstawiajace dalsze etapy przeprowadzenia analizy
ANOVA klasycznej jednoczynnikowej 1 odwrdconej

W celu dalszego zatwierdzenia parametrow testu ANOVA klasycznej i odwrdconej nalezy:
e w punkcie 1, wybra¢ zmienne do badan ,,Variables”,
e w punkcie 2, wybra¢ zmienne zalezne ,,Dependent variables”,
e W punkcie 3, wybra¢ zdyskretyzowane zmienne niezalezne
,Categorical factor”,

e W punkcie 4, zatwierdzi¢ wybrane ustawienia.
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Rys.5.2.3.3. Okno programu przedstawiajace Wyniki przeprowadzenia analizy ANOVA
klasycznej jednoczynnikowej 1 odwroconej

W celu pobrania wynikow testu ANOVA klasycznej i odwrdconej nalezy:

w punkcie 1, wybrac ,,Effects sizes”,

w punkcie 2, zapisa¢ wartosci statystyki F i p,

w punkcie 4, zatwierdzi¢ wybrane ustawienia.

W punkcie 5, zapisa¢ wykres wynikowy
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w punkcie 3, wybra¢ wszystkie efekty ,,All effects/graphs”,
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Rys.5.2.3.4. Okno programu przedstawiajace Wyniki przeprowadzenia testu Kruskalla-
Wallisa klasycznego i odwroconego

W celu przeprowadzenia testu Kruskalla-Wallisa klasycznego i odwréconego nalezy:
e wpunkcie 1, wybra¢ statystyczny test nieparametryczny ,,Comparing
multiple indep. Samples (groups)”,
e w punkcie 2, zatwierdzi¢ wybrane ustawienia,
e w punkcie 3, wybrac typ zmienne do badan ,,Variables”,
e w punkcie 4, wybra¢ typ zmienne zalezne do badan,
e W punkcie 5, wybra¢ typ zmienne niezalezne do badan,
e w punkcie 6, zatwierdzi¢ wybrane ustawienia,
e w punkcie 7, wybra¢ specyfikacje metody ,,Multiple comparison of
mean ranks for all groups”,
e w punkcie 8, zapisa¢ wartosci statystyki Hip
Wyniki zapisano w postaci tabel i wykresow (tab..).

Tab. 5.65.: Zestawienie obliczonych warto$ci statystyk F i H dla pierwszego zbioru danych do
badan

Statystyka F F F H H H
Kruskal- Kruskal-
Jedno- OdAv':Il?,)Xﬁa odAvl:lr(()')X)ﬁa Test Wallis Wallis
Test czynnikowa rzeciek rzeciek Kruskala- | odwrécony |odwrocony
ANOVA p2CAT p4CAT Wallisa przeciek przeciek
2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 0,255 0,471 0,996 | 3,298523 0,4173188 | 2,986752
Cisnienie wody
miejskiej [Bar] 1,068 0,957 3,475 1,79016 0,9569242 10,4145
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Cisnienie wody

obiegowej [Bar] 2,532 0,77 3,492 | 4,840166 0,7696159 | 10,46878
Czas pierwszej fazy

wtrysku [ms] 2,149 0,584 7,673 | 32,06576 1,413235| 25,78073
Czas chiodzenia

obwodu 1 [s] 0,119 1,712 1,223 | 0,4427263 1,710755| 3,664811
Czas cyklu [s] 4,723 0,95 6,919 | 31,93778 12,17835| 21,35546
Czas cyklu smarowania

[s] 5,263 42,4 18,65 44,9433 6,454037 | 10,61015
Czas dozowania stopu

[s] 1,1606 0,443 9,063 | 26,09323 0,2641669 | 6,002321
Czas dozowania stopu 2

[s] 4,884 4,189 2,184 | 34,54624 14,61024 | 37,66653
Czas krzepniecia t2 [s] 19,5 24,09 37,03 1,328193 24,03705 109,9057
Czas przedmuchu [s] 4,632 25,03 10,57 | 43,84121 4,5 6,70068
Czas smarowania [s] 10,47 40,85 19,17 34,25 12,88076 20,84521
Dzienny numer wtrysku

[i-] 0,981 4,049 1,895 | 5,072492 4,896076 | 6,769793
Filtr prozni 1 [mBar] 3,196 0,582 30,9 | 66,93572 2,904119 | 122,7295
Grubos¢ pietki uktadu

wlewowego [mm] 1,163 2,316 5,455 | 2,119902 3,953699 | 23,15601
Koncentrat [%] 0,163 3,036 1,166 | 22,23257 2,1 2,399743
Cisnienie maksymalne

[Bar] 1,296 7,903 14,95| 2,480035 8,627961 | 52,33013
Predkos¢ wtrysku

maksymalna [m/s] 0,506 12,39 9,987 | 3,023659 10,34759 | 24,53073
Opoznienie multiplikacji

[ms] 1,547 11,81 5591 | 17,55585 10,37676 | 16,69106
Stata temperatura

chlodzenia piyty [°C] 2,106 68,95 34,82 1,758814 34,5491 77,15074
Poziom stopu w piecu

podgrzewczym [mm] 0,947 3,1 2,3 2,0 1,95116 14,44415
Poziom wody w

strumieniu chlodzqcym

[mm] 2,673 5,023 4,64 | 5,461962 4,795089 | 11,52655
Czas drugiej fazy

wtrysku [ms] 1,77 0,249 10,68 | 10,33658 0,2792746 | 31,61594
Profil prézni 1 [mBar] 2,126 6,704 4,543 | 13,13486 5,381233 | 5,674093
Profil prézni 2 [mBar 11,37 8,333 5,608 | 79,10164 0,4393711| 4,852855
Przeplyw chlodzenia

tloka [1] 0,141 45,89 19,32 7,29478 41,46279 | 51,36015
Przepbyw w obwodzie

chiodzenia 1 [I] 0,243 54,88 27,84 | 0,4306089 39,64148 60,3091
Przeplyw w obwodzie

chiodzenia 13 [l] 0,895 28,12 21,71 | 5,710417 26,45712 | 58,29693
Przepbyw w obwodzie

chlodzenia 14 [1] 0,426 37,94 20,96 | 4,172529 35,96938 | 57,38471
Przepbyw w obwodzie

chiodzenia 15 [l] 3,743 15,7 8,844 | 71,20548 7,317385| 19,74998
Przeptyw w obwodzie

chiodzenia 17 [1] 4,546 20,6 48,09 | 72,72156 19,78844 157,054
Przeplyw w obwodzie

chlodzenia 20 [1] 0,007 19,69 14,93 | 4,211397 21,38843 | 42,18682
Przeplyw w obwodzie

chiodzenia 6 [1] 1,291 1,134 4,389 | 48,99781 0,5933745 11,8638
Predkos¢ we wlewach

doprowadzajqcych

[m/s] 0,14 0,89 3,87 2,96 1,24 10,56398
Suw pierwszej fazy

wtrysku [mm] 1,234 0,002 1,124 | 8,353043 0,025599 |  2,994294
Suw docisku po

multiplikacji [mm] 5,502 8,47 18,19 134,504 6,780152 | 48,94325
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Temperatura chlodzenia
tloka [°C]

0,023

6,99

3,838

35,86505

5,586133

7,809001

Temperatura stopu [°C]

0,855

0,133

1,305

33,63239

0,2

5,258253

Temperatura
termoregulatora 2.1

[°C]

0,793

1,415

0,745

3,720329

1,93713

2,708377

Temperatura
termoregulatora 2.2
[°C]

0,754

0,939

0,477

1,625626

1,169918

1,476165

Temperatura
termoregulatora 3.2

[°C]

0,065

2,466

0,836

6,121683

2,414521

2,421386

Temperatura tulei 1

[°C]

0,91

0,231

1,126

0,5409375

0,0750582

3,155166

Temperatura tulei 2
[°C]

2,784

21,88

7,369

11,34226

16,9952

17,1783

Temperatura tulei 3
[°C]

0,996

4,101

2,025

0,2704595

4,191708

7,157121

Temperatura tulei 4
[°C]

0,044

7,125

2,396

0,2727062

9,358098

9,619893

Temperatura w
obwodzie chlodzenia 1

[°C]

7,254

29,39

10,2

66,03428

27,87449

38,42332

Temperatura w
obwodzie chiodzenia 13

[°C]

18,4

2,043

3,732

4,169058

1,008509

10,4492

Temperatura w
obwodzie chlodzenia 14

[°C]

1,709

5,837

3,496

8,690242

6,524176

11,80991

Temperatura w
obwodzie chtodzenia 15

[°C]

3,504

0,317

4,249

71,30156

0,8732053

7,823963

Temperatura w
obwodzie chlodzenia 17

[°C]

6,494

0,482

5,062

39,28297

0,666354

7,479346

Temperatura w
obwodzie chiodzenia 7

[°C]

1,908

5,647

3,329

38,83704

6,123501

15,69997

Temperatura wody
miejskiej [°C]

0,502

0,241

7,942

5,995376

0,5539388

28,07293

Temperatura wody w
instalacji [°C]

0,986

0,481

0,225

0,5648489

0,4503004

0,8652029

Wartosc prozni 1
[mBar]

15,04

1,551

80,26

178,4381

2,685226

214,5486

Wartosé prozni 2
[mBar]

1,197

15,81

8,518

56,47239

43,56863

51,85194

Zuzycie smaru [l]

0,924

0,616

0,728

3,631308

0,5656555

1,824084

Tab. 5.66.: Zestawienie obliczonych wartosci p dla pierwszego zbioru danych do badan

Statystyka p p p p p p
Kruskal- Kruskal-
Jedno- | ANOVA | ANOVA | rest Wallis Wallis
czynnikowa 0 Wm?ol? ae Wm?ol? 2| Kruskala- odwrécony | odwrécony
ANOVA erZCEZI_?_ p;g;'_?_ Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 0,613 0,518 0,394 0,0693 0,5183 0,3937
Cisnienie wody
miejskiej [Bar] 0,344 0,328 0,015 0,4086 0,328 0,0154
Cisnienie wody
obiegowej [Bar] 0,112 0,38 0,015 0,0278 0,3803 0,015
Czas pierwszej fazy
wtrysku [ms] 0,092 0,445 0,00004 | 0,000001 0,2345| 0,000001
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Czas chlodzenia

obwodu 1 [s] 0,888 0,191 0,299 0,8014 0,1909 0,3
Czas cyklu [s] 0,009 0,33 0,00012| 0,000001 0,0005 0,0001
Czas cyklu smarowania

[s] 0,005| 0,000001| 0,000001| 0,000001 0,0111 0,014
Czas dozowania stopu

[s] 0,3133339 0,506 0,00001| 0,000001 0,6073 0,1115
Czas dozowania stopu 2

[s] 0,008 0,041 0,088 | 0,000001 0,0001| 0,000001
Czas krzepniecia 12 [s] 0,00001| 0,000001| 0,000001 0,2491 0,000001 | 0,000001
Czas przedmuchu [s] 0,01| 0,000001 0,00001| 0,000001 0,0342 0,0821
Czas smarowania [s] 0,001| 0,000001 0,00001| 0,000001 0,0003 0,0001
Dzienny numer wtrysku

[i-1 0,401 0,044 0,128 0,1666 0,0269 0,0796
Filtr prézni 1 [mBar] 0,022 0,445| 0,000001 | 0,000001 0,0884| 0,000001
Grubos¢é pigtki uktadu

wlewowego [mm] 0,313 0,128 0,001 0,3465 0,0468 | 0,000001
Koncentrat [%] 0,849 0,081 0,321| 0,000001 0,1457 0,4937
Cisnienie maksymalne

[Bar] 0,274 0,005 | 0,000001 0,2894 0,0033| 0,000001
Predkosé wtrysku

maksymalna [m/s] 0,477 0,00043| 0,000001 0,0821 0,0013 | 0,000001
Opoznienie multiplikacji

[ms] 0,213 0,001 0,001 0,0002 0,0013 0,0008
Stata temperatura

chiodzenia plyty [°C] 0,147| 0,000001| 0,000001 0,1848 0,000001 | 0,000001
Poziom stopu w piecu

podgrzewczym [mm] 0,33 0,079 0,078 0,1555 0,1625 0,0024
Poziom wody w

strumieniu chlodzgcym

[mm] 0,069 0,025 0,003 0,0652 0,0285 0,0092
Czas drugiej fazy

wtrysku [ms] 0,17 0,618 | 0,000001 0,0057 0,5972 | 0,000001
Profil prézni 1 [mBar] 0,119 0,01 0,003 0,0014 0,0204 0,1286
Profil prozni 2 [mBar 0,00001 0,004 0,001| 0,000001 0,5074 0,1829
Przeplyw chlodzenia

tloka [1] 0,869 | 0,000001| 0,000001 0,0261 0,000001 | 0,000001
Przepbyw w obwodzie

chlodzenia 1 [1] 0,784 0,00001 | 0,000001 0,8063 0,000001 | 0,000001
Przeplyw w obwodzie

chiodzenia 13 [1] 0,443| 0,000001| 0,000001 0,1266 0,000001 | 0,000001
Przeplyw w obwodzie

chlodzenia 14 [1] 0,734| 0,000001| 0,000001 0,2434 0,000001 | 0,000001
Przepbyw w obwodzie

chiodzenia 15 [1] 0,011 0,00007 0,00001| 0,000001 0,0068 0,0002
Przeplyw w obwodzie

chiodzenia 17 [1] 0,001 0,00001 | 0,000001| 0,000001 0,000001 | 0,000001
Przeplyw w obwodzie

chiodzenia 20 [1] 0,993 0,00001| 0,000001 0,1218 0,000001 | 0,000001
Przeplyw w obwodzie

chiodzenia 6 [1] 0,276 0,287 0,004 | 0,000001 0,4411 0,0079
Predkosé we wlewach

doprowadzajqcych

[m/s] 0,873 0,346 0,009 0,2275 0,2664 0,0143
Suw pierwszej fazy

wtrysku [mm] 0,294 0,963 0,338 0,0795 0,8729 0,3925
Suw docisku po

multiplikacji [mm] 0,001 0,004| 0,000001| 0,000001 0,0092| 0,000001
Temperatura chlodzenia

tioka [°C] 0,978 0,008 0,009| 0,000001 0,0181 0,0501
Temperatura stopu [°C] 0,425 0,716 0,271 0,000001 0,6399 0,1538
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Temperatura
termoregulatora 2.1
[°C]

0,453

0,234

0,525

0,1556

0,164

0,4388

Temperatura
termoregulatora 2.2

[°C]

0,471

0,333

0,698

0,4436

0,2794

0,6878

Temperatura
termoregulatora 3.2

[°C]

0,937

0,116

0,474

0,0468

0,1202

0,4897

Temperatura tulei 1
[°C]

0,402

0,631

0,337

0,763

0,7841

0,3683

Temperatura tulei 2

[°C]

0,062

0,000001

0,000001

0,0034

0,000001

0,0006

Temperatura tulei 3

[°C]

0,369

0,043

0,108

0,8735

0,0406

0,0671

Temperatura tulei 4
[°C]

0,957

0,008

0,066

0,8725

0,0022

0,0221

Temperatura w
obwodzie chtodzenia 1

[°C]

0,001

0,000001

0,000001

0,000001

0,000001

0,000001

Temperatura w
obwodzie chfodzenia 13

[°C]

0,0000001

0,153

0,011

0,1244

0,3153

0,0151

Temperatura w
obwodzie chtodzenia 14

[°C]

0,163

0,016

0,015

0,0337

0,0106

0,0081

Temperatura w
obwodzie chlodzenia 15

[°C]

0,007

0,573

0,005

0,000001

0,3501

0,0498

Temperatura w
obwodzie chtodzenia 17

[°C]

0,002

0,487

0,002

0,000001

0,4143

0,0581

Temperatura w
obwodzie chtodzenia 7

[°C]

0,126

0,017

0,019

0,000001

0,0133

0,0013

Temperatura wody
miejskiej [°C]

0,605

0,624

0,000001

0,0499

0,4567

0,000001

Temperatura wody w
instalacji [°C]

0,373

0,488

0,879

0,754

0,5022

0,8338

Wartosé prozni 1
[mBar]

0,00001

0,213

0,000001

0,000001

0,1013

0,000001

Wartosc prozni 2
[mBar]

0,302

0,00007

0,00001

0,000001

0,000001

0,000001

Zuzycie smaru [l]

0,397

0,433

0,535

0,1627

0,452

0,6097

Tab. 5.67.: Zestawienie obliczonych warto$ci statystyk F i H dla drugiego zbioru danych do

Statystyka F F F H H H
Kruskal- Kruskal-
Jedno- dANC,)VA dANC,)VA Test Wallis Wallis
czynnikowa 0 wrogol? ajo wrogol? | Kruskala- odwrécony | odwrocony
ANOVA erZCEZI_?_ p;g;'_?_ Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 2,429 2,053 0,806 | 0,3863928 2,021978 | 2,437339
Cisnienie wody
miejskiej [Bar] 2,948 8,482 2,918 | 8,301506 7,559942 |  7,925285
Cisnienie wody
obiegowej [Bar] 2,906 3,361 1,249 | 2,045285 3,249733 |  3,705556
Czas pierwszej fazy
wtrysku [ms] 0,969 2,197 0,995| 0,6265023 1,842936 | 2,478879
Czas chiodzenia
obwodu 1 [s] 2,971 2,396 2,888889 | 6,777778
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Czas cyklu [s] 0,149 0,024 0,385| 3,362181 0,0877138 | 6,788323
Czas cyklu smarowania

[s] 0,490 0,825 0,636 | 0,0786859 0,0207027 | 0,2869239
Czas dozowania stopu

[s] 0,958 0,703 1,227 2,31784 1,069005 | 1,704996
Czas dozowania stopu 2

[s] 0,043 0,021 0,1]| 0,5968615 0,3996987 | 5,284452
Czas krzepniecia 12 [s] 12,710 11,38 7,109 | 0,9808123 9,894695| 16,85154
Czas przedmuchu [s] 0,124 0,013 1,242 | 0,0548032 0,2161364 | 3,325225
Czas smarowania [s] 0,239 0,20 0,79 0,12 0,0894083 3,644906
Dzienny numer wtrysku

[i-] 0,279 0,312 0,198 | 0,2335092 0,2472141 | 0,4429671
Filtr prozni 1 [mBar] 0,717 0,718 3,319 | 2,317934 0,8229552 | 9,697436
Grubos¢ pietki uktadu

wlewowego [mm] 9,703 18,89 7,296 | 8,003095 14,13985| 16,46923
Koncentrat [%] 1,034 0,1 0,3 0,0 0,0705372 0,547445
Cisnienie maksymalne

[Bar] 4,125 0,606 1,813 7,11283 0,8153199 | 5,900125
Predkosé wtrysku

maksymalna [m/s] 2,809 3,453 1,676 | 2,726713 3,684616 | 5,522741
Opoznienie multiplikacji

[ms] 2,881 4,656 2,87 | 7327664 4,7488 7,89001
Stata temperatura

chiodzenia plyty [°C] 14,893 10 8,177 | 0,9934879 9,417967 | 19,47438
Poziom stopu w piecu

podgrzewczym [mm] 13,154 20 7,939 7,394622 14,88186 15,95878
Poziom wody w

strumieniu chlodzgcym

[mm] 3,041 4,367 1,476 | 0,3780431 3,055332 | 3,568858
Czas drugiej fazy

wtrysku [ms] 1,117 1,925 1,18 5,163424 2,3 3,957894
Profil prozni 1 [mBar] 3,467 1,369 1,044 | 0,3534206 2,64466 3,77615
Profil prézni 2 [mBar 16,691 4,592 1,814 | 10,93307 0,497994 | 2,045617
Przeplyw chlodzenia

tloka [1] 5,328 19,67 8,776 | 4,435589 13,16025 | 15,59664
Przeplyw w obwodzie

chiodzenia 1 [I] 26,206 16,97 7,969 | 6,009915 14,06818 | 18,43844
Przepbyw w obwodzie

chlodzenia 13 [l] 4,999 11,65 6,609 | 7,739514 6,767401 | 11,29007
Przepbyw w obwodzie

chiodzenia 14 [1] 16,245 23,3 9,087 | 9,354872 17,98374 | 20,75701
Przeplyw w obwodzie

chiodzenia 15 [l] 4,212 0,086 0,814 | 8,151805 0,0328846 | 2,541189
Przepbyw w obwodzie

chiodzenia 17 [1] 6,945 15,58 8,919 | 1,740659 13,98318 | 2247767
Przepbyw w obwodzie

chiodzenia 20 [l] 4,768 10,58 5,058 7,4201 8,864979 | 11,82963
Przeplyw w obwodzie

chiodzenia 6 [1] 4,492 0,467 0,485 | 4,404203 0,2610893 1,85177
Predkos¢ we wlewach

doprowadzajqcych

[m/s] 0,508 0,0001 0,304 | 0,6528721 0,01 | 0,6771648
Suw pierwszej fazy

wtrysku [mm] 0,624 0,928 1,633 | 1,151713 0,5833311 | 4,605347
Suw docisku po

multiplikacji [mm] 1,665 0,453 0,413 | 4,267613 0,7023595 | 1,949635
Temperatura chlodzenia

tloka [°C] 1,120 0,043 3,177 | 2,578336 0,000197 | 9,019874
Temperatura stopu [°C] 5,404 0,296 0,395 4,412921 1,718022 2,396378
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Temperatura
termoregulatora 2.1
[°C]

0,588

0,421

1,513

0,7196514

0,3057236

4,439951

Temperatura
termoregulatora 2.2

[°C]

1,537

0,16

0,257

0,3178095

1,252078

1,900966

Temperatura
termoregulatora 3.2

[°C]

0,583

2,424

1,299

0,2190062

1,951687

2,75312

Temperatura tulei 1
[°C]

1,040

2,3

1,445

1,938197

1,999186

3,394205

Temperatura tulei 2

[°C]

0,749

2,119

1,529

1,781983

1,953457

4,078415

Temperatura tulei 3

[°C]

1,925

1,077

1,447

2,59077

1,390718

3,817435

Temperatura tulei 4
[°C]

0,887

1,922

1,172

1,11966

1,48552

2,958913

Temperatura w
obwodzie chtodzenia 1

[°C]

0,437

1,203

1,12

0,5296151

2,842982

9,526812

Temperatura w
obwodzie chlodzenia 13

[°C]

0,634

0,168

0,36

2,666657

0,267625

1,719855

Temperatura w
obwodzie chtodzenia 14

[°C]

2,527

2,657

1,102

5,230465

3,349669

4,195761

Temperatura w
obwodzie chlodzenia 15

[°C]

0,764

0,004

0,13

0,2044889

0,0004549

0,0605263

Temperatura w
obwodzie chtodzenia 17

[°C]

4,580

0,0003

0,479

1,119318

0,0852863

1,001342

Temperatura w
obwodzie chtodzenia 7

[°C]

1,632

0,616

1,609

1,854109

1,032916

5,669752

Temperatura wody
miejskiej [°C]

3,585

2,961

1,052

2,115791

4,584456

5,456402

Temperatura wody w
instalacji [°C]

2,772

4,578

3,009

0,0200166

4,386218

9,314399

Wartosé prozni 1
[mBar]

7,531

9,751

12,23

9,692538

3,194784

14,54145

Wartosc prozni 2
[mBar]

1,963

9,004

3,722

3,193897

3,80062

5,727861

Zuzycie smaru [l]

0,696

0,013

1,247

0,4507437

0,0893758

4,29482

Tab. 5.68.: Zestawienie obliczonych wartosci p dla drugiego zbioru danych do badan

Statystyka p p p p p p
Kruskal- | Kruskal-
Jedno- ANQVA ANC,)VA Test Wallis Wallis
. odwrdécona | odwrdécona . .
czynnikowa przeciek przeciek Krusk_ala- odwrogony odwro?ony
ANOVA 2CAT ACAT Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 0,124 0,157 0,495 0,5342 0,155 0,4867
Cisnienie wody
miejskiej [Bar] 0,059 0,005 0,041 0,0158 0,006 0,0476
Cisnienie wody
obiegowej [Bar] 0,093 0,071 0,229 0,1527 0,0714 0,2951
Czas pierwszej fazy
wtrysku [ms] 0,385 0,143 0,401 0,7311 0,1746 0,4791
Czas chlodzenia
obwodu 1 [s] 0,089 0,076 0,0892 0,0793
Czas cyklu [s] 0,701 0,876 0,764 0,0667 0,7671 0,079
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Czas cyklu smarowania

[s] 0,486 0,367 0,594 0,7791 0,8856 0,9625
Czas dozowania stopu

[s] 0,331 0,405 0,307 0,1279 0,3012 0,6358
Czas dozowania stopu 2

[s] 0,958 0,886 0,96 0,742 0,5272 0,1521
Czas krzepniecia 12 [s] 0,001 0,001 0,00033 0,322 0,0017 0,0008
Czas przedmuchu [s] 0,726 0,911 0,302 0,8149 0,642 0,3441
Czas smarowania [s] 0,627 0,654 0,506 0,7245 0,7649 0,3025
Dzienny numer wtrysku

[i-] 0,757 0,578 0,898 0,8898 0,619 0,9312
Filtr prozni 1 [mBar] 0,492 0,4 0,025 0,3138 0,3643 0,0213
Grubos¢ pietki uktadu

wlewowego [mm] 0,003 0,00005 0,00027 0,0047 0,0002 0,0009
Koncentrat [%] 0,313 0,715 0,855 0,907 0,7906 0,9084
Cisnienie maksymalne

[Bar] 0,020 0,439 0,153 0,0285 0,3666 0,1166
Predkos¢ wtrysku

maksymalna [m/s] 0,067 0,067 0,181 0,2558 0,0549 0,1373
Opéznienie multiplikacji

[ms] 0,063 0,034 0,043 0,0256 0,0293 0,0483
Stata temperatura

chiodzenia plyty [°C] 0,003 0,002 0,0001 0,3189 0,0021 0,0002
Poziom stopu w piecu

podgrzewczym [mm] 0,001 0,000001 0,0001 0,0065 0,0001 0,0012
Poziom wody w

strumieniu chlodzgcym

[mm] 0,086 0,04 0,229 0,5387 0,0805 0,3119
Czas drugiej fazy

wtrysku [ms] 0,333 0,17 0,324 0,0756 0,1256 0,266
Profil prézni 1 [mBar] 0,067 0,246 0,379 0,5522 0,1039 0,2867
Profil prézni 2 [mBar 0,000 0,036 0,153 0,0009 0,4804 0,563
Przeplyw chlodzenia

tloka [1] 0,024 0,00003 0,00006 0,0352 0,0003 0,0014
Przepbyw w obwodzie

chlodzenia 1 [l] 0,000 0,00011 0,0001 0,0142 0,0002 0,0004
Przeplyw w obwodzie

chiodzenia 13 [l] 0,009 0,001 0,001 0,0209 0,0093 0,0103
Przepbyw w obwodzie

chlodzenia 14 [1] 0,000 0,00001 0,00004 0,0093 | 0,000001 0,0001
Przepbyw w obwodzie

chlodzenia 15 [1] 0,009 0,77 0,491 0,043 0,8561 0,4679
Przeplyw w obwodzie

chiodzenia 17 [1] 0,002 0,00019 0,00005 0,4188 0,0002 0,0001
Przeplyw w obwodzie

chlodzenia 20 [1] 0,012 0,002 0,003 0,0245 0,0029 0,008
Przepbyw w obwodzie

chlodzenia 6 [1] 0,038 0,497 0,694 0,0359 0,6094 0,6037
Predkos¢ we wlewach

doprowadzajqcych

[m/s] 0,604 0,997 0,822 0,7215 0,9088 0,8786
Suw pierwszej fazy

wtrysku [mm] 0,539 0,339 0,19 0,5622 0,445 0,2031
Suw docisku po

multiplikacji [mm] 0,183 0,503 0,744 0,234 0,402 0,5829
Temperatura chlodzenia

tloka [°C] 0,332 0,836 0,03 0,2755 0,9888 0,029
Temperatura stopu [°C] 0,023 0,588 0,757 0,0357 0,1899 0,4943
Temperatura

termoregulatora 2.1

[°C] 0,559 0,519 0,219 0,6978 0,5803 0,2177
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Temperatura
termoregulatora 2.2
[°C]

0,219

0,69

0,856

0,5729

0,2632

0,5932

Temperatura
termoregulatora 3.2

[°C]

0,448

0,124

0,282

0,6398

0,1624

0,4313

Temperatura tulei 1

[°C]

0,359

0,134

0,238

0,3794

0,1574

0,3347

Temperatura tulei 2
[°C]

0,478

0,15

0,215

0,4102

0,1622

0,2531

Temperatura tulei 3

[°C]

0,154

0,303

0,237

0,2738

0,2383

0,2819

Temperatura tulei 4

[°C]

0,417

0,17

0,327

0,5713

0,2229

0,398

Temperatura w
obwodzie chlodzenia 1

[°C]

0,648

0,277

0,347

0,7674

0,0918

0,023

Temperatura w
obwodzie chiodzenia 13

[°C]

0,534

0,684

0,782

0,2636

0,6049

0,6325

Temperatura w
obwodzie chlodzenia 14

[°C]

0,065

0,108

0,355

0,1557

0,0672

0,2411

Temperatura w
obwodzie chtodzenia 15

[°C]

0,470

0,951

0,942

0,9028

0,983

0,9961

Temperatura w
obwodzie chlodzenia 17

[°C]

0,014

0,986

0,698

0,5714

0,7703

0,8009

Temperatura w
obwodzie chtodzenia 7

[°C]

0,190

0,435

0,196

0,6032

0,3095

0,1288

Temperatura wody
miejskiej [°C]

0,033

0,09

0,376

0,3472

0,0323

0,1413

Temperatura wody w
instalacji [°C]

0,101

0,036

0,036

0,8875

0,0362

0,0254

Wartosc prozni 1
[mBar]

0,001

0,003

0,00001

0,0079

0,0739

0,0023

Wartosé prozni 2
[mBar]

0,148

0,004

0,016

0,2025

0,0512

0,1256

Zuzycie smaru [l]

0,407

0,909

03

0,502

0,765

0,2313

Tab. 5.69.: Zestawienie obliczonych warto$ci statystyk F i H dla trzeciego zbioru danych do

Statystyka F F F H H H
Kruskal- | Kruskal-
Jedno- dANO,VA (';“NQVA Test Wallis Wallis
czynnikowa 0 wrogol? ale Wm?ol? 2 | Kruskala- odwrocony | odwrocony
ANOVA p;zg;l_?_ p‘:?;\'.?_ Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 1,792 0,72 1,951 | 3,035561| 0,7203744| 5,851408
Cisnienie wody
miejskiej [Bar] 0,310 2,186 0,797 | 1,706721| 2,184639| 2,391282
Cisnienie wody
obiegowej [Bar] 10,020 12,43 4,355| 5,520844| 12,41152| 13,05135
Czas pierwszej fazy
wtrysku [ms] 8,981 17,49 8,26 33,5372 18,99336 | 27,27055
Czas chiodzenia
obwodu 1 [s] 1,031 0,004 0,531 | 0,5181515| 0,003991 1,590518
Czas cyklu [s] 12,560 42,51 15,39 | 29,24989 | 0,0465562 | 30,45096
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Czas cyklu smarowania

[s] 10,550 34 15,89 34,1145| 2,016532 | 19,86969
Czas dozowania stopu

[s] 11,860 47,63 16,1 | 25,48414 8,07989 8,23366
Czas dozowania stopu 2

[s] 16,230 12,95 5,683 | 31,72024| 4,936527| 36,17869
Czas krzepniecia 12 [s] 3441,000 31,23 35,92 | 3,505849| 31,13509| 106,6525
Czas przedmuchu [s] 7,595 13,87 7,005| 37,59767 0,0 1,71812
Czas smarowania [s] 2,164 6,11 10,68 25,81 | 0,4065546 | 11,31631
Dzienny numer wtrysku

[i-] 1,064 0,3 1,554 | 4,613983| 0,2058174| 4,415076
Filtr prozni 1 [mBar] 32,620 72,08 52,22 | 72,60819| 100,9368| 195,8961
Grubos¢ pietki uktadu

wlewowego [mm] 0,714 3,553 9,953 | 2,369938| 5,170498 34,2345
Koncentrat [%] 4,500 3,7 1,617 | 24,48873 6,0 9,799401
Cisnienie maksymalne

[Bar] 3,489 42,2 25| 3,040971 48,7659 | 79,66612
Predkos¢ wtrysku

maksymalna [m/s] 4,450 12,58 5,436 | 1,728593| 7,707207| 10,40386
Opoznienie

multiplikacji [ms] 3,138 0,126 2,916 | 14,98601| 0,0037998 | 7,568358
Stata temperatura

chiodzenia plyty [°C] 33,700 20,5 14,89 | 4,124605| 37,21833| 52,54113
Poziom stopu w piecu

podgrzewczym [mm] 1,304 34 6,0 1,2 24,68 25,24205
Poziom wody w

strumieniu chlodzgcym

[mm] 0,942 0,847 3,763 | 3,898408 | 0,4041015| 9,051005
Czas drugiej fazy

wtrysku [ms] 11,280 33,57 16,44 | 11,16913 33,9 | 48,23874
Profil prézni 1 [mBar] 1,661 0,141 9,856 15,1382 | 4,288953 | 37,45051
Profil prézni 2 [mBar 74,340 19,88 6,952 89,9513 | 15,16766 | 16,12079
Przeplyw chlodzenia

tloka [1] 9,790 5,898 215| 9,684083 3,5552 | 56,57148
Przepbyw w obwodzie

chlodzenia 1 [l] 9,504 15,07 8,75| 1,432417| 13,10193 20,4231
Przeplyw w obwodzie

chiodzenia 13 [l] 6,015 41,61 4486 | 4,098338| 34,01835| 131,3819
Przepbyw w obwodzie

chlodzenia 14 [1] 5,198 25,02 1331 | 5914369 | 24,67757| 43,65313
Przepbyw w obwodzie

chlodzenia 15 [1] 12,940 29,15 12| 59,37741| 35,87096 | 43,75868
Przeplyw w obwodzie

chiodzenia 17 [1] 31,580 68 4283 | 79,53131| 85,84159| 140,3223
Przeplyw w obwodzie

chlodzenia 20 [1] 3,195 17,14 12,72 | 5,083908 | 11,09865| 34,80311
Przepbyw w obwodzie

chlodzenia 6 [1] 15,130 1,0009 15,35 56,7365 | 0,4951261 | 45,45323
Predkos¢ we wlewach

doprowadzajqcych

[m/s] 4,458 10,61 4,55 3,04 10,17 | 12,34303
Suw pierwszej fazy

wtrysku [mm] 2,107 0,518 1,034 | 7,498708 | 0,075557| 2,128033
Suw docisku po

multiplikacji [mm] 34,430 91,39 3591 | 126,8225| 79,92223| 95,23034
Temperatura chlodzenia

tloka [°C] 4,290 26,52 17,86 | 35,37423| 9,825939 | 52,24249
Temperatura stopu [°C] 9,200 20,61 12| 35,68286 22,4 38,67883
Temperatura

termoregulatora 2.1

[°C] 0,173 0,6 5,357 | 3,227588| 0,5213332| 15,25381
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Temperatura
termoregulatora 2.2
[°C]

1,868

2,503

1,013

1,796084

2,039413

3,036168

Temperatura
termoregulatora 3.2

[°C]

0,331

0,048

0,026

7,393445

0,000276

0,0133996

Temperatura tulei 1

[°C]

0,826

2,767

1,249

0,2867274

2,748014

3,892204

Temperatura tulei 2
[°C]

0,589

1,823

1,736

7,040981

0,1327934

4,254394

Temperatura tulei 3

[°C]

0,477

5,138

1,853

0,5497702

5,826163

5,840768

Temperatura tulei 4

[°C]

0,415

0,696

0,754

0,4521204

1,60078

1,998403

Temperatura w
obwodzie chlodzenia 1

[°C]

27,830

14,04

8,021

60,53845

3,285278

16,79737

Temperatura w
obwodzie chiodzenia 13

[°C]

0,749

10,94

8,546

3,433127

8,105081

33,33861

Temperatura w
obwodzie chlodzenia 14

[°C]

1,827

55

2,075

8,232704

6,951086

7,717977

Temperatura w
obwodzie chtodzenia 15

[°C]

12,180

2,521

3,785

68,15709

0,1281029

8,523747

Temperatura w
obwodzie chiodzenia 17

[°C]

48,800

0,007

10,56

45,97528

2,018874

32,01247

Temperatura w
obwodzie chtodzenia 7

[°C]

15,440

3,289

5,127

38,04194

9,027694

21,36187

Temperatura wody
miejskiej [°C]

0,336

19,16

9,049

6,869579

21,50064

32,65863

Temperatura wody w
instalacji [°C]

0,639

0,114

0,191

0,6052891

0,4954719

1,322686

Wartosc prozni 1
[mBar]

138,200

324,8

117,5

186,6402

289,5415

315,9075

Wartosé prozni 2
[mBar]

22,150

25,92

10,82

66,5259

11,89618

13,05218

Zuzycie smaru [l]

0,652

0,006

0,43

3,394667

0,0007725

0,7395983

Tab. 5.70.: Zestawienie obliczonych wartosci p dla trzeciego zbioru danych do badan

Statystyka p p p p pk I pk I
Kruskal- | Kruskal-
Jedno- QNQVA dANO,VA Test Wallis Wallis
czynnikowa 0 wm?olg e wm?ol? 2 | Kruskala- odwrocony | odwrocony
ANOVA pzréez_tle_ ng&;ls_ Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 0,181 0,396 0,119 0,0815 0,396 0,1191
Cisnienie wody
miejskiej [Bar] 0,734 0,139 0,495 0,426 0,1394 0,4953
Cisnienie wody
obiegowej [Bar] 0,002 0,00043 0,005 0,0188 0,0004 0,0045
Czas pierwszej fazy
wtrysku [ms] 0,00001 0,00003 0,00002| 0,000001 | 0,000001| 0,000001
Czas chlodzenia
obwodu 1 [s] 0,357 0,948 0,661 0,7718 0,9496 0,6615
Czas cyklu [s] 0,000001 | 0,000001 0,000001 | 0,000001 0,8292| 0,000001
Czas cyklu
smarowania [s] 0,001| 0,000001 0,000001| 0,000001 0,1556 0,0002
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Czas dozowania stopu

[s] 0,00001 | 0,000001 0,000001 | 0,000001 0,0045 0,0414
Czas dozowania stopu

2[s] 0,00001 0,00032 0,001| 0,000001 0,0263| 0,000001
Czas krzepniecia 12 [s] 0,00001| 0,000001 0,00001 0,0612| 0,000001| 0,000001
Czas przedmuchu [s] 0,001 0,0002 0,00011| 0,000001 0,9866 0,6329
Czas smarowania [s] 0,141 0,013 0,000001| 0,000001 0,5237 0,0101
Dzienny numer wtrysku

[i.1 0,363 0,584 0,198 0,2023 0,6501 0,22
Filtr prézni 1 [mBar] 0,000001 | 0,000001 0,000001| 0,000001| 0,000001| 0,000001
Grubos¢ pietki uktadu

wlewowego [mm] 0,49 0,059 0,000001 0,3058 0,023| 0,000001
Koncentrat [%] 0,011 0,054 0,183 | 0,000001 0,0141 0,0204
Cisnienie maksymalne

[Bar] 0,031| 0,000001 0,000001 0,2186| 0,000001 | 0,000001
Predkosé wtrysku

maksymalna [m/s] 0,035 0,00038 0,001 0,1886 0,0055 0,0154
Opoznienie

multiplikacji [ms] 0,043 0,723 0,033 0,0006 0,9508 0,0558
Stata temperatura

chiodzenia piyty [°C] 0,000001 0,00001 0,000001 0,0423| 0,000001| 0,000001
Poziom stopu w piecu

podgrzewczym [mm] 0,253 0,064 0,00046 0,2636| 0,000001 | 0,000001
Poziom wody w

strumieniu chlodzqcym

[mm] 0,39 0,357 0,01 0,1424 0,525 0,0286
Czas drugiej fazy

wtrysku [ms] 0,000001 | 0,000001 0,000001 0,0038| 0,000001| 0,000001
Profil prozni 1 [mBar] 0,19 0,707 0,000001 0,0005 0,0384| 0,000001
Profil prézni 2 [mBar 0,000001 0,00001 0,00011| 0,000001 0,0001 0,0011
Przeptyw chlodzenia

tloka [1] 0,000001 0,015 0,000001 0,0079 0,0594| 0,000001
Przeplyw w obwodzie

chlodzenia 1 [1] 0,00001 0,0001 0,00001 0,4886 0,0003 0,0001
Przeplyw w obwodzie

chiodzenia 13 [I] 0,000001 | 0,000001 0,000001 0,251 | 0,000001 | 0,000001
Przepbyw w obwodzie

chlodzenia 14 [1] 0,001| 0,000001 0,000001 0,1159| 0,000001 | 0,000001
Przeplyw w obwodzie

chiodzenia 15 [1] 0,000001 | 0,000001 0,000001| 0,000001| 0,000001| 0,000001
Przeplyw w obwodzie

chiodzenia 17 [I] 0,000001 | 0,000001 0,000001| 0,000001| 0,000001| 0,000001
Przepbyw w obwodzie

chiodzenia 20 [1] 0,041 0,00004 0,000001 0,0787 0,0009 | 0,000001
Przeplyw w obwodzie

chlodzenia 6 [1] 0,000001 0,315 0,000001| 0,000001 0,4817| 0,000001
Predkos¢ we wlewach

doprowadzajqcych

[m/s] 0,01 0,00 0,003 0,22 0,00 0,0063
Suw pierwszej fazy

wtrysku [mm] 0,077 0,472 0,376 0,1118 0,7834 0,5463
Suw docisku po

multiplikacji [mm] 0,00001| 0,000001 0,000001| 0,000001| 0,000001| 0,000001
Temperatura

chiodzenia tloka [°C] 0,014| 0,000001 0,000001 | 0,000001 0,0017| 0,000001
Temperatura stopu

[°C] 0,0001 0,00001 0,000001| 0,000001| 0,000001| 0,000001
Temperatura

termoregulatora 2.1

[°C] 0,841 0,438 0,001 0,1991 0,4703 0,0016
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Tab. 5.71.: Zestawienie obliczonych wartosci statystyk F i H dla czwartego zbioru danych do

badan

Temperatura
termoregulatora 2.2
[°C]

0,155

0,114

0,386

0,4074

0,1533

0,3861

Temperatura
termoregulatora 3.2

[°C]

0,718

0,826

0,994

0,0248

0,9867

0,9996

Temperatura tulei 1

[°C]

0,438

0,096

0,29

0,8664

0,0974

0,2733

Temperatura tulei 2
[°C]

0,555

0,177

0,157

0,0296

0,7156

0,2353

Temperatura tulei 3

[°C]

0,62

0,023

0,135

0,7597

0,0158

0,1196

Temperatura tulei 4

[°C]

0,66

0,404

0,52

0,7977

0,2058

0,5727

Temperatura w
obwodzie chlodzenia 1

[°C]

0,00001

0,00018

0,00002

0,000001

0,0699

0,0008

Temperatura w
obwodzie chtodzenia
13 [°C]

0,473

0,001

0,00001

0,1797

0,0044

0,000001

Temperatura w
obwodzie chlodzenia
14 [°C]

0,14

0,019

0,101

0,0414

0,0084

0,0522

Temperatura w
obwodzie chtodzenia
15 /°C]

0,000001

0,112

0,01

0,000001

0,7204

0,0363

Temperatura w
obwodzie chlodzenia
17 [°C]

0,00001

0,932

0,000001

0,000001

0,1554

0,000001

Temperatura w
obwodzie chtodzenia 7

[°C]

0,00001

0,07

0,002

0,000001

0,0027

0,0001

Temperatura wody
miejskiej [°C]

0,715

0,00001

0,00001

0,0322

0,000001

0,000001

Temperatura wody w
instalacji [°C]

0,528

0,736

0,903

0,7389

0,4815

0,7238

Wartosc prozni 1
[mBar]

0,000001

0,000001

0,000001

0,000001

0,000001

0,000001

Wartosé prozni 2
[mBar]

0,000001

0,000001

0,000001

0,000001

0,0006

0,0045

Zuzycie smaru [l]

0,521

0,941

0,732

0,1832

0,9778

0,8639

Statystyka F F F H H H
Kruskal- | Kruskal-
Jedno- (';“N(?VA (';“NQVA Test Wallis Wallis
czynnikowa 0 wm?ol? ale Wm?ol? 2 | Kruskala- odwrocony | odwrécony
ANOVA pzréez.f_ p;g'\;\'_?_ Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 2,835 0,513 0,911 | 0,7834695| 0,5143386 | 2,736873
Cisnienie wody
miejskiej [Bar] 2,703 0,083 2,445 | 4,131474| 0,1008617 | 7,056941
Cisnienie wody
obiegowej [Bar] 1,231 1,025 1,251 | 0,2488755 1,02457 3,734122
Czas pierwszej fazy
wtrysku [ms] 1,509 0,041 0,89| 5,941498| 0,2378208 2,57805
Czas chlodzenia
obwodu 1 [s] 3,029 2,33 2,985783 | 6,737961
Czas cyklu [s] 0,73 1,43 0,815| 2,431958| 8,592792| 10,96887
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Czas cyklu

smarowania [s] 0,049 3,059 1,263 | 5,079406| 1,638048 | 0,9294497
Czas dozowania

stopu [s] 0,45 0,349 0,468 | 0,1140645| 3,519712 0,8183
Czas dozowania

stopu 2 [s] 0,088 0,717 0,286 | 0,1258939| 9,275664 11,26972
Czas krzepniecia 12

[s] 0,976 36,27 14,9 19,8626 | 28,93154 | 34,37872
Czas przedmuchu [s] 0,3 6,1 3,2 5,6 3,651647 6,745543
Czas smarowania [s] 0,328 8,881 3,36 7,58 10,52336 13,75958
Dzienny numer

wtrysku [j.] 0,597 0,209 0,281 | 2,828394| 0,6570805| 0,7504256
Filtr prézni 1 [mBar] 0,681 3,949 1,225| 0,0531426| 6,613457 | 5,066672
Grubos¢é pigtki

uktadu wlewowego

[mm] 6,463 0,032 3,201 | 0,5848068| 0,3825535| 9,568175
Koncentrat [%] 1,659 3,637 0,6 0,2 1,33476 | 0,3838552
Cisnienie

maksymalne [Bar] 2,593 4,205 1,412 2,746324 5,574682 4,424322
Predkosé wtrysku

maksymalna [m/s] 0,907 4,475 1,376 | 2,271017| 4,034266 | 4,500321
Opoznienie

multiplikacji [ms] 0,861 4,319 0,409 | 2,616167| 3,876444 1,523556
Stata temperatura

chiodzenia plyty [°C] 1,769 35,47 20,19 10,55792 | 24,71666 | 40,73381
Poziom stopu w

piecu podgrzewczym

[mm] 1,178 0,631 0,3 52| 1,944674| 8,018786
Poziom wody w

strumieniu

chlodzqcym [mm] 2,744 0,63 1,162 | 0,1446646 0,109834 3,654135
Czas drugiej fazy

wtrysku [ms] 1,015 0,214 0,427 1,124651 0,2 1,615829
Profil prozni 1

[mBar] 0,542 2,197 1,544 1971772 | 2,327164 | 5,303965
Profil prozni 2

[mBar 1,362 6,114 1,005| 5,380679| 0,4700874 | 0,3815033
Przeplyw chlodzenia

tloka [1] 1,047 26,93 7,679 13,18748 | 22,39177 18,13231
Przeptyw w obwodzie

chiodzenia 1 [I] 1,416 33,95 13,63 20,7326 | 26,44215| 32,85413
Przeplyw w obwodzie

chlodzenia 13 [l] 0,157 24,88 4,676 13,7629 | 19,91644 10,77292
Przeplyw w obwodzie

chiodzenia 14 [1] 2,666 19,19 9,4| 9,297263| 18,33402| 26,02779
Przeptyw w obwodzie

chlodzenia 15 [1] 1,282 6,774 3,203| 20,57073| 4,313219| 6,993207
Przeplyw w obwodzie

chiodzenia 17 [l] 0,745 34,66 13,65 12,33015| 30,11878 | 34,85915
Przeptyw w obwodzie

chlodzenia 20 [1] 0,762 16,28 3,934 | 9,532445| 1557798 10,68363
Przeplyw w obwodzie

chlodzenia 6 [1] 2,603 0,225 0,369 | 0,0679111| 0,0054715 1,036343
Predkos¢ we

wlewach

doprowadzajqcych

[m/s] 0,571 0,91 0,424 | 2,489704 1,09 1,205155
Suw pierwszej fazy

wtrysku [mm] 0,188 0,096 1,651 | 3,696941| 0,430523| 5,146186
Suw docisku po

multiplikacji [mm] 1,645 0,49 0,246 1,605582 | 0,0078638 1,379362
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Temperatura
chiodzenia tloka [°C]

0,031

2,914

2,624

1,806434

4,013728

7,005448

Temperatura stopu
[°C]

4,413

0,033

0,261

3,105787

0,0604788

1,611166

Temperatura
termoregulatora 2.1

[°C]

1,719

0,261

1,699

3,501986

0,4605649

5,588622

Temperatura
termoregulatora 2.2

[°C]

0,05

3,023

0,746

1,843853

3,570362

2,645593

Temperatura
termoregulatora 3.2

[°C]

0,015

1,155

1,427

1,283173

1,071238

3,539155

Temperatura tulei 1

[°C]

0,775

0,214

1,542

2,59253

0,2149453

3,393007

Temperatura tulei 2
[°C]

0,583

19,98

5,572

9,924865

18,14212

14,71034

Temperatura tulei 3

[°C]

1,758

0,157

1,346

1,153863

0,3824963

3,918823

Temperatura tulei 4
[°C]

0,457

2,867

1,721

1,531314

3,020584

5,279776

Temperatura w
obwodzie chlodzenia

1/°C]

0,102

8,428

3,25

1,229165

15,89497

21,6158

Temperatura w
obwodzie chtodzenia
13 [°C]

0,723

1,84

0,238

0,6815788

1,495767

0,4238257

Temperatura w
obwodzie chlodzenia
14 [°C]

0,86

1,689

1,494

5,087061

2,300353

5,269863

Temperatura w
obwodzie chtodzenia
15 [°C]

0,349

2,426

0,308

5,481624

2,554608

0,8584278

Temperatura w
obwodzie chlodzenia
17 [°C]

0,808

0,748

0,864

6,272395

0,2117827

1,449913

Temperatura w
obwodzie chlodzenia

7[°C]

0,378

4,945

3,306

5,838863

5,333607

10,71481

Temperatura wody
miejskiej [°C]

1,184

0,618

0,863

1,998355

0,7004746

4,668569

Temperatura wody w
instalacji [°C]

1,867

0,337

2,758

0,0954355

0,2245267

9,05284

Wartos¢ prozni 1
[mBar]

0,79

5,491

5,25

11,98752

5,793035

13,90497

Wartosé prozni 2
[mBar]

0,658

12,55

2,857

8,174704

30,02427

13,02437

Zuzycie smaru [l]

1,178

0,629

1,326

2,2206

0,774092

4,352095

Tab. 5.72.: Zestawienie obliczonych warto$ci p dla czwartego zbioru danych do badan

Statystyka p p p p < Pk | < pk I
ruskal- ruskal-
Jedno- ANOVA | ANOVA | g Wallis | Wallis
czynnikowa | odwrécona ° wro?olzl 2| Kruskala- odwrocony | odwrocony
ANOVA | przeciek 2CAT p;ég\'_?_ Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 0,094 0,475 0,438 0,3761 0,4733 0,434
Cisnienie wody
miejskiej [Bar] 0,071 0,774 0,067 0,1267 0,7508 0,0701
Cisnienie wody
obiegowej [Bar] 0,269 0,313 0,294 0,6179 0,3114 0,2916
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Czas pierwszej fazy

witrysku [ms] 0,225 0,839 0,448 0,0513 0,6258 0,4614
Czas chlodzenia

obwodu 1 [s] 0,084 0,078 0,084 0,0807
Czas cyklu [s] 0,394 0,234 0,488 0,1189 0,0034 0,0119
Czas cyklu

smarowania [s] 0,825 0,083 0,29 0,0242 0,2006 0,8183
Czas dozowania

stopu [s] 0,503 0,556 0,705 0,7356 0,0606 0,9055
Czas dozowania

stopu 2 [s] 0,916 0,399 0,835 0,939 0,0023 0,0104
Czas krzepniecia t2

[s] 0,325 0,000001 | 0,000001| 0,000001| 0,000001| 0,000001
Czas przedmuchu [s] 0,57 0,015 0,024 0,0179 0,056 0,0805
Czas smarowania [s] 0,568 0,003 0,021 0,0059 0,0012 0,0033
Dzienny numer

witrysku [j.] 0,552 0,648 0,839 0,2431 0,4176 0,8613
Filtr prozni 1 [mBar] 0,508 0,049 0,303 0,9738 0,0101 0,167
Grubosc¢ pietki

uktadu wlewowego

[mm] 0,012 0,859 0,025 0,4444 0,5362 0,0226
Koncentrat [%] 0,2 0,059 0,588 0,6639 0,248 0,9436
Cisnienie

maksymalne [Bar] 0,078 0,042 0,242 0,2533 0,0182 0,2191
Predkos¢ wtrysku

maksymalna [m/s] 0,406 0,036 0,253 0,3213 0,0446 0,2123
Opoznienie

multiplikacji [ms] 0,425 0,04 0,747 0,2703 0,049 0,6768
Stata temperatura

chiodzenia plyty [°C] 0,186 0,000001 | 0,000001 0,0012 | 0,000001 | 0,000001
Poziom stopu w

piecu podgrzewczym

[mm] 0,28 0,428 0,849 0,023 0,1632 0,0456
Poziom wody w

strumieniu

chlodzgcym [mm] 0,1 0,429 0,327 0,7037 0,7403 0,3013
Czas drugiej fazy

wtrysku [ms] 0,365 0,645 0,734 0,5699 0,669 0,6558
Profil prozni 1

[mBar] 0,463 0,141 0,206 0,1603 0,1271 0,1508
Profil prozni 2

[mBar 0,245 0,015 0,393 0,0204 0,4929 0,944
Przeplyw chlodzenia

tloka [1] 0,308 0,000001 0,00009 0,0003 | 0,000001 0,0004
Przeplyw w obwodzie

chlodzenia 1 [1] 0,246 0,000001 | 0,000001| 0,000001| 0,000001| 0,000001
Przeplyw w obwodzie

chiodzenia 13 [1] 0,855 0,000001 0,004 0,001| 0,000001 0,013
Przeptyw w obwodzie

chiodzenia 14 [1] 0,073 0,00002 0,00001 0,0096 | 0,000001| 0,000001
Przeptyw w obwodzie

chiodzenia 15 [1] 0,283 0,01 0,025 0,0001 0,0378 0,0721
Przeptyw w obwodzie

chlodzenia 17 [l] 0,477 0,000001 | 0,000001 0,0021 | 0,000001 | 0,000001
Przeplyw w obwodzie

chlodzenia 20 [1] 0,469 0,00009 0,01 0,0085 0,0001 0,0136
Przeplyw w obwodzie

chiodzenia 6 [1] 0,109 0,636 0,776 0,7944 0,941 0,7925
Predkos¢ we

wlewach 0,566 0,342 0,736 0,288 0,2973 0,7518
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doprowadzajqcych
[m/s]

Suw pierwszej fazy
wtrysku [mm]

0,829

0,758

0,181

0,1575

0,5117

0,1614

Suw docisku po
multiplikacji [mm]

0,182

0,825

0,864

0,6581

0,9293

0,7104

Temperatura
chiodzenia tloka

[°C]

0,969

0,09

0,053

0,4053

0,0451

0,0717

Temperatura stopu
[°C]

0,037

0,857

0,853

0,078

0,8057

0,6569

Temperatura
termoregulatora 2.1

[°C]

0,183

0,61

0,17

0,1736

0,4974

0,1334

Temperatura
termoregulatora 2.2
[°C]

0,824

0,084

0,526

0,1745

0,0588

0,4496

Temperatura
termoregulatora 3.2

[°C]

0,902

0,284

0,238

0,2573

0,3007

0,3157

Temperatura tulei 1
[°C]

0,463

0,644

0,206

0,2736

0,6429

0,3349

Temperatura tulei 2
[°C]

0,56

0,000001

0,001

0,007

0,000001

0,0021

Temperatura tulei 3
[°C]

0,176

0,693

0,262

0,5616

0,5363

0,2704

Temperatura tulei 4
[°C]

0,634

0,093

0,166

0,465

0,0822

0,1524

Temperatura w
obwodzie chlodzenia

1/°C]

0,903

0,004

0,024

0,5409

0,0001

0,0001

Temperatura w
obwodzie chtodzenia
13 [°C]

0,487

0,177

0,87

0,7112

0,2213

0,9353

Temperatura w
obwodzie chiodzenia
14 /°C]

0,463

0,196

0,219

0,1655

0,1293

0,1531

Temperatura w
obwodzie chtodzenia
15 [°C]

0,706

0,122

0,82

0,0645

0,11

0,8354

Temperatura w
obwodzie chlodzenia
17 [°C]

0,448

0,3889

0,461

0,0434

0,6454

0,6939

Temperatura w
obwodzie chlodzenia

7[°C]

0,769

0,028

0,022

0,1197

0,0209

0,0134

Temperatura wody
miejskiej [°C]

0,309

0,433

0,462

0,3682

0,7004746

0,1977

Temperatura wody w
instalacji [°C]

0,174

0,563

0,045

0,7574

0,6356

0,0286

Wartos¢ prozni 1
[mBar]

0,456

0,021

0,002

0,0025

0,0161

0,003

Wartosé prozni 2
[mBar]

0,519

0,001

0,039

0,0168

0,000001

0,0046

Zuzycie smaru [l]

0,28

0,429

0,269

0,1362

0,379

0,2259
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Tab. 5.73.: Zestawienie obliczonych wartosci statystyk F i H dla pigtego zbioru danych do
badan

Statystyka F F F H H H
Kruskal- Kruskal-
Jedno- ANOVA || ANOVA Test Wallis Wallis
czynnikowa ° wrogol? ale Wm?olil ? | Kruskala- odwrécony | odwrocony
ANOVA pzréez_?_ p;?;\'.?. Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie
sprezonego
powietrza [Bar] 0,944 0,911 0,924 | 0,0503866 | 0,9118342 2,777024
Cisnienie wody
miejskiej [Bar] 1,626 0,294 2,023 | 0,0890776 | 0,2943874 5,956018
Cisnienie wody
obiegowej [Bar] 0,543 2,32 1,395| 0,5504266 | 2,298224 4,148285
Czas pierwszej fazy
wtrysku [ms] 1,0009 0,004 0,873| 4,079714| 0,0478864 2,384806
Czas chlodzenia
obwodu 1 [s] 0 2,246 6,57E-16 6,561827
Czas cyklu [s] 0,655 0,169 0,398 | 2,963108| 5,928097 9,758347
Czas cyklu
smarowania [s] 0,001 4,826 1,769 | 2,783583| 0,7801886 0,6004655
Czas dozowania
stopu [s] 0,32 2,075 0,307 | 0,0901136| 3,581989 0,5703893
Czas dozowania
stopu 2 [s] 0,775 0,821 0,348 | 3,672993| 6,490876 9,835997
Czas krzepnigcia 12
[s] 2,235 10,09 8,844 | 5,452594| 9,469302 22,69118
Czas przedmuchu
[s] 0,2 3,5 2,6 3,3| 1,369927 4,757867
Czas smarowania
[s] 0,086 3,10 1,87 2,73| 5,410804 9,245659
Dzienny numer
wtrysku [j.] 0,839 2,055 0,605| 2,573865| 2,641864 1,709794
Filtr prozni 1
[mBar] 0,901 0,788 1,394 | 0,8693439 | 2,849304 4,986875

Grubosc¢ pietki
uktadu wlewowego

[mm] 3,97 1,488 2,533 | 0,0354207 2,504638 7,950731
Koncentrat [%] 1,404 2,6 0,5 0,7 1,516144 0,4460746
Cisnienie

maksymalne [Bar] 4,816 6,994 1,386 | 6,009481 7,520637 4,442243
Predkosé wirysku

maksymalna [m/s] 0,922 3,704 1,329 | 0,8477555 3,635032 4,319043
Opoznienie

multiplikacji [ms] 0,453 5,611 0,38 1,26139 5,158934 1,58911

Stata temperatura
chtodzenia piyty
[°C] 3,399 14,78 13,5| 2,350087 11,37724 31,95404
Poziom stopu w
piecu
podgrzewczym
[mm] 0,617 6,6 11 2,8| 1,585974 7,104122
Poziom wody w
strumieniu
chlodzqcym [mm] 1,143 7,864 1,8 | 0,1044068 5,636161 4,898486
Czas drugiej fazy
wtrysku [ms] 0,57 2,308 0,161 | 1,274115 2,3 0,6223239
Profil prozni 1
[mBar] 0,143 4,818 1,748 | 5,847654| 2,977529 5,166851
Profil prozni 2
[mBar 0,284 12,77 1,558 | 5,655811| 2,800459 0,4166995
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Przephyw
chiodzenia Hoka

[

0,097

23,36

8,704

3,990963

20,55694

19,21435

Przephw w
obwodzie
chlodzenia 1 [l]

2,919

20,78

10,68

7,467028

18,4824

26,65535

Przeplyw w
obwodzie
chiodzenia 13 [l]

0,092

17,21

4,474

9,212144

14,66517

9,770117

Przephw w
obwodzie
chtodzenia 14 [1]

2,215

18,06

7,756

5,633901

16,52528

22,22218

Przeplyw w
obwodzie
chtodzenia 15 [I]

0,93

2,535

1,948

12,37044

1,609391

4,488112

Przephw w
obwodzie
chiodzenia 17 [l]

1,261

12,08

9,734

6,621948

12,32556

27,86023

Przephyw w
obwodzie
chtodzenia 20 [1]

1,094

3,874

2,963

1,457155

4,968896

8,435272

Przephw w
obwodzie
chiodzenia 6 [1]

3,427

0,623

0,483

0,2866773

0,3784252

1,667609

Predkos¢ we
wlewach
doprowadzajqcych
[m/s]

1,815

2,993

0,688

4,157246

4,11

2,181754

Suw pierwszej fazy
wtrysku [mm]

0,534

0,136

1,082

0,4914757

0,0956472

3,358416

Suw docisku po
multiplikacji [mm]

0,303

2,602

0,241

3,246834

2,773835

1,328445

Temperatura
chiodzenia tloka

[°C]

0,037

4,36

3,053

2,281547

4,101859

7,333137

Temperatura stopu

[°C]

5,362

0,002

0,296

3,272292

0,0022977

1,56048

Temperatura
termoregulatora
2.1/°C]

1,097

0,29

1,645

2,981599

0,5149762

5,304476

Temperatura
termoregulatora
2.2/[°C]

0,353

0,595

0,351

0,3588352

0,5922079

1,571942

Temperatura
termoregulatora
3.2/°C]

0,37

0,681

1,396

0,0121608

0,737045

3,373475

Temperatura tulei
1[°C]

0,913

0,007

1,738

2,997863

0,0369491

3,332422

Temperatura tulei
2 /°C]

0,735

15,05

4,578

7,178407

13,50697

11,83992

Temperatura tulei
3/°C]

0,875

0,297

1,241

0,8708797

0,6531865

3,779984

Temperatura tulei
4 /°C]

0,763

2,47

1,803

4,652167

3,385899

5,718656

Temperatura w
obwodzie
chtodzenia 1 [°C]

0,435

9,532

3,749

4,552694

12,77461

21,3636

Temperatura w
obwodzie
chlodzenia 13 [°C]

0,287

0,224

0,293

0,0930829

0,1108883

0,8945695

Temperatura w
obwodzie
chlodzenia 14 [°C]

0,442

5,771

2,177

10,23894

6,62236

7,039525

Temperatura w
obwodzie
chlodzenia 15 [°C]

0,679

0,127

0,191

0,1979463

0,0009502

0,0642518
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Temperatura w
obwodzie
chiodzenia 17 [°C] 1,29 0,014 0,495| 2,660881 | 0,00007167 0,8022779
Temperatura w
obwodzie
chiodzenia 7 [°C] 0,685 1,752 2,554 | 3,938162| 1,806585 8,342331
Temperatura wody
miejskiej [°C] 2,015 0,003 0,907 | 0,0575995| 0,0248817 4,757703
Temperatura wody
w instalacji [°C] 0,793 1,733 3,237 | 0,6639769 | 1,622968 10,47092
Wartos¢ prozni 1
[mBar] 0,792 2,622 5,367 | 5,072948| 2,176712 13,08863
Wartos¢ prozni 2
[mBar] 0,842 16,33 3,095| 16,34794| 35,55467 15,17886
Zuzycie smaru [l] 2,592 3,124 1,894 4.441699 3,967396 5,712921
Tab. 5.74.: Zestawienie obliczonych wartosci p dla pigtego zbioru danych do badan
Statystyka p p p p - pk | - pk |
ruskal- ruskal-
Jedno- ANQVA ANQVA Test Wallis Wallis
. odwrocona | odwrdcona . .
czynnikowa przeciek przeciek Krusk_ala— odwrogony odwro?ony
ANOVA 2CAT ACAT Wallisa przeciek przeciek
Test 2CAT 4CAT
Cisnienie sprezonego
powietrza [Bar] 0,333 0,341 0,431 0,8224 0,3396 0,4273
Cisnienie wody
miejskiej [Bar] 0,2 0,588 0,114 0,9564 0,5874 0,1138
Cisnienie wody
obiegowej [Bar] 0,462 0,13 0,247 0,4581 0,1295 0,2459
Czas pierwszej fazy
wtrysku [ms] 0,367 0,948 0,457 0,13 0,8268 0,4965
Czas chlodzenia
obwodu 1 [s] 1 0,086 1 0,0873
Czas cyklu [s] 0,42 0,682 0,755 0,0852 0,0149 0,0207
Czas cyklu
smarowania [s] 0,982 0,03 0,156 0,0952 0,3771 0,8963
Czas dozowania
stopu [s] 0,573 0,154 0,82 0,764 0,0584 0,9032
Czas dozowania
stopu 2 [s] 0,462 0,366 0,791 0,1594 0,0108 0,02
Czas krzepnigcia t2
[s] 0,137 0,002 0,00002 0,0195 0,0021 0,000001
Czas przedmuchu [s] 0,633 0,065 0,055 0,0712 0,2418 0,1904
Czas smarowania [s] 0,77 0,08 0,138 0,0983 0,02 0,0262
Dzienny numer
wtrysku [j.] 0,435 0,154 0,613 0,2761 0,1041 0,6348
Filtr prézni 1 [mBar] 0,408 0,376 0,247 0,6475 0,0914 0,1728
Grubos¢é pietki
uktadu wlewowego
[mm] 0,048 0,225 0,06 0,8507 0,1135 0,047
Koncentrat [%] 0,238 0,106 0,672 0,407 0,2182 0,9306
Cisnienie
maksymalne [Bar] 0,011 0,009 0,25 0,0496 0,0061 0,2175
Predkos¢ wirysku
maksymalna [m/s] 04 0,056 0,268 0,6545 0,0566 0,229
Opoznienie
multiplikacji [ms] 0,637 0,019 0,768 0,5322 0,0231 0,6619
Stata temperatura
chiodzenia plyty [°C] 0,067 0,00018 0,000001 0,1253 0,0007 0,000001
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Poziom stopu w
piecu podgrzewczym
[mm]

0,433

0,011

0,336

0,0931

0,2079

0,0687

Poziom wody w
strumieniu
chtodzqcym [mm]

0,287

0,006

0,15

0,7466

0,0176

0,1794

Czas drugiej fazy
wtrysku [ms]

0,567

0,131

0,923

0,5288

0,1315

0,8913

Profil prozni 1
[mBar]

0,706

0,03

0,16

0,0156

0,0844

0,16

Profil prozni 2
[mBar

0,595

0,00049

0,203

0,0174

0,0942

0,9368

Przeptyw chlodzenia
tloka [1]

0,756

0,000001

0,00003

0,0457

0,000001

0,0002

Przephyw w obwodzie
chiodzenia 1 [1]

0,09

0,00001

0,000001

0,0063

0,000001

0,000001

Przephyw w obwodzie
chiodzenia 13 [l]

0,913

0,00006

0,005

0,01

0,0001

0,0206

Przeptyw w obwodzie
chlodzenia 14 [1]

0,113

0,00004

0,00008

0,0598

0,000001

0,0001

Przeptyw w obwodzie
chlodzenia 15 [1]

0,428

0,114

0,125

0,0062

0,2046

0,2134

Przeplyw w obwodzie
chiodzenia 17 [l]

0,287

0,001

0,00001

0,0365

0,0004

0,000001

Przeplyw w obwodzie
chiodzenia 20 [l]

0,338

0,051

0,034

0,4826

0,0258

0,0378

Przeptyw w obwodzie
chlodzenia 6 [l]

0,066

0,431

0,695

0,5924

0,5384

0,6442

Predkos¢ we
wlewach
doprowadzajqcych
[m/s]

0,167

0,086

0,561

0,1251

0,0427

0,5356

Suw pierwszej fazy
wtrysku [mm]

0,587

0,713

0,359

0,7821

0,7571

0,3396

Suw docisku po
multiplikacji [mm]

0,823

0,109

0,868

0,3551

0,0958

0,7224

Temperatura
chiodzenia tloka

[°C]

0,963

0,039

0,031

0,3196

0,0428

0,062

Temperatura stopu
[°C]

0,022

0,968

0,828

0,0705

0,9618

0,6684

Temperatura
termoregulatora 2.1

[°C]

0,337

0,591

0,182

0,2252

0,473

0,1508

Temperatura
termoregulatora 2.2

[°C]

0,554

0,442

0,789

0,5492

0,4416

0,6658

Temperatura
termoregulatora 3.2

[°C]

0,792

0411

0,247

0,9122

0,3906

0,3375

Temperatura tulei 1

[°C]

0,404

0,936

0,162

0,2234

0,8476

0,3432

Temperatura tulei 2
[°C]

0,482

0,00016

0,004

0,0276

0,0002

0,008

Temperatura tulei 3
[°C]

0,419

0,587

0,297

0,647

0,419

0,2862

Temperatura tulei 4

[°C]

0,468

0,118

0,149

0,0977

0,0658

0,1261

Temperatura w
obwodzie chiodzenia

1 [°C]

0,648

0,002

0,013

0,1027

0,0004

0,0001

Temperatura w
obwodZzie chlodzenia

13 /°C]

0,751

0,637

0,831

0,9545

0,7391

0,8267
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14 /°C]

Temperatura w
obwodzie chlodzenia

0,723 0,018

0,094

0,0166

0,0101

0,0707

15 [°C]

Temperatura w
obwodzie chtodzenia

0,509 0,722

0,902

0,9058

0,9754

0,9958

17 [°C]

Temperatura w
obwodzie chlodzenia

0,279 906

0,687

0,2644

0,9932

0,8489

7[°C]

Temperatura w
obwodzie chlodzenia

0,563 0,118

0,058

0,2682

0,1789

0,0394

Temperatura wody
miejskiej [°C]

0,137 0,96

0,44

0,9716

0,8747

0,1904

Temperatura wody w
instalacji [°C]

0,375 0,19

0,024

0,4152

0,2027

0,015

[mBar]

Wartos¢ prozni 1

0,455 0,108

0,002

0,0791

0,1401

0,0044

[mBar]

Wartosé prozni 2

0,433 0,00009

0,029

0,0003

0,000001

0,0017

Zuzycie smaru [l]

0,11 0,079

0,134

0,0351

0,0464

0,1264

Wykonano wigc 1680 obliczen, gdyz utworzono 6 modeli dla pigciu zbiorow danych,

zawierajacych 56 zmiennych. W wyniku uzyskano dwa parametry statystyczne: dla analizy

ANOVA Kklasycznej i odwroconej byla to statystyka F i p, a w przypadku testu Kruskala-

Wallisa statystyka H i p. Nastgpnie okreslono maksymalne i $rednie warto$ci obliczonych

statystyk F i H dla kazdego wariantu analizy (tab.5.75.)

Tab. 5.75.: Zestawienie maksymalnych i $rednich wartosci statystyk F i H

Statystyka | Test Zbiér | Max F lub H Srednie F lub H
F Jednoczynnikowa ANOVA 1 19,500 3,034
F ANOVA odwrdcona przeciek 2CAT 1 68,950 11,034
F ANOVA odwrdcona przeciek 4CAT 1 80,260 10,537
H Test Kruskala-Wallisa 1 178,438 25,321
H Kruskal-Wallis odwrécony przeciek 2CAT 1 43,569 9,005
H Kruskal-Wallis odwrécony przeciek 4CAT 1 214,549 29,047
F Jednoczynnikowa ANOVA 2 26,206 3,906
F ANOVA odwrdcona przeciek 2CAT 2 23,300 4,369
F ANOVA odwrdcona przeciek 4CAT 2 12,230 2,630
H Test Kruskala-Wallisa 2 10,933 3,089
H Kruskal-Wallis odwrécony przeciek 2CAT 2 17,984 3,550
H Kruskal-Wallis odwrécony przeciek 4CAT 2 22,478 6,513
F Jednoczynnikowa ANOVA 3 3441,000 73,547
F ANOVA odwrocona przeciek 2CAT 3 324,800 21,544
F ANOVA odwrdcona przeciek 4CAT 3 1331,000 36,205
H Test Kruskala-Wallisa 3 186,640 25,368
H Kruskal-Wallis odwrécony przeciek 2CAT 3 289,542 18,968
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H Kruskal-Wallis odwrdcony przeciek 4CAT 3 315,908 36,248
F Jednoczynnikowa ANOVA 4 6,463 1,189
F ANOVA odwrdcona przeciek 2CAT 4 36,270 6,469
F ANOVA odwrdcona przeciek 4CAT 4 20,190 2,922
H Test Kruskala-Wallisa 4 20,733 4,921
H Kruskal-Wallis odwrécony przeciek 2CAT 4 30,119 6,394
H Kruskal-Wallis odwrécony przeciek ACAT 4 40,734 8,389
F Jednoczynnikowa ANOVA 5 5,362 1,162
F ANOVA odwrocona przeciek 2CAT 5 23,360 4,817
F ANOVA odwrdcona przeciek 4CAT 5 13,500 2,508
H Test Kruskala-Wallisa 5 16,348 3,343
H Kruskal-Wallis odwrdcony przeciek 2CAT 5 35,555 4,888
H Kruskal-Wallis odwrécony przeciek 4CAT 5 31,954 7,386

Nastgpnie na podstawie obliczonych wynikéw dla kazdego zbioru danych do badan
utworzono trzy kryteria zmiennych wybierajac te, dla ktorych warto$¢ p byta mniejsza niz 0,05
(rys.5.2.3.5).

—®—H —O©—p ----plimit=0,05

200 1
180
160
140
120
100
80
60
40
20

Skala dla statystyki H

(test Kruskala-Wallisa)
Skala dla wartosci p

Zmienne niezalezne posortowane rosngco wedtug statystyki H

Rys.5.2.3.5. Kryterium wyboru statystycznie waznych zmiennych, na podstawie testu
Kruskala-Wallisa dla pierwszego zbioru danych

Podsumowujac, zastosowano w pracy trzy kryteria istotno$ci zmiennych wejsciowych,
nazwane dalej: kryterium K-W, gdyz w jego zakres wchodzity zmienne wyznaczone na
podstawie testu Kruskala-Wallisa, kryterium odwroconego K-W, na podstawie testu Kruskala-
Wallisa odwroconego dla przecieku podzielonego na 2 i 4 kategorie oraz kryterium ANOVA,
obejmujacego wyniki analizy ANOVA klasyczne] jednoczynnikowej i odwrdconej dla

przecieku podzielonego na 2 i 4 kategorie.

164



Kolejnym krokiem przygotowania danych byla identyfikacja danych silnie oraz bardzo
silnie skorelowanych. Analiza ta jest bardzo waznym punktem badan wielowymiarowych,
poniewaz jest w stanie na podstawie wizualnej reprezentacji, umozliwi¢ identyfikacje
wzajemnych korelacji migdzy réznymi sktadnikami wektora losowego. Wykonano wigc
analiz¢ wspotczynnikow korelacji liniowej Pearsona i nieparametrycznej Spearmana. Przyktad

otrzymanych wynikéw obliczen zestawiono w tab.5.76..

Tab. 5.76.: Zestawieniec wynikow analizy korelacji dla zbioru pigtego wedlug kryterium K-W

Korelacje (Dane do modelowania)
Oznaczone wsp. korelacji sg istotne z p <,05000
N _
l..lmer . Zmienna N=140
zmiennej

1 2 3 4 5 6 7 8 9 10 |11 |12 |13

1 Czas krzepniecia t2 [s] 10|01 01}-0,2| 03|-06| 0,1 05|/-09| 04| 0,0 0,0]-0,1
2 Cisnienie maksymalne -0,1| 1,0]|-0,1|-02|-0,4| 0,3]|-0,5| 0,2| 00| 0,0/-0,1|-0,2| 0,1
[Bar]
Profil prézni 1 [mBar] 01|-01| 10|-05|-0,2| 0,3|-02|-0,2| 0,0|-0,1|-0,3|-0,6| 0,0
4 Profil prézni 2 [mBar] -0,2|-0,2|-0,5| 10| 0,4|-0,3| 0,6|-0,1| 00| 00| 0,3] 0,8| 0,0
5 Przeptyw chtodzenia 03| 04l-02] 04| 10]-05| 07| 01]03] 03] 03| 05|-02
ttoka [I]
Przeptyw w obwodzie
6 . -06| 03| 03(-03-05| 10(-04|-0,2| 0,6(-0,3|-0,3]|-0,4| 0,1
chtfodzenia 1 [l]
7 Przeplyw w obwodzie 01(-05(-0,2| 06| 0,7|-04| 10(-0,1|{-0,2| 0,2| 0,3| 0,6] 0,0
chtodzenia 13 [l] , ’ ’ ) ) ) ) ) ) E E 3 :
g | Preeplyww obwodzie 05| 02|-02|-01|01]-02]-01| 1,0|-04| 04]|-02]| 00] 0,0
chtodzenia 15 [I] ’ ’ ¢ ' ’ ’ , , ) : ) ) ,
9 Przeplyw w obwodzie 09| 00| 00| 00|-03| 06]-01|-04]| 1,0/-0,3|-0,1]|-0,1| 0,0
chtodzenia 17 [I] ’ ’ ’ , ) ) ) ) , ) ) , ,

10 Temperatura tulei 2 [°C] 04(00|-01] 0003|0301 04}-03| 1,0 0,0} 0,1]-0,1

Temperatura w obwodzie

1 chtodzenia 14 [°C]

00(-0,1-03] 03| 03|-03| 03|-0,2|{-0,2| 00| 1,0| 0,3] 0,1

12 Wartos¢ prézni 2 [mBar] 0o0(-0,2|-06| 08| 05|-04| 06| 00|-0,12| 0,1| 0,3] 10| 0,1

13 Zuzycie smaru [l] -0,1] 01|00} 00}|-02| 01| 00| 00| 00(-0,1] 0,2] 0,1 1,0

Tab. 5.77.: Interpretacja wysokosci wspotczynnika korelacji

Warto$¢ korelacji (wartos¢ bezwzgledna) Interpretacja

0,0-0,3 Brak korelacji

0,3-0,5 Umiarkowanie skorelowane
0,5-0,7 Wysoko skorelowane
0,7-1,0 Bardzo wysoko skorelowane
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Nastepnie wybrano wysoko i bardzo wysoko skorelowane zmienne ze wszystkich zbiorow
danych ustalonych wedlug trzech kryteriow i zredukowano ponownie zmienne zastgpujac dwie
jedna wazniejszg z punktu widzenia warto$ci wyjsciowej. W tym celu wykonano wykresy
zalezno$ci zmiennych oraz obliczono kwadrat wspotczynnika korelacji Pearsona (rys.5.2.3.6.-
rys.5.2.3.7.)

600
e
__ 500 o
3 &
6}
£ 400 A e e
~ Qo ®
< ° 0] ..-- y =0,9101x - 693,4
0 300 e® P ° R?=0,6971
\Q- * - ... ® (©)
v ® ) (0]
8 200
g 4
= 100 % @
0
800 900 1000 1100 1200 1300 1400

Profil prézni 2 [mBar]

Rys.5.2.3.6. Wykres zalezno$ci zmiennych: profil prozni 2 1 wartosé prozni 2, w pigtym
zbiorze, wedtug kryterium K-W

40
|
> o
: § e
20 |
15 y =-9,9382x + 131,41

RZ = 01818
10

5

Przeptyw w obwodzie chtodzenia 17 [l]

0
9,8 10 10,2 10,4 10,6 10,8 11 11,2

Czas krzepniecia t2 [s]

Rys.5.2.3.7. Wykres zaleznosci zmiennych: czas krzepniecia i przeptyw w obwodzie
chiodzenia 17, w zbiorze piatym wedtug kryterium K-W
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W wyniku przeprowadzonej analizy wariancji i korelacji oraz podziatu zbiorow wedlug
kryteridéw zredukowano ilo$¢ parametrow opisujacych proces do istotnych z punktu widzenia

zmiennej zaleznej (rys.5.2.3.8.).

B Pierwotna liczba zmiennych wejsciowych

D Liczba zmiennych wejsciowych wg. kryterium ANOVA

Ziliczba zmiennych wejsciowych wg. kryterium odwréconego K-W
[JLiczba zmiennych wejsciowych wg. kryterium K-W
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Rys.5.2.3.8. Liczba zmiennych wejsciowych w etapie redukcji wymiarowos$ci danych

5.2.3.1.  Whnioski

W wyniku przeprowadzonej redukcji wymiarowosci danych, celem przygotowania ich do
dalszego zaawansowanego modelowania, mozna z pewno$cig potwierdzi¢ skutecznos¢ |
niezawodnos$¢ zastosowanych metod. Nalezy zauwazy¢, iz przykladowo dla pigtego zbioru
danych liczba istotnych zmiennych zostata zredukowana, zoptymalizowana az o 81% w
odniesieniu do poczatkowej liczby zmiennych niezaleznych.

Uzupehniajac charakterystyke wspomnianej cechy danych przemystowych jaka sg korelacje
pomiedzy parametrami procesu, ktorych wystepowanie 1 rodzaje zostaty zidentyfikowane przez
wspotpracujaca odlewni¢ i przedstawione migdzy innymi na World Foundry Congress w
Krakowie i potwierdzone w niniejszej pracy poprzez analize wspotczynnikow korelacji dla
wszystkich zmiennych wejsciowych. Gtownym wnioskiem pochodzacym z przeprowadzone;j
analizy korelacji byla ilo$¢ bardzo wysoko 1 wysoko skorelowanych zmiennych niezaleznych,
ktorych ilo$¢ wyniosta az 25, co stanowi az 44% ilosci wszystkich parametrow procesu. Analiza
korelacji doprowadzila nas do potwierdzenia wystgpowania glownych rodzajow Zrdodet
powstawania korelacji [149], czyli korelacje naturalne wystgpujace pomiedzy wynikajacymi z
siebie parametréw procesu, na przyktad pomiedzy temperaturg wody a jej przeptywem. Tego

typu korelacje mozna zastapi¢ jedng zmienna, okreslong jako wazniejsza z punktu widzenia
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jakosci produktu. Drugi typ korelacji, to korelacje celowe, bedace zalezne od czynnika
ludzkiego. Tego typu korelacje nalezy wykluczy¢ z badanego zbioru danych. Dzieje si¢ tak,
dlatego, ze wartosci okreslonych zmiennych niezaleznych moga by¢ celowo manipulowane
przez personel obstugujacy proces jako ich reakcja na odczyty wartosci innych zmiennych lub
na podstawie indywidualnego doswiadczenia. Tego typu zmiany mogg prowadzi¢ do lokalnych
korelacji ze zmienng zalezng. W wyniku model wejScie-wyjscie danego procesu moze z
tatwoscia pokazaé nieistniejace korelacje. Przeprowadzona analiza przyczynita si¢ do
powstania wniosku, iz rzeczywiste relacje w badanych procesach mogg by¢ przestaniane przez
sztucznie wprowadzone relacje lub przypadkowo wprowadzone zmiany, co wptynie na efekt
modelu pokazujacy te relacje jako réwnie wazne. Praca nad identyfikacja takich zmiennych jest
trudna, dlatego podzielono zbiory na pig¢ podzbiordow o réznych zakresach zmiennej
wyjsciowej. Ostatnie, to korelacje losowe mogace by¢ spowodowane przez wystepowanie
pewnych warto$ci w podobnym czasie, nalezy rowniez ich unika¢ i koniecznie wykona¢ ich
pogtebiong analize.

Whioski z analizy réwniez potwierdzily skutecznos¢ i niezawodno$¢ metod. Szczegdlng
uwage nalezy poswieci¢ analizie ANOVA, ktéra wcigz stanowi nowoczesne 1 wcigz jeszcze
mato rozpowszechnione narzedzie do stosowania w przemysle. Pozwala ona m. in. na oceng
znaczenia zmiennych procesu (wejscia X) z punktu widzenia jego efektow (wyscie Y), moze
by¢ bardzo uzytecznym narzgdziem do wykrywania przyczyn powstawania wad w wyrobach
[5]. Dobra znajomos¢ analizy wariancji pozwala zrozumie¢ zmienno$¢, ktora jest nieodtaczna
cechg niemal wszystkich proceséw zachodzacych w otaczajacym nas §wiecie. Ponadto metoda
ta jest podstawa wielu innych analiz statystycznych, do ktérych przejdziemy w kolejnych
rozdziatach niniejszej rozprawy.

5.2.4. Zaawansowane modelowanie oparte na danych metoda SSN
5.2.4.1. Metodyka i wyniki badan

Zalozeniem niniejszej rozprawy bylo opracowanie modelu bedacego w stanie w  jak
najlepszy sposob przewidzie¢ powstawanie wady w produkcie, a wigc przewidzie¢ wartos¢
zmiennej wyjsciowej, czyli przecieku w obwodzie wysokiego cisnienia. Okreslono, ze w tym
przypadku zastosowanie metody Sztucznych Sieci Neuronowych (SSN), zdolnych do
uwidoczniania ukrytych 1 zlozonych =zaleznosci wystepujacych w  wyjatkowo
skomplikowanych danych produkcyjnych jest uzasadnione. Zatozono, Ze istnieje taka sztuczna

sie¢ neuronowa, ktora na podstawie przedstawionych wartosci zmiennych wejsciowych
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opisujgcych proces potrafi skutecznie odwzorowa¢ dynamik¢ zmiany warto$ci zmiennej
wyjsciowej zachodzacej podczas tego procesu. Majac tak sprecyzowang istote problemu
przystapiono do projektowania architektury sztucznych sieci neuronowych. Analizujgc proces
wytwarzania odlewow utworzono na podstawie wczesniej prezentowanych badan liste
istotnych parametrow procesu, ktore zdefiniowano 1 uzyto do niniejszego badania.
Podsumowujac wykonano identyfikacje istoty problemu i okreslono listy zmiennych
opisujacych badany proces.

Nastepnie przygotowano wzorce uczace, testujace 1 walidacyjne na podstawie posiadanych
zbiorow danych do badan, bazujacych na rzeczywistych danych produkcyjnych. Analize
przeprowadzono w oparciu o specjalnie utworzong i zaproponowang metodyke. Opracowano
dedykowane plany badan dla kazdego z pigtnastu zbiorow danych (pie¢ zbiorow ustalonych
wedlug trzech kryteriow) (tab.5.78-tab.5.89). Dla kazdego z planowanych ustawien
parametroéw sieci, powtdrzono obliczenia pi¢c razy zaktadajac 200 SSN i1 200 zachowywanych,
w wyniku stworzono 590 modeli neuronowych.

Kolejnym krokiem byl wybor typu sieci. Podczas tego etapu rozpatrywano sie¢ CP, sie¢
Kohenena, sie¢ RBF, sie¢ GRNN 1 sie¢ MLP. Zdecydowano iz do niniejszej analizy
zastosowany bedzie perceptron wielowarstwowy (MLP), tworzac sie¢ jednokierunkowa,
posiadajacg warstwe wejsciowa, wyjsciowa i co najmniej jedng warstwe ukrytg [47]. Uczenie
perceptronu wielowarstwowego odbywato si¢ poprzez przedstawienie zbioréw danych
podzielonych w roznych proporcjach na zbior uczacy, testujacy i walidacyjny. Zbiory zawieraty
zestawy wejs¢ dla kolejnych obserwacji uczacych i odpowiadajace tym wejsciom przyklady
wyj$¢ jakimi powinna odpowiedzie¢ modelowana sztuczne sie¢ neuronowa. Podczas badan
bardzo waznym punktem byto wyspecyfikowanie zbioru testujagcego rownego 0, 10, 15 lub
20%. Jednak czesto dla danych rzeczywistych pochodzacych z odlewni pomija si¢ w procesie
uczenia sieci tworzenie zbiorow testowych 1 walidacyjnych (catkowicie niezaleznych), gdyz
dane rzeczywiste mogg posiadac¢ braki 1 by¢ niezrGwnowazone co wplywa na trudnos¢ wyboru
takich zbiorow. Jednakze w prezentowanej pracy sprawdzono rowniez jakos¢ sieci dla modeli
posiadajacych zbiory testujace 1 walidacyjne.

Kolejnym krokiem byto okreslenie architektury sieci czyli liczby warstw, liczby neuronow
w warstwach. Podczas tego kroku nalezato mie¢ na uwadze fakt, iz okreslenie odpowiedniej
liczby neuronow ukrytych 1 warstw ukrytych jest swoistym wyzwaniem dla projektanta SSN.
W niniejszej rozprawie liczby neuronow byty niewielkie, aby nie dopuszcza¢ do przeuczenia
si¢ modelu i wynosity od 7 do 23 dla duzych zbioréw danych (czyli pierwszego i trzeciego)

oraz od 2 do 5 dla matych zbioréw danych (czyli drugiego, czwartego i pigtego). Stwierdzono,
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ze nie ma powodu tworzy¢ wigcej niz jednej warstwy ukrytej, gdyz nie wplynie to na
zwigkszenie jako$ci wyniku a jedynie skomplikuje model neuronowy. Ostatnim krokiem byto
uczenie sieci, podczas ktorego uzyto funkcje aktywacji w warstwie ukrytej tangensoidalng i w
warstwie wyjsciowej funkcje tangensoidalng i liniowg. Ocen¢ przyjetego rozwigzania, czyli

dziatania SSN sprawdzano obliczajac wartos¢ RMSE - $redniej kwadratowej btedow.

Tab. 5.78.: Plan badan pierwszego zbioru ustalonego wedtug kryterium K-W

% wartosci | % wartosci | % wartoSci w Funkq_g Funkcja
- - - . , aktywacji w .
w zbiorze w zb'lorze ;blorz_e Liczby neuronow ukrytych: warstwie aktyV\{a’lc!l na
uczacym testujacym | walidacyjnym ukrytej wyjsciu
100 0 0 | Losowo (wg sugestii Statistica) | tangensoidalna | liniowa
80 20 0 | Losowo (wg sugestii Statistica) | tangensoidalna | liniowa
70 15 15 | Losowo (wg sugestii Statistica) | tangensoidalna | liniowa
70 15 15 | Losowo (wg sugestii Statistica) | tangensoidalna | liniowa
100 0 0 | Losowo (wg sugestii Statistica) | tangensoidalna | tangensoidalna
80 20 0 | Losowo (wg sugestii Statistica) | tangensoidalna | tangensoidalna
70 15 15 | Losowo (wg sugestii Statistica) | tangensoidalna | tangensoidalna
70 15 15 | Losowo (wg sugestii Statistica) | tangensoidalna | tangensoidalna

Tab. 5.79.: Plan badan drugiego zbioru ustalonego wedtug kryterium K-W

% wartosci | % warto$ci w % warto$ci w Liczby Funkcia akt .. Funkcja
w zbiorze zbiorze zbiorze neuronow unkeja aktywacyl aktywacji na
. - - .| wwarstwie ukrytej o
uczacym testujacym walidacyjnym ukrytych: wyj$ciu
100 0 0 2 tangensoidalna liniowa
100 0 0 3 tangensoidalna liniowa
90 10 0 2 tangensoidalna liniowa
90 10 0 3 tangensoidalna liniowa
80 20 0 2 tangensoidalna liniowa
80 20 0 3 tangensoidalna liniowa
100 0 0 2 tangensoidalna tangensoidalna
100 0 0 3 tangensoidalna tangensoidalna
90 10 0 2 tangensoidalna tangensoidalna
90 10 0 3 tangensoidalna tangensoidalna
80 20 0 2 tangensoidalna tangensoidalna
80 20 0 3 tangensoidalna tangensoidalna

Tab. 5.80.: Plan badan trzeciego zbioru ustalonego wedtug kryterium K-W

5 -
% wartoSci /0, . % wartoSci w Funij_g Funkcja
- wartosci w . . . aktywacji w 2.
w zbiorze sbiorze zbiorze Liczby neuronéw ukrytych: warstwie aktywacji na
uczacym . walidacyjnym - wyjsciu
testujacym ukrytej
100 0 0 Losowo (_wg sugestii tangensoidalna liniowa
Statistica)
70 15 15 Losowo (wg sugestii tangensoidalna liniowa
Statistica)
100 0 0 Losowo (wg sugestii tangensoidalna | tangensoidalna
Statistica)
70 15 15 Losowo (_wg sugestii tangensoidalna | tangensoidalna
Statistica)

170




Tab. 5.81.: Plan badan czwartego zbioru ustalonego wedhug kryterium K-W

% wa_rtoéci w % wa_rtoéci w % wa_rtoéci w Liczby akiy\?v‘:c::}?w Funkc_j_a
zbiorze zb|9rze ;blorz_e neuronéw warstwie aktyV\@C!I na
uczacym testujacym walidacyjnym ukrytych: ukrytej wyjsciu
100 0 0 2 tangensoidalna liniowa
100 0 0 3 tangensoidalna liniowa
100 0 0 4 tangensoidalna liniowa
100 0 0 5 tangensoidalna liniowa
90 10 0 2 tangensoidalna liniowa
90 10 0 3 tangensoidalna liniowa
90 10 0 4 tangensoidalna liniowa
90 10 0 5 tangensoidalna liniowa
80 20 0 2 tangensoidalna liniowa
80 20 0 3 tangensoidalna liniowa
80 20 0 4 tangensoidalna liniowa
80 20 0 5 tangensoidalna liniowa
100 0 0 2 tangensoidalna | tangensoidalna
100 0 0 3 tangensoidalna | tangensoidalna
100 0 0 4 tangensoidalna | tangensoidalna
100 0 0 5 tangensoidalna | tangensoidalna
90 10 0 2 tangensoidalna | tangensoidalna
90 10 0 3 tangensoidalna | tangensoidalna
90 10 0 4 tangensoidalna | tangensoidalna
90 10 0 5 tangensoidalna | tangensoidalna
80 20 0 2 tangensoidalna | tangensoidalna
80 20 0 3 tangensoidalna | tangensoidalna
80 20 0 4 tangensoidalna | tangensoidalna
80 20 0 5 tangensoidalna | tangensoidalna

Tab. 5.82.: Plan badan pigtego zbioru ustalonego wedtug kryterium K-W

% warto$ci w | % wartoSci w % wartoSci w Liczby Funkcja Funkcja
zbiorze zbiorze zbiorze neuronow aktywacji w aktywacji na
uczacym testujgcym walidacyjnym ukrytych: | warstwie ukrytej wyjsciu
100 0 0 2 tangensoidalna liniowa
100 0 0 3 tangensoidalna liniowa
100 0 0 4 tangensoidalna liniowa
100 0 0 5 tangensoidalna liniowa
90 10 0 2 tangensoidalna liniowa
90 10 0 3 tangensoidalna liniowa
90 10 0 4 tangensoidalna liniowa
90 10 0 5 tangensoidalna liniowa
80 20 0 2 tangensoidalna liniowa
80 20 0 3 tangensoidalna liniowa
80 20 0 4 tangensoidalna liniowa
80 20 0 5 tangensoidalna liniowa
100 0 0 2 tangensoidalna tangensoidalna
100 0 0 3 tangensoidalna tangensoidalna
100 0 0 4 tangensoidalna tangensoidalna
100 0 0 5 tangensoidalna tangensoidalna
90 10 0 2 tangensoidalna tangensoidalna
90 10 0 3 tangensoidalna tangensoidalna
90 10 0 4 tangensoidalna tangensoidalna
90 10 0 5 tangensoidalna tangensoidalna
80 20 0 2 tangensoidalna tangensoidalna
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80 20 0 3 tangensoidalna tangensoidalna
80 20 0 4 tangensoidalna tangensoidalna
80 20 0 5 tangensoidalna tangensoidalna

Tab. 5.83.: Plan badan pierwszego zbioru ustalonego wedtug kryterium odwroconego K-W i

ANOVA
% wartosci | % wartosci w % wartosci w Liczby Funkcja Funkcja
w zbiorze zbiorze zbiorze neuronéw aktywacji w aktywacji na
uczacym testujagcym walidacyjnym ukrytych: warstwie ukrytej wyjsciu
100 0 0 21 tangensoidalna liniowa
100 0 0 22 tangensoidalna liniowa
70 15 15 7 tangensoidalna liniowa
70 15 15 7 tangensoidalna liniowa
100 0 0 19 tangensoidalna tangensoidalna
100 0 0 22 tangensoidalna tangensoidalna

Tab. 5.84.: Plan badan drugiego zbioru ustalonego wedlug kryterium odwréconego K-W i

ANOVA
Funkcja
% warto$ci | % warto$ci w % warto$ci w Liczby aktywacji w Funkcja
w zbiorze zbiorze zbiorze neuronow warstwie aktywacji na
uczacym testujacym walidacyjnym ukrytych: ukrytej wyjsciu
100 0 0 2 tangensoidalna liniowa
100 0 0 3 tangensoidalna liniowa
100 0 0 2 tangensoidalna | tangensoidalna
100 0 0 3 tangensoidalna | tangensoidalna

Tab. 5.85.: Plan badan trzeciego zbioru ustalonego wedtug kryterium odwroconego K-W i

ANOVA

Funkcja
% wartos$ci | % wartos$ci w % warto$ci w Liczby aktywacji w Funkcja
w zbiorze zbiorze zbiorze neuronow warstwie aktywacji na
uczacym testujacym walidacyjnym ukrytych: ukrytej wyjsciu
100 0 0 23 tangensoidalna liniowa
100 0 0 21 tangensoidalna tangensoidalna
70 15 15 7 tangensoidalna tangensoidalna
70 15 15 14 tangensoidalna tangensoidalna

Tab. 5.86.: Plan badan czwartego zbioru ustalonego wedtug kryterium odwroconego K-W

%, . % wartoS$ci - . Liczby F“”kci‘f" Funkcja
wartosci w - % wartoS$ci w zbiorze Y aktywacji w .

- w zbiorze - . neuronow - aktywacji na
zbiorze testujacym walidacyjnym ukrytych: warstwie wyjécin
uczacym ukrytej

100 0 0 2 tangensoidalna liniowa

100 0 0 3 tangensoidalna liniowa

100 0 0 4 tangensoidalna liniowa

100 0 0 2 tangensoidalna | tangensoidalna

100 0 0 4 tangensoidalna | tangensoidalna

172




100 0 0 5 tangensoidalna | tangensoidalna
90 10 0 3 tangensoidalna | tangensoidalna
90 10 0 4 tangensoidalna | tangensoidalna

Tab. 5.87.: Plan badan pigtego zbioru ustalonego wedtug kryterium odwroconego K-W

Funkcja
% warto$ci | % wartos$ci w % wartoSci w Liczby aktywacji w Funkcja
w zbiorze zbiorze zbiorze neuronow warstwie aktywacji na
uczacym testujacym walidacyjnym ukrytych: ukrytej wyjsciu
100 0 0 2 tangensoidalna liniowa
90 10 0 2 tangensoidalna liniowa
90 10 0 5 tangensoidalna liniowa
100 0 0 2 tangensoidalna | tangensoidalna
100 0 0 3 tangensoidalna | tangensoidalna
90 10 0 3 tangensoidalna | tangensoidalna

Tab. 5.88.: Plan badan czwartego zbioru ustalonego wedtug kryterium ANOVA

%
warto$ci w | % wartoSci w % warto$ci w Liczby Funkcja Funkcja

zbiorze zbiorze zbiorze neuronow aktywacji w aktywacji na
uczacym testujacym walidacyjnym ukrytych: | warstwie ukrytej wyjsciu
100 0 0 2 tangensoidalna liniowa
100 0 0 3 tangensoidalna liniowa
100 0 0 4 tangensoidalna liniowa

100 0 0 2 tangensoidalna tangensoidalna

100 0 0 4 tangensoidalna tangensoidalna

100 0 0 5 tangensoidalna tangensoidalna

90 10 0 3 tangensoidalna tangensoidalna

90 10 0 4 tangensoidalna tangensoidalna

Tab. 5.89.: Plan badan pigtego zbioru ustalonego wedtug kryterium ANOVA

% wartosciw | % wartosci w % warto$ci w Liczby F“”"CJ.?‘ Funkcja
- - . A aktywacji w b
zbiorze zbiorze zbiorze neuronow . aktywacji na
uczacym testujgcym walidacyjnym ukrytych: Warsth_e wyjsciu
ukrytej
100 0 0 2 tangensoidalna liniowa
90 10 0 2 tangensoidalna liniowa
90 10 0 5 tangensoidalna liniowa
100 0 2 tangensoidalna | tangensoidalna
100 0 3 tangensoidalna | tangensoidalna
90 10 0 3 tangensoidalna | tangensoidalna

Zaawansowane modelowanie oparte na duzych zbioréw danych byto mozliwe dzigki

oprogramowaniu Statistica opracowanym przez StatSoft Inc.. Dzigki automatycznie
tworzonymi SSN istnieje mozliwo$¢ przeprowadzania badan zadajac rézne typy sieci oraz
rozne ich architektury. Od wyboru zalezy jako$¢ otrzymanych modeli i szybkos¢ ich tworzenia.
Uczenie przeprowadzono przy uzyciu algorytmu uczacego BFGS, ktory jest w stanie osiggnac
zbiezno$¢ zazwyczaj szybciej niz inne algorytmy takie jak metoda najszybszego spadku [60].

Zastosowang funkcja bledu byta wartos¢ entropii krzyzowe;j.

173



AY TextMining 13 As

$ Neural Networks

AR 9 o & W s Q Statistica 64 - Spreadsheet]
n atistic ata Minir Tools  Data
C Analysis
s

O AR W =

Data Miner C&RT CHAID I-Trees Boosted Random MRS
T

8 Machine Leaming [ 0 5 Web Crawling 3% Link Ana

ks el e " Boam 2§ Cluster
Neural Networks s @2
Starts up Advanced Neural Networks |
- B -
Urbanwa . .t X ot | C ¢ |
1 : 10 1449 41 341 175 6
2 75 4 10 152 a2 340 173 1317 b 675 20 5. 1
3 ;2 2% SANN - New Analysis/Deployment: Spreadsheet1 ? X
5 7,69
& 776 New analyss Deploymert. |
; fgg Degioyrrert N
O r
9 8.45 Deploy models from previous analyses
10 8,55
1+

L Time series fegresson) E‘: Open Dgga
[ Time seses (classfication)
B Ouster anaiynis

Sedect an analyss type from the
st sbove 10 start a new analysis

Rys.5.2.4.1. Wybor badan metoda sztucznych sieci neuronowych

W celu przeprowadzenia zaawansowanego modelowania opartego na danych, przy pomocy
metody Sztucznych Sieci Neuronowych (SSN) nalezy (rys 5.2.4.1.):
e w punkcie 1, wybra¢ zaktadke ,,Data Mining”,
e w punkcie 2, wybra¢ uczenie ,,Neural Networks”,
e w punkcie 3, wybra¢ typ analizy ,,Regression”,
e w punkcie 4, zatwierdzi¢ wybrane ustawienia.
Nastepnie nalezy (rys 5.2.4.2.):
e w punkcie 5, wybra¢ zaktadke ,,Quick”,
e w punkcie 6, wybra¢ zmienne poprzez ,,Variables”,
e w punkcie 7, zatwierdzi¢ wybor,
e w punkcie 8, wybra¢ zmienne zalezne ,,Continuous targets”,
e w punkcie 9, wybra¢ zmienne niezalezne ,,Continuous inputs”
e w punkcie 10, wybra¢ zatwierdzi¢ wybrane zmienne,
e w punkcie 11, wybra¢ zaktadke ,,Sampling CNN and ANN”,
e w punkcie 12, wybra¢ procent wartoSci w zbiorze uczacym,
testowym i walidacyjnym,

e w punkcie 13, zatwierdzi¢ wybrane ustawienia.
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Rys.5.2.4.2. Wybor parametréw do metody sztucznych sieci neuronowych

- E SANN - Automated Network Search (ANS): Spreadsheet2 ? X

Actve neural networks

Net.ID | Netname | Traningped  Testped | Valdstonped | Mgodhm  Emefnct |

35 SN - Acomanis Metmork S4veh NS SO

Acve e rermrt s
[0 T et e Tawwgpet | Tetped  Veldmonped | Agotw  brwhrct | |

Jan

@ Sove serwotoe

[ T

Rys.5.2.4.3. Okreslenie parametrow programowanej sieci neuronowe;j

W celu okreslenia parametréw programowanej sieci neuronowej nalezy (rys 5.2.4.3.):
e w punkcie 1, wybra¢ zaktadke ,,Quick”,
e w punkcie 2, wybra¢ typ sieci MLP i okresli¢ minimalng i
maksymalng ilo$¢ neuronéw w warstwie ukrytej,
e W punkcie 3, okresli¢ ilos¢ sieci do przetrenowania,
e W punkcie 4, wybra¢ zaktadke wyboru funkcji aktywacji ,,MLP

activation function”.
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e W punkcie 5, wybra¢ funkcje aktywacji w warstwie ukrytej,
e W punkcje 6, wybra¢ funkcje aktywacji na wyjsciu,

e W punkcje 7, zatwierdzi¢ wybrane parametry.

‘ Building network 34 (MLP 19-2-1, tanh, logistic)

tycle=18:

i Training error=266,99

Cancel training & Finish training cument Finish training & move
discard existing network and start next to the results dialog

i Cancel Next Finish

Rys.5.2.4.4. Proces budowania sztucznych sieci neuronowych
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Rys.5.2.4.5. Otrzymane wyniki modelowania opartego na danych, metodg sztucznych
sieci neuronowych

W celu zapisu wynikow zaawansowanego modelowania opartego na danych, przy pomocy
metody Sztucznych Sieci Neuronowych (SSN) nalezy (rys 5.2.4.5.):

e W punkcie 1, otworzy¢ szczegoty stworzonych modeli SSN,

e w punkcie 2, wybra¢ sie¢ neuronowg wytypowang przy uzyciu
arkusza stworzonego w programie Microsoft Office Excel (rys.
5.2.4.6.),

e W punkcie 3, zatwierdzi¢ wybor.

Dla kazdej serii badan wybrana zostala jedna najlepsza sie¢, zidentyfikowana na podstawie
wynikow analizy arkusza, stworzonego w programie Microsoft Excel. Ponadto dla sieci

zawierajacych zbior walidacyjny wybrano dodatkowa druga najlepsza sie¢ na podstawie
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najwyzszej wartosci jakosci walidacji. Do arkusza wprowadzane byly wyniki podsumowujace
przeprowadzone modelowanie (punkt 1, rys 5.2.4.6.), nastepnie arkusz obliczal wartos$¢
maksymalng z wartosci kolumny przedstawiajace wyniki jakosci uczenia (punkt 2, rys.
5.2.4.6.), oraz jakosci testowania (punkt 3, rys. 5.2.4.6.), na koncu obliczajac maksymalng
warto$¢ wydajnosci obliczonej z iloczynu warto$ci jakosci uczenia 1 jakosci testowania (punkt

4,rys.5.2.4.6.). Kazda utworzong SSN z najwyzszg wydajnoscig wybierano do dalszych analiz.

Max perfgrfnance [ucz  test) |Max validation perf
0,117441 0.0154] 0,065%
P ie aklywnych sieci (ANN1)
Id sieri Nazwa sieci Jakosé Jakosé Jakost Biad Blad Biad Algorytm | Funkcia | Aktywacia | Aktywacja

- T | (uczenie T | (lestowanie) " | (waligac) T | (uezenk T | (testowanie T | (wahgaci T | uczenia Y| bieot 7| (uknvte T | (wyiSciom T - - !
28 MLP 30-11-1 0.107344 0121706 0065271 11,19453] 4216217 5898966 BFGS 47 308 Tanh Tanh, 0.0131 0.065¢
14 MLP 30-17-1 0,105459 0.118333) 0.064822( 1120095 4218244 5.801029 BFGS 45| 08 Tanh Tanh 0.0125| 0.064€
180[  MLP 30-18-1] 0108900 0.123377)  0.064398| 11,19066 4216133 5005884]  BFGS 50| S0S Tann Tann| 0.0134) 0,0644
53] MLP 30-11-1 0,108414 0.111024) 0.063662( 1119207 4231194 5.900191 BFGS 47| S085) Tanh Tanh 0.0120| 0.0637
83 MLP 30-22-1 0,105049 0,119645) 0,063298( 1119988 4219455 5,902301 BFGS 37 508 Tanh Tanh 0,01286| 0,063%
48] MLP 30-10-1 0.104871 0.118976| 0.062516( 11.20030 4222143 5.905590 BFGS 40 508, Tanh Tanh, 0.0125| 0.062¢
93] MLP 30-151 0,105937 0,113954) 0.062289( 11,19828 4224451 5,897319 BFGS 39 08 Tanh Tanh 0.0121 0,0627
74 MLP 30-21-1 0.091324 0.106630| 0.062221( 11.23094 4224430 5.661952 BFGS 5| SOS| Tann Tanh, 0.0097| 0.0622
199 MLP 30-11-1 0,117321 0,123532) 0,060287( 11,16944 4,220025 5,021827 BFGS 54 S08 Tanh Tanh 0,0145| 0,060
29 MLP 30-8-1] 0107605 0,120255| 0.059700 11,19518 4215362 5001758  BFGS 33| S0S Tanh Tanh| 0,0129) 0,050
21 MLP 30-8-1 0.090187 0.112833| 0.059563| 11.23261 4219698, 5.880528 BFGS 5 305 Tanh Tanh 0.0102| 0.059€
8T MLP 30-0-1 0,103364 0,111770) 0.050528( 11,20376 4232648 5,912508 BFGS 11 sS08 Tanh Tanh 0.0118| 0,059¢
196 MLP 30-19-1 0.103758 0.113316) 0.059434) 11.20262 4.228530, 5.908289 BFGS 14 S0S) Tann Tanh 0.0118| 0.0594
105 MLP 30-11-1 0,104818 0,109211] 0.059397( 11.20066 4,231053) 5903352 BFGS 42| 508 Tanh Tanh 0.0114] 0,0594

Rys.5.2.4.6. ldentyfikacja najbardziej wydajnej SSN

W tym celu zapisywane byly szczegély przewidywanych wartosci zmiennej wyj$ciowe;j
pobierane z zaktadki ,,Przewidywania” (rys. 5.2.4.7.). Pobrane wyniki zapisywane byly w
dedykowanych plikach programu Microsoft Excel (rys. 5.2.4.8.).

Actrve reural networks
[ Mt 1D Mot name Trning pef | Testped. | Valdatonped. = Moot | Emorfunce | |
15 MLP 1521 (520750 BFGS 39 505
I q ui ~ Predicti ===
~ i Workbooks® 9 Prechctions spreadshest for Leakage {Spreadsheei2)
B8 Seloct\Desclect acte networks -] Delete netwarks = SANN (Spresdsh Samples: Tran E|
=) i StataticaNN fCase [ Loaknge | Leakage - Output
Bk madels wih CHN ] Buld moclely wih ANS ] Buskd mudetn mth Sranmgy Predictio || e Target 198 MLP 19-2-1
1 L5000 75067
|.‘1m | Cetain | Cumtom prectors 2 7 5000 14,1630
3 7.5 14,1630
] & spee 4 7 14,1631
Pt toe Incluce [ Save retwarks 5 T 14,1630
 Standsiones I weuts ™ Mbschute res. 6 7.7 14,1630
- Cancel T 7,8600 17,3445
F Tagets [ Squrers s———— )
L] 8,030 14,1630
M Out ™ Standandres B Opoms 9 84500 14,1630
I Fescals ™ Sargies 10 85500 14,1630
E e B Tan n 86200 14,1633
= Fredicions 1 put 12 8 6500 14,1630
13 87200 14,1630
r " & 5200 14,1630
r 15 8,5300 14,1630
% 9,1800 14,1630
. — J? 9.4000 14.1630 1=l
] *
[ » Prodictions spreacbet hor Lokage (Soreadshont2)

Rys.5.2.4.7. Zapisywanie wynikow sztucznych sieci neuronowych
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&)

Nazwa sieci Jakcs'_\tp Jakasﬁ_ J!?‘:Gill:. Biqd. Biad ) E_iad . Algarl,"frn Funkcja bledu Aktywacja ﬂk:.'.:'\\r.acfa
[uczenie [testowanie) | (walidacja) |(uczenie) | (testowanie) | (walidacja) uczenia (ukryte) {wyjsciowe)
MLP 30-7-1| 0,366269 0,090499 872145 | 6908872 BFGST0 308 Tanh Logistic
Error
Wartasc Wartosg
D Zmierzona | przewidziana | For RMSE RMSE
@ Test 0,0200 23041 5.2 :I 4,09
Train 0,0200 1.3642 18
Train 0,0500 1.8963 3.4
& Train 0.0600 2.5607 63
Train 0.0700 1.5841 2.3
Train 0.0800 1.4859 2,0
Train 0,0800 1.8047 3.0

Rys.5.2.4.8. Zapisywanie wynikoéw w arkuszu Excel

W pliku zapisywano parametry SSN, takie jak jej jakos$¢ oraz btad uczenia, testowania i
walidacji, algorytm uczenia, funkcj¢ btedu oraz wybrang funkcje aktywacji w warstwie ukrytej
1 wyjSciowej (punkt 1, rys. 5.2.4.8.). Dodatkowo zestawion0 warto$ci zmierzone z wartosciami
modelowanymi (punkt 2, rys. 5.2.4.8.) celem obliczenia sredniej kwadratowej btgdow - RMSE
(ang. root-mean-square error) (punkt 3, rys. 5.2.4.8.). Jest to jedna z najcze¢sciej stosowanych

miar bledu stosowanych w ocenie danej SSN.

Y i—h)?
n

RMSE = (5.2)

gdzie: ¥; — zmierzona warto$¢ przecieku (zmiennej wyjsciowej)
h; - przewidziana warto$¢ przecieku (zmiennej wyjsciowe;j)

n - ilos¢ obserwaciji

Celem dodatkowej wizualnej oceny wspomagajacej klasyfikacje najlepszych modeli

wykonano rowniez wykresy zalezno$ci zmiennej wyjsciowej zmierzonej 1 przewidziane;.
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Rys.5.2.4.9. Wykres zalezno$ci zmiennej wyj$ciowej zmierzonej 1 przewidzianej na
przyktadzie wynikow zbioru 1, wg. kryterium K-W, zawierajacego 100% wartos$ci w
zbiorze uczacym, 22 neurony ukryte, funkcje¢ aktywacji w warstwie ukrytej i funkcje
aktywacji na wyjsciu tangensoidalna

Sposrod wszystkich uzyskanych wynikoéw zebrano najlepsze modele (tab. 5.90. — tab.5.92),
jednoczes$nie przeanalizowano wplyw zmian parametréw modelu na wyniki modelowania
zgodnie z jednym z zatozonych celow rozprawy. Zauwazono, ze w duzych zbiorach danych tj.
pierwszym i trzecim uzyskano nizsze warto§ci RMSE niz w matych zbiorach danych tj. w
drugim, czwartym 1 pigtym. Im wigcej zmiennych wejsciowych opisujacych proces biorgcych
w modelowaniu tym réwniez uzyskano nizsze wartosci RMSE. Najnizszg wartos¢ rowng 0,85
uzyskano dla duzego zbioru danych (trzeciego) ustalonego wedtug kryterium odwrdoconego K-
W - niezawierajacego zbioru testujgcego, posiadajacego 23 neurony w warstwie ukrytej i
funkcje aktywacji liniowa (lin) na wyjsciu. Dla matych zbiorow danych najnizszg warto$¢
RMSE réwne 0,9 otrzymano dla zbioru czwartego wedlug kryterium ANOVA -
niezawierajacego zbioru testujacego, posiadajacego 5 neurondow i funkcje aktywacji
tangensoidalng (tanh) na wyjsciu (rys.5.2.4.10.). Natomiast jeszcze doktadniejszy wynik
uzyskano dla czwartego zbioru danych, wedtug kryterium ANOVA — niezawierajgcego zbioru
testujacego, posiadajacego 4 neurony 1 funkcje tangensoidalng na wyjsciu (rys. 5.2.4.11).
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Rys.5.2.4.10. Wykres zalezno$ci zmiennej wyjsciowej zmierzonej i przewidzianej na
przyktadzie wynikow zbioru 4, wg. kryterium ANOVA, zawierajacego 100% warto$ci
w zbiorze uczacym, 5 neurondéw ukrytych, funkcje aktywacji w warstwie ukrytej 1
funkcje aktywacji na wyjsciu tangensoidalna
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Rys.5.2.4.11. Wykres zalezno$ci zmiennej wyjsciowej zmierzonej i przewidzianej na
przyktadzie wynikow zbioru 4, wg. kryterium ANOVA, zawierajacego 100% warto$ci
w zbiorze uczgcym, 4 neuronow ukrytych, funkcje aktywacji w warstwie ukrytej i
funkcje aktywacji na wyjsciu tangensoidalna
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Tab. 5.90.: Wybrane wyniki modelowania z najnizszg wartoScig RMSE dla pieciu zbiorow
ustalonych wedtug kryterium K-W, z oznaczeniem RMSE, od najnizszych wartosci (od
zielonego koloru) do najwyzszych wartosci (do czerwonego koloru)

’;‘gj irgreur Zbiory wedtug kryterium K-W
1 | % wartoéci w zbiorze testowym 0 0 0 0 0| 15
1 | Liczba neurondéw w warstwie ukrytej 20| 19| 22| 22| 21 7
1 | Funkcja aktywacji na wyjsciu tanh [tanh | lin  |tanh |lin |lin
1| RMSE 153 159| 177|181 25|531
2 | % warto$ci w zbiorze testowym 0 0 0 0 0 0
2 | Liczba neuronéw w warstwie ukrytej 3 3 2 3 2 2
2 | Funkcja aktywacji na wyjsciu tanh | tanh [tanh |lin |tanh |lin
2 | RMSE 155]156|20,8| 20,9| 21,2 | 235
3 | % warto$ci w zbiorze testowym 0 0] 15| 15
3 | Liczba neurondéw w warstwie ukrytej 23| 21| 14 7
3 | Funkcja aktywacji na wyjsciu lin |[tanh |tanh | tanh
3| RMSE 093|096 1,28 1,28
4 | % warto$ci w zbiorze testowym 0 0 0 0 0 0 0| 10 0 0| 10
4 | Liczba neuronéw w warstwie ukrytej 5 5 4 4 2 2 4 3 2 3 4
4 | Funkcja aktywacji na wyj$ciu tanh | tanh |tanh |tanh |tanh [tanh |lin |tanh [lin |[lin |tanh
4 | RMSE 44| 49| 52| 70|125)|135|14,0]| 159 16,6|16,9| 17,7
5 | % warto$ci w zbiorze testowym 0 0 0 0 0 10| 10| 10| 10
5 | Liczba neurondw w warstwie ukrytej 3 2 2 2 2 5 2 2 3
5 | Funkcja aktywacji na wyjsciu tanh |tanh [tanh |[lin  |lin |lin |lin |lin |tanh
5| RMSE 11,8]151|155|16,7|175|18,1]19,2| 19,8 | 24,0

Tab. 5.91.. Wybrane wyniki modelowania z najnizszg wartoScig RMSE dla pigciu zbiorow
ustalonych wedlug kryterium odwroconego K-W, z oznaczeniem RMSE, od najnizszych
wartos$ci (od zielonego koloru) do najwyzszych wartosci (do czerwonego koloru)
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Numer
zbioru Zbiory wedhug kryterium odwréconego K-W
1| % wartosci w zbiorze testowym 0 0 2 0 15
1| Liczba neuronéw w warstwie ukrytej 19 22 20 22 7
1 | Funkcja aktywacji na wyjsciu tanh | lin tanh | tanh lin
1| RMSE 136 153| 161| 1,76| 4,28
2 | % wartoéci w zbiorze testowym 0 0 0
2 | Liczba neurondw w warstwie ukrytej 3 3 2
2 | Funkcja aktywacji na wyjsciu tanh | lin tanh
2 | RMSE 215| 216 217
3 | % wartosci w zbiorze testowym 0 0
3 | Liczba neurondw w warstwie ukrytej 23 21
3 | Funkcja aktywacji na wyjsciu lin tanh




3| RMSE 0,86 09

4 | % warto$ci w zbiorze testowym 0 0 0 0 0

4 | Liczba neuronéw w warstwie ukrytej 4

4 | Funkcja aktywacji na wyjsciu tanh  [tanh |lin lin tanh lin
4 | RMSE 25 0,9 4,3 45 5114
5 | % warto$ci w zbiorze testowym 0 0 0 10

5 | Liczba neurondéw w warstwie ukrytej 3 2 2 2

5 | Funkcja aktywacji na wyjsciu tanh [tanh | lin lin

5| RMSE 3,5 72| 117 19

Tab. 5.92.: Wybrane wyniki modelowania z najnizszg wartoSciag RMSE dla pieciu zbiorow
ustalonych wedtug kryterium ANOVA, z oznaczeniem RMSE, od najnizszych wartosci (od
zielonego koloru) do najwyzszych wartosci (do czerwonego koloru)

’;‘;g‘fl; Zbiory wedhug kryterium ANOVA
1| % warto$ci w zbiorze testowym 0 0 0 15
1| Liczba neuronow w warstwie ukrytej 19 22 22 7
1 | Funkcja aktywacji na wyj$ciu tanh lin tanh | lin
1| RMSE 1,36 153| 1,76 4,28
2 | % warto$ci w zbiorze testowym 0 0 0
2 | Liczba neurondéw w warstwie ukrytej 3 3 2
2 | Funkcja aktywacji na wyjsciu tanh lin tanh
2 | RMSE 21,5 216 217
3 | % warto$ci w zbiorze testowym 0 0
3 | Liczba neuronéw w warstwie ukrytej 23 21
3 | Funkcja aktywacji na wyjsciu lin tanh
3| RMSE 0,86 0.9
4 | % warto$ci w zbiorze testowym 0 0 0 0 0 0
4 | Liczba neurondw w warstwie ukrytej 5 4 4 3 2 2
4 | Funkcja aktywacji na wyjsciu tanh tanh lin lin tanh [ lin
4 | RMSE 0,9 2,1 24 3,7 3.9 6,5
5 | % warto$ci w zbiorze testowym 0 0 0 10
5 | Liczba neuronéw w warstwie ukrytej 3 2 2 5
5 | Funkcja aktywacji na wyjsciu tanh tanh lin lin
5| RMSE 3,8 6 6 17,8

Jednym z efektow badan jest wynik modelowania sieci zawierajacej pig¢ neuronéw oraz
calym zbiorem wykorzystanym do uczenia, zestawiony z wynikiem modelowania dla sieci
zawierajacej rowniez pi¢¢ neurondw, ale z zadanym zatrzymaniem uczenia wskutek wzrostu
btedu dla zbioru testujgcego, gdzie mozna zauwazy¢ wzrost btedu uczenia sie sieci. Wynik

sredniej kwadratowej btedéw — RMSE dla zbioru w cato$ci wykorzystanego do uczenia wynosi
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7,8 (rys.5.2.4.12.), natomiast dla zbioru z wydzielonym zbiorem testujagcym na poziomie 20%
rekordowwynosi 24,9 (rys.5.2.4.13.).

Na podstawie zestawionych wynikow, przyktadowo otrzymanych podczas modelowania w
oparciu o dane z pierwszego zbioru wedtug kryterium K-W o najwiekszej liczbie obserwaciji,
gdzie najniszg uzyskang wartoscig RMSE byto 1,53 dla modelu bez zatrzymania uczenia sig,
zawierajacego 20 neurondw oraz funkcje aktywacji tangensoidalne, mozna stwierdzié, ze w
przypadku kiedy mamy 0% wartosci w zbiorze testujacym, wowczas otrzymujemy najlepsze
wyniki z najmniejsza warto$cig Sredniej kwadratowej btedow — RMSE (rys.5.2.4.14.).
Prawdopodobnie sg to modele wykazujace nadmierne dopasowanie si¢. Dla poréwnania
najnisza wartos¢ RMSE réwng 1,77, dla tego samego zbioru jednak z funkcjami aktywacji w
warstwie ukrytej tangensoidalng (tanh) i funkcjg aktywacji na wysciu liniowa (lin) uzyskano
dla modelu zawierajacego 22 neurony w warstwie ukrytej, rowniez z 0% warto$ci w zbiorze
testujagcym (rys. 5.2.4.15.). Mozna na tej podstawie stwierdzié, ze wyniki otrzymane z

funkcjami tanh-lin i tanh-tanh sg poréwnywalnie dobre.
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Rys.5.2.4.12. Wykres zalezno$ci zmiennej wyjsciowej zmierzonej i przewidzianej na
przyktadzie wynikow zbioru 5, wg. kryterium K-W, model bez zatrzymania uczenia
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Rys.5.2.4.13. Wykres zalezno$ci zmiennej wyjsciowej zmierzonej i przewidzianej na
przyktadzie wynikow zbioru 5, wg. kryterium K-W, model z zatrzymaniem uczenia
wskutek wzrostu btedu dla zbioru testujacego

[ Liczba neurondéw w warstwie ukrytej
— -+ — % wartosci w zbiorze testowym
RMSE
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w
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Numer modelu
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Rys.5.2.4.14. Wyniki modelowania w oparciu o dane ze zbioru 1, wedtug kryterium K-
W, funkcja aktywacji tanh-tanh
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Rys.5.2.4.15. Wyniki modelowania opartego na danych ze zbioru 1, wedtug kryterium
K-W, funkcja aktywacji tanh-lin

5.2.4.2. Wnhnioski

Ogodlne wnioski przywoluja stwierdzenie, iz poszukiwania optymalnej architektury
powoduje w przypadku niniejszych badan najwiekszg trudno$é, poniewaz obecnie nie istnieje
zaden wzrér lub reguta, mowiagca jaki typ architektury powinien by¢ zastosowany celem
rozwigzania okreslonego problemu, dlatego kluczem do sukcesu jest stworzenie
odpowiedniego procesu uczenia sieci dostosowanej do okreslonego problemu. Literatura
podaje jedynie proponowane rozwigzania opierajgce si¢ o aktualne trendy, co wzieto pod uwage
w tworzeniu planu badan opisanych w niniejszym rozdziale. Przetestowano kilkadziesigt
r6znych architektur w réznych zbiorach danych posiadajacych zréznicowane zakresy zmiennej
zaleznej. Przeprowadzone badania prowadza do nastgpujacych wnioskow: w bardzo niewielu
przypadkach sie¢ jest w stanie si¢ uczy¢, jesli wydzielimy zbior testowy, lub testowy i

walidacyjny, jednak czasami sie¢ jest w stanie to zrobi¢, co wida¢ na rys. 5.2.4.16.
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Rys.5.2.4.16. Wyniki modelowania opartego na danych ze zbioru 1, wedtug kryterium
K-W, funkcja aktywacji tanh-lin, 7 neuronéw w warstwie ukrytej, z 20% wartosci w
zbiorze testujacym

Nasuwa si¢ pytanie, ktore modele sa najlepsze do dalszej analizy, polegajacej na
wielowymiarowej optymalizacji parametréw procesu - czy uzy¢ tych, ktore majq lepsza
zdolnos$¢ generalizacji, poniewaz sie¢ zostata zatrzymana na wzrost btedu dla nowych danych,
czy tez uzy¢ tych modeli, ktore daly lepsze wyniki, ale ich zdolno$¢ generalizacji byla staba,
poniewaz nie zastosowano zatrzymania uczenia.

Kluczowe jednak jest wydobywanie informacji z modelu opartego na danych np.
neuronowego. Wskazano, mozliwo$¢ zastosowania sztucznych sieci neuronowych do
projektowania procesow wytwarzania W aspekcie praktycznym. Tym samym wykazano, ze
stosowanie metod sztucznej inteligencji, czyli migdzy innymi sztucznych sieci neuronowych
jest sposobem rozwazania zjawisk powstawania wad w wyrobach, co moze w przysztosci
zastapi¢ tworzenie skomplikowanych modeli matematycznych lub dochodzenie do wtasciwych
parametrow procesu metodami doswiadczalnymi oraz unikng¢ kosztownych badan jakosci
wyrobu.

Stwierdzono jednak, ze przez brak jednoznacznej powtarzalno$ci wynikow potrzebne
byloby opracowanie innych metod analizy modeli migkkich, odfiltrowujacych te przystaniajace
zaleznosci. Dlatego w kolejnych rozdziatach przeprowadzono sprawdzenie alternatywnych

rodzajow modeli opartych na danych: drzew decyzyjnych (z uwagi na ich diametralnie inny

186



charakter oraz rozpowszechnienie w zastosowaniach przemystowych i innych), oraz maszyn
wektorow wspierajacych (SVM) z uwagi na aktualne trendy.

Ostatecznie dokonano wyboru metody wykazujacej najwyzsza skuteczno$¢ i zastosowano
jej wyniki modelowania do opracowania wielowymiarowej optymalizacji parametrow procesu
dla minimalnej 1 maksymalnej wartosci wady w produkcie, dla ktorej opracowano stategic

odpytywania modeli z wykorzystaniem metod gradientowych (z multistatrem) i ewolucyjnych.
5.2.5. Zaawansowane modelowanie oparte na danych metoda DT
5.2.5.1. Metodyka i wyniki badan

Zdecydowano si¢ na zastosowanie metody drzew regresyjnych, z uwagi na ich
powszechno$¢ w zastosowaniach przemystowych, mozliwos¢ aplikacji nawet w przypadku
braku znajomosci natury zwigzku migdzy zmienng zalezng a jej predyktorami (czy jest on
liniowy, czy nieliniowy) oraz diametralnie inny charakter wzglgdem sprawdzonej metody
sztucznych sieci neuronowych, celem wtasciwego diagnozowania przyczyn powstawania wad
wyrobow. Model regresyjny ogolnie stosowany jest w przypadku zagadnien, ktorych celem jest
okreslenie wartosci zmiennej zaleznej typu cigglego, w oparciu o znane wartosci zmiennych
niezaleznych typu cigglego. W tego rodzaju analizach metoda ta potrafi odkry¢ ukryte
zalezno$ci (pomiedzy parametrami procesu), ktore mogly zostaé pominigte poprzez inne
metody zaawansowanej analizy danych, dlatego zdcydowano si¢ na zastosowanie jej W
niniejszej rozprawie.

Do badan wykorzystano algorytm klasyfikacyjnych i regresyjnych drzew decyzyjnych
(CART —ang. classification and reggresion trees) z pakietu Statistica, poniewaz umozliwia on
manualne zadanie parametrow (przedstawionych w tab.5.93.) drzew decyzyjnych uzytych do
badan. Celem jest znalezienie odpowiedniego i logicznego zbioru warunkéw podziatu, aby
wilasciwie zaklasyfikowaé wszystkie analizowane obserwacje. Wiasciwy dobor zatozen i
parametrow tworzonego drzewa decyzyjnego, a wigc okre§lenie odpowiedniego rozmiaru
drzewa, poprzez dobor warto$ci minimalnej licznosci oraz odpowiedniego kryterium stopu jest
kluczowy dla jakos$ci uzyskanych wynikow predykcji. W teorii mozliwe bytoby kontunuowanie
podzialow celem uzyskania doskonatego dopasowania modelu do danych, jednak
skutkowatoby to stworzeniem bardzo ztozonej struktury drzewa z najprawdopodobniej wrgcz
nadmiernym dopasowaniem, co wptyngto by na brak zdolno$ci modelu do prawidtowej
predykcji dla nowych obserwacji. Dodatkowo decyzja o wyborze kryterium stopu podziatu jest

kluczowa dla danych rzeczywistych zawierajacych szumy wystepujace losowo. W tym celu
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zastosowano kryterium stopu oparte na minimalnej licznosci, a wiec podzialy byty prowadzone
do momentu osiggnigcia we wszystkich jednorodnych weztach nie wigkszej niz okreslonej
minimalnej licznosci przypadkow. Sprawdzono rézne zadane warto$ci minimalnych licznosci,
celem uzyskania wnioskow o wplywie tego parametru na otrzymang jako$¢ modelu [150].
Dodatkowo sprawdzono dwa typy ustawien wielokrotnej walidacji krzyzowej, umozliwiajace;j
wybor najlepszego modelu regresyjnego dajacego najlepsza prognoze dla badanych zbiorow

danych na podstawie r6znych zbiorow testowych i uczacych.

Tab. 5.93.: Zalozenia przyjete w CART

Parametr Model ogélny drzewa regresyjnego
Wielokrotna walidacja krzyzowa dwa typy ustawien (z walidacja, lub bez)
Minimalna liczno$¢ 5, 10, 20, 50

Maksymalna liczba weztow 1000

Analizie poddano dane z pigtnastu zbiorow danych (pigciu zbioréw gtéwnych ustalonych
dodatkowo wedtug trzech kryteriow, opisanych w poprzednich rozdziatach). Zbiory te
zawieraly zmienne niezalezne oraz zmienng zalezng typu ciaglego, a wigec dane przygotowane
do analizy metoda drzew regresyjnych. Ostatecznie wykonano 120 obliczen, ktorych wyniki

zgromadzono w przygotowanych arkuszach oprogramowania Microsoft Excel.
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Rys.5.2.5.1. Proces przeprowadzania badan metoda drzew regresyjnych
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W celu przeprowadzenia modelowania opartego na danych, metoda drzew regresyjnych

nalezy (rys.5.2.5
[

1):

w punkcie 1, wybra¢ w zaktadce ,,Data Mining” metode ,,C&RT”,

w punkcie 2, wybra¢ specyfikacje metody ,,Quick specs dialog”,

w punkcie 3, wybra¢ zmienne wejsciowe i wyjsciowe,

w punkcie 4, ustali¢ minimalng liczno$¢ i maksymalng liczbg weztow,

w punkcie 5, ustali¢ czy analiza ma zawiera¢ wielokrotng walidacje

krzyzowa.

Nastepnie, aby zapisa¢ wyniki modeowania nalezy (rys.5.2.5.1) wybra¢ przycisk z

przewidzianymi

wartosciami (punkt 1) i skopiowa¢ wyniki modelowania do utworzonych

arkuszy excel (punkt 2).
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Rys.5.2.5.2. Zapisywanie wynikow modelowania metodg drzew regresyjnych

Waznym punktem podczas zapisywania wynikow bylo obliczenie dla kazdego modelu

wyniku obliczen wartosci RMSE, ktora stuzyta ocenie modelu. Wyniki modelowania

zestawiono w tab.5.94 — tab.5.96..

Tab. 5.94.: Wyniki modelowania metoda drzew regresyjnych zbiorow wedtug kryterium K-W,
z oznaczeniem RMSE, od najnizszych wartosci (od zielonego koloru) do najwyzszych wartosci
(do czerwonego koloru)

’:&?ﬁ: Zbiory wedhig kryterium K-W
1 Minimalna liczno$¢ 5 10 20 50
1 RMSE z wielokrotng walidacja krzyzowa 43 4,3 43 43
1 RMSE bez wielokrotnej walidacji krzyzowej 3,8 3,8 3,9
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2 Minimalna liczno$¢ 5 10 20 50
2 RMSE z wielokrotng walidacjg krzyzowa 40 40 40 40
2 RMSE bez wielokrotnej walidacji krzyzowej 7,1 10,1 26,1 31,6
3 Minimalna liczno$¢ 5 10 20 50
3 RMSE z wielokrotng walidacja krzyzowa 1,1 1,1 1,1 1,1
3 RMSE bez wielokrotnej walidacji krzyzowej 0,99 0,97 0,95 0,95
4 Minimalna liczno$¢ 5 10 20 50
4 RMSE z wielokrotng walidacja krzyzowa 31 31 31 31
4 RMSE bez wielokrotnej walidacji krzyzowej 12 24,2 26,7 27,3
5 Minimalna liczno$¢ 5 10 20 50
5 RMSE z wielokrotng walidacja krzyzowa 32,2 32,2 32,2 32,2
5 RMSE bez wielokrotnej walidacji krzyzowej 18,9 22,7 26,7 28,5

Tab. 5.95.: Wyniki modelowania metoda drzew regresyjnych zbiorow wedlug kryterium
odwréconego K-W, z oznaczeniem RMSE, od najnizszych wartosci (od zielonego koloru) do
najwyzszych wartosci (do czerwonego koloru)

’;‘S’ igﬁr Zbiory wedtug kryterium odwrdoconego K-W
1 Minimalna liczno$¢ 5 10 20 50
1 RMSE z wielokrotng walidacja krzyzowa 43 43 4,3 4,3
1 RMSE bez wielokrotnej walidacji krzyzowej 3,4 3,4 3,5 3,7
2 Minimalna liczno$¢ 5 10 20 50
2 RMSE z wielokrotng walidacjg krzyzowa 40 40 40 40
2 RMSE bez wielokrotnej walidacji krzyzowej 14,7 16,3 26,1 31,6
3 Minimalna liczno$¢ 5 10 20 50
3 RMSE z wielokrotng walidacja krzyzowa 1,1 1,1 1,1 1,1
3 RMSE bez wielokrotnej walidacji krzyzowej 0,99 0,96 0,94 0,93
4 Minimalna liczno$¢ 5 10 20 50
4 RMSE z wielokrotng walidacja krzyzowa 31 31 31 31
4 RMSE bez wielokrotnej walidacji krzyzowej 12,2 21,1 25,5 27,9
5 Minimalna liczno$¢ 5 10 20 50
5 RMSE z wielokrotng walidacjg krzyzowa 32,2 32,2 32,2 32,2
5 RMSE bez wielokrotnej walidacji krzyzowej 16 19,3 249 25,7

Tab. 5.96.: Wyniki modelowania metodg drzew regresyjnych zbiorow wedlug kryterium
ANOVA, z oznaczeniem RMSE, od najnizszych wartosci (od zielonego koloru) do
najwyzszych wartosci (do czerwonego koloru)

';'éjirgfl; Zbiory wedhug kryterium ANOVA
1 Minimalna licznos¢ 5 10 20 50
1 RMSE z wielokrotng walidacjg krzyzowa 43 4,3 4,3 4,3
1 RMSE bez wielokrotnej walidacji krzyzowej 3,4 3,4 3,5 3,7
2 Minimalna licznos¢ 5 10 20 50
2 RMSE z wielokrotng walidacja krzyzowa 40 40 40 40
2 RMSE bez wielokrotnej walidacji krzyzowej 14,7 16,3 26,1 31,6
3 Minimalna liczno$¢ 5 10 20 50
3 RMSE z wielokrotng walidacja krzyzowa 1,1 1,1 11 1,1
3 RMSE bez wielokrotnej walidacji krzyzowej 0,99 0,96 0,94 0,93
4 Minimalna liczno$¢ 5 10 20 50
4 RMSE z wielokrotng walidacjg krzyzowa 31 31 31 31
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4 RMSE bez wielokrotnej walidacji krzyzowej 10,2 14 22,8 25,5
5 Minimalna liczno$¢ 5 10 20 50

5 RMSE z wielokrotng walidacjg krzyzowa 32,2 32,2 32,2 32,2
5 RMSE bez wielokrotnej walidacji krzyzowej 16,4 19 23,2 24,9

Najlepsze wyniki o najmniejszej wartosci RMSE rownej 7,1 dla matych zbioréw danych
(czyli drugiego, czwartego i pigtego) uzyskano w zbiorze drugim ustalonym wedtug kryterium
K-W z minimalng liczno$cig réwng 5, bez zastosowania walidacji krzyzowej (rys.5.2.5.3.).
Natomiast posrod duzych zbiorow danych (pierwszego i trzeciego) najnizszg wartos¢ RMSE
roéwne 0,93 otrzymano w trzecim zbiorze danych ustalonym wedlug kryterium odwrdconego

K-W i ANOVA z minimalng liczno$cig réwng 50 (rys.5.2.5.4.).
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Rys.5.2.5.3. Wyniki modelowania opartego na danych ze zbioru drugiego wg. kryterium
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Rys.5.2.5.4. Wyniki modelowania opartego na danych ze zbioru trzeciego wedtug
kryterium odwrdoconego K-W i ANOVA
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5.2.5.2. Whnioski

Przeprowadzone badania umozliwity sprawdzenie skuteczno$ci metody drzew regresyjnych
jako nieparametrycznej metody dyskryminacji do rozwigzania problemu zwigzanego z
wilasciwg predykcja wartosci wyjsciowej na podstawie okreslonych warto$ci zmiennych
wejsciowych.

Zauwazono, ze zwigkszenie wartosci minimalnej licznosci generalnie degraduje jakosc¢
badanego modelu drzew regresyjnych w szczegolnosci w matych zbiorach danych
(rys.5.2.5.5.). Na podstawie dwoch ustawien modeli, czyli zawierajacych wiclokrotng
walidacje krzyzowa, lub jej niezawierajagcych mozna podsumowaé, ze jej zastosowanie
spowodowato uzyskanie jako wynikowych warto$ci zmiennej zaleznej rownych $redniej z jej
wszystkich warto$ci obserwacji. Stwierdzono, ze drzewa regresyjne z zastosowang wielokrotng
walidacja krzyzowa, nie sg w stanie prawidtowo przewidzie¢ warto$ci zmiennej zaleznej, a
wigc nie sg w stanie przeprowadzi¢ skutecznego procesu uczenia si¢ (tab.5.94. — tab.5.96.).

® Wynik Sredniej RMSE w matych zbiorach danych
O Wynik $redniej RMSE w duzych zbiorach danych
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Rys.5.2.5.5. Wynikowe warto$ci §rednie RMSE w odniesieniu do warto$ci minimalnej
licznosci dla matych 1 duzych zbioréw danych, bez walidacji krzyzowe;j

Wyniki modelowania opartego na danych z matych zbior6w danych w oparciu o obliczone
wartosci RMSE, w poréwnaniu z metodg sztucznych sieci neuronowych byly znacznie gorsze.
W przypadku duzych zbiorow danych wartosci RMSE byty zblizone w obu metodach, jednak
metoda drzew decyzyjnych nie data lepszych wynikow niz modelowanie SSN. Niewatpliwa

zaleta metody jest czytelna 1 graficzna reprezentacja wynikow.
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5.2.6. Zaawansowane modelowanie oparte na danych metoda SVM
5.2.6.1. Metodyka i wyniki badan

W  kolejnym etapie badan, opisywanym w niniejszym rozdziale zdecydowano o
koniecznos$ci zastosowania metody maszyn wektorow wspierajacych (SVM), z uwagi na
aktualne trendy analizy modeli migkkich w zagadnieniach przemystowych. Zaawansowane
modelowanie oparte na danych, metoda SVM stalo si¢ w pewnym momencie dos¢
konkurencyjne wzgledem metody sztucznych sieci neuronowych [151] z uwagi na jej skuteczne
radzenie sobie z rozwigzywanymi problemami oraz poprawe jakosci modeli. Celem badan jest
wiec stworzenie modelu opartego na metodzie SVM, skutecznie okres$lajagcego zmiang wartosci
zmiennej wyjsciowej na podstawie zmienych wartosci parametrow wejsciowych opisujacych
proces wytwarzania, aby wlasciwie wskaza¢ przyczyny powstawania wad w wyrobach.

W celu realizacji badan opracowane dedykowane plany badawcze oparte o modele regresji.
Zbiory danych przygotowane do badan zawieraly inne zakresy zmiennej wyjsciowej. Celem
budowy optymalnej hiperptaszczyzny, ktora bgdzie w stanie odseparowac¢ badane obiekty o
roéznej przynalezno$ci klasowej, budowanej w iteracyjnym algorytmie uczacym, zastosowano
dwie minimalizujace funkcje btgdu regresyjng typu pierwszego i regresyjng typu drugiego.
Podczas badan zastosowano osiem réznych metod probkowania danych, czyli w oparciu o
cztery funkcje jadrowe i1 dwie rézne funkcje btedu, w kazdym z pietnastu opracowanych
wczesniej zbiorow danych (pie¢ zbiorow ustalonych wedlug trzech kryteriow).W celu
nauczenia SVM stworzono ostatecznie 120 modeli opartych o model regresyjny z r6zng iloscia
probek.

W celu przeprowadzenia modelowania metoda drzew regresyjnych nalezy (rys.5.2.6.1. —
rys.5.2.6.2.):

e w punkcie 1, wybra¢ w zaktadce ,,Data Mining” - ,,Uczenie Maszynowe”,
e w punkcie 2, wybra¢ metode ,,Maszyny wektoréw wspierajacych”,

e W punkcie 34, wybra¢ zmienne wejsciowe i wyjsciowe,

e W punkcie 5, ustali¢ typ regresji SVM,

e w punkcje 6, wybra¢ funkcje jadrowa,

e W punkcie 7, ustali¢ czy analiza ma zawiera¢ wielokrotng walidacjg

krzyzowa.

193



DEw - v v @ W

n Home Edne View S
@ Q q ﬂ H q p~ 3% Neural Networks IR 1€C Analysis

[ Mochine Leaming [} Optimal Binning
ataMiner  CART CHAID I-Trees Boosted Random MARSphnes g et
Recpes Trees Forests i cam 2§ Custer

Lear

Recipes Treew/ Partitioning ning ustering/Grouping

Forma¥ ustics Data Mining Graphs Tools Dats

0,02
0,02
0,05
0,06
0,07
0,08
0,08
0,09
0,09
0,11

S0~
NNNNN WG W W W

Rys.5.2.6.1. Proces przeprowadzania badan metodag SVM
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Rys.5.2.6.2. Proces ustawiania parametréw do badan metodg SVM

Nastepnie, aby zapisa¢ wyniki modeowania nalezy (rys.5.2.6.3.) wybra¢ wszystkie probki
(punkt 1), nastepnie przycisk z przewidzianymi warto$ciami (punkt 2) i skopiowaé¢ wyniki

modelowania do utworzonych arkuszy excel (punkt 3).
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Rys.5.2.6.3. Zapisywanie wynikow modelowania metoda SVM

Metoda uzyta do oceny jakosci stworzonych modeli byta obliczona warto§¢ RMSE dla
kazdego z otrzymanych wynikéw badan (tab.5.97.-5.-99.). Warto$¢ obliczonego RMSE
pomogta podja¢ decyzje, czy dany model moze zosta¢ uzyty do dalszych etapéw badan
majacych na celu diagnostyke przyczyn powstawania wad w wyrobach. Tego typu podejscie
zastosowane juz w badaniach opartach o dwie opisywane wczesniej metody pozwala na

obiektywne 1 praktycznie automatyczne testowanie modeli oraz ich oceng.

Tab. 5.97.: Wyniki modelowania metoda SVM, zbioréw wedlug kryterium K-W, z
oznaczeniem RMSE, od najnizszych wartosci (od zielonego koloru) do najwyzszych wartosci
(do czerwonego koloru)

';lt:lir:ﬁ]r Zbiory wedtug kryterium K-W

1 | Funkcje jadrowe Liniowa Wielomian Sigmoidalna
1| RMSE dla SVM typu 1

1 | RMSE dla SVM typu 2

2 | Funkcje jadrowe Liniowa Wielomian Sigmoidalna
2 | RMSE dla SVM typu 1 36,9 40,7 314 38,2
2 | RMSE dla SVM typu 2 44,8 31,7 34,9
3 | Funkcje jadrowe Liniowa Wielomian Sigmoidalna
3| RMSE dla SVM typu 1

3 | RMSE dla SVM typu 2

4 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
4 | RMSE dla SVM typu 1 40,7 30,7 30,8 30,9
4 | RMSE dla SVM typu 2 31,6 31,5 31,5 314
5 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
5| RMSE dla SVM typu 1 41,2 32,1 41,7 32,1
5 | RMSE dla SVM typu 2 32,8 32,7 32,6 32,8
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Tab. 5.98.: Wyniki modelowania metodg SVM, zbiorow wedtug kryterium odwroconego K-W,
z oznaczeniem RMSE, od najnizszych wartosci (od zielonego koloru) do najwyzszych wartosci

(do czerwonego koloru)

Nu_mer Zbiory wedtug kryterium odwroconego K-W

zbioru
1 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
1| RMSE dla SVM typu 1
1 | RMSE dla SVM typu 2
2 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
2 | RMSE dla SVM typu 1 32,9 31,7 38,3 32,2
2 | RMSE dla SVM typu 2 34,8 33 29,2 31,9
3 | Funkcje jadrowe Liniowa Wielomian Sigmoidalna
3 | RMSE dla SVM typu 1
3 | RMSE dla SVM typu 2
4 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
4 | RMSE dla SVM typu 1 34,1 30,6 30,4 30,2
4 | RMSE dla SVM typu 2 37,1 Bi5 31,3 31,3
5 | Funkcje jadrowe Liniowa Wielomian Sigmoidalna
5| RMSE dla SVM typu 1 33,9
5 | RMSE dla SVM typu 2 31,9

Tab. 5.99.: Wyniki modelowania metoda SVM, zbiorow wedlug kryterium ANOVA, z
oznaczeniem RMSE, od najnizszych warto$ci (od zielonego koloru) do najwyzszych wartosci

(do czerwonego koloru)

Numer Zbiory wedlug kryterium ANOVA

zbioru
1 | Funkcje jgdrowe Liniowa Wielomian Sigmoidalna
1 | RMSE dla SVM typu 1
1| RMSE dla SVM typu 2
2 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
2 | RMSE dla SVM typu 1 32,9 31,7 38,3 32,2
2 | RMSE dla SVM typu 2 34,8 33 29,2 31,9
3 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
3| RMSE dla SVM typu 1
3 | RMSE dla SVM typu 2
4 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
4 | RMSE dla SVM typu 1 34,3 30,5 30,2 30,5
4 | RMSE dla SVM typu 2 37,1 31,5 31,3 31,3
5 | Funkcje jadrowe Liniowa Wielomian | RBF Sigmoidalna
5| RMSE dla SVM typu 1 32,3
5 | RMSE dla SVM typu 2 35,8 32,6 32,5 32,5

Najniszg warto$¢ RMSE réwna 29,2 sposrdd stosunkowo matych zbioréw danych uzyskano
w drugim zbiorze ustalonym wedlug odworconego K-W i kryterium ANOVA, z SVM typu 2 i
funkcja jadrowg RBF (rys.5.2.6.4.). Sposrod duzych zbioréw najlepszy wynik RMSE réwne
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1,1 otrzymano w 3 zbiorze ustalonym wedtug kryterium K-W i odwoérconego K-W z SVM typu
1 i funkcja jadrowa wielomianowa (rys. 5.2.6.5.).

— . =wartos$¢ zmierzona

wartos¢ przewidziana

200
180
160

Przeciek w obwodzie wysokiego cisnienia
[cm3]

1 4 7 1013161922 25283134374043464952555861646770

Numer obserwacji

Rys.5.2.6.4. Wyniki modelowania opartego na danych ze zbioru 2, wg kryterium
odwroconego K-W i ANOVA, z funkcja jadrowa RBF i SVM typu drugiego

OSVM typu 1 £*SVM typu 2
1,8

1,6 —~-n —
1,4
1,2

ey . ——

0,8
0,6
0,4
0,2 -
0 ..
Liniowa Wielomian RBF Sigmoidalna

Wynik RMSE

[ R |

Funkcje jadrowe

Rys.5.2.6.5. Wyniki modelowania opartego na danych ze zbioru 3, wg kryterium K-W

5.2.6.2. WhniosKi

Podczas przeprowadzonych analiz zbadano wplyw czterech funkcji jadrowych i dwoch
typow regresji SVM na jako$¢ utworzonego modelu (rys. 5.2.6.6.). W duzych zbiorach danych
lepszg czyli nizszg warto§¢ RMSE otrzymano dla wigkszosci przypadkéw dla SVM typu
drugiego.

197



Bl Duze zbiory danych SVM typu 1 O Duze zbiory danych SVM typu 2
® Mate zbiory danych SVM typu 1 W Mate zbiory danych SVM typu 2
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Liniowa Wielomian RBF Sigmoidalna

Wynik RSME

Funkcje jadrowe

Rys.5.2.6.6. Wyniki RMSE w podziale na rodzaj funkcji jadrowej i typ funkcji btedu

W matych zbiorach danych mozna byto roéwniez zauwazy¢ lepsze wyniki dla SVM typu
drugiego. Jezeli wezmiemy pod uwage wyniki w podziale na rodzaj zastosowanej funkcji
jadrowej, wowczas nalezy zauwazy¢, iz najlepsze wyniki otrzymano dla funkcji jadrowej RBF

w duzych i matych zbiorach danych.

Ozbiér1 EZbior2 MZbiér3 DOZbiér4 DQZbioér5

50,0
40,0
30,0

20,0

Wynik RMSE

10,0

0,0

Srednie RMSE kr. K-W Srednie RMSE kr. Srednie RMSE kr. ANOVA
odwrdéconego K-W
Zbiory danych wedtug kryteriéw

Rys.5.2.6.7. Srednie RMSE wedtug numeru zbioru danych i kryterium

Generalnie najwyzsze wartosci RMSE otrzymano w drugim zbiorze danych ustalonym
wedtug kryterium K-W (rys.5.2.6.7.). Zbior ten zawieral najmniejszg liczbe obserwacji.
Najlepsze wyniki otrzymano natomiast w duzym zbiorze danych numer trzy w kazdym z trzech
kryteriow,zbidr ten zawierat tylko wartosci przecieku w obwodzie wysokiego cisnienia < 7,5
cm? (byto ich ponad 10000). W zbiorze tym mozna byto zaobserwowa¢ znaczaca zmiennos¢
warto$ci zmiennej wyjsciowej, ktorej rozktad byt zblizony do normalnego, ale zaznaczato si¢
zwigkszone wystepowanie wartosci podwyzszonych. Modelowanie oparte na danych w tym
zbiorze, moze uwidacznia¢ trendy wystepujace w danych powszechnie. Zbior ten nie

obejmowat podwyzszonych warto$ci zmiennej zaleznej a wigc informacji o produktach z wada.

198



5.2.7. Badanie modelu w celu wielowymiarowej optymalizacji parametréw

procesu
5.2.7.1. Cel, metodyka i wyniki badan

Ostatni krok badan zrealizowano poprzez opracowanie planu badan zmierzajacych do
wydobycia z modeli, wybranych jako najlepsze sposréd zastosowanych metod
zaawansowanego modelowania opartego na danych, a wigc sztucznych sieci neuronowych,
informacji o przyczynach powstawania wad wyrobow. Gtownym celem byto okreslenie, jaka
warto$¢ okreslonych parametrow wptywa na formowanie si¢ wady w badanym odlewie lub jej
brak. Informacje z modelu neuronowego mozna wydobywac¢ w rézny sposob, najlepiej przez
odpowiednio zaplanowane odpytywanie sieci [151]. Ten sposob, nazywany ,,pedagogicznym”,
polega na traktowaniu modelu, jako czarnej skrzynki, wykorzystujac odpowiednio
zaprojektowang procedur¢ odpytywania sieci, celem uzyskania szukanych informacji [151].
Istnieje rowniez drugi sposob, nazywany ,,dekompozycyjnym”, polega na analizie wag
stworzonych sztucznych sieci neuronowych, lub ogoélniej poszczegolnych parametroéw modelu
[151]. Jednak podejscie oparte na analizie wag sieci okazalo si¢ by¢ niewystarczajace [152],
[153]. Dzieje si¢ tak, poniewaz kazdy proces uczenia si¢ sieci generuje rozne wagi, ktore sa
zrodtem znacznych réznic w warto$ciach wspotczynnikow istotnosci [151]. Z tego powodu
opracowana w ramach niniejszej rozprawy strategia zakladata pierwsze podejécie -
,pedagogiczne” i zawierata wiclowariantowg optymalizacje wszystkich parametréw procesu
dla maksymalnych i minimalnych wartosci wad (wycieku). ldea takiego podejscia polegata na
zatozeniu, ze w warunkach mozliwych zmian wszystkich parametréw procesu, zachodzacych
losowo, powtarzalne wartosci sprzyjajace wadzie i jej zapobiegajace przyjmowaé beda te z
nich, ktore rzeczywiscie odgrywajg istotng role. Wyniki takiej optymalizacji powinny takze
pozwoli¢ na okreslenie kierunku wywotywanych zmian.

Badania prowadzace do optymalizacji byty rozpoczgte od ponownego zbudowania
sztucznych sieci neuronowych w programie Statistica, zgodnie z modelami wybranymi podczas
zaawansowanej analizy z ponownym obliczeniem wartosci RMSE. Waznym punktem by# fakt,
iz wybrano nie tylko bezwzglednie najlepsze modele, ktore charakteryzowaty si¢ brakiem
zdolnosci do generalizacji (zazwyczaj uzyskane bez zbioru testujacego) ale rowniez modele,
ktére miaty wyzszy btad §redniokwadratowy predykcji, jednak posiadaty lepsza zdolnos¢ do
generalizacji (zazwyczaj zawieraly zbior testujacy). Opis wybranych modeli zestawiono w
tabeli (5.100).
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Tab. 5.100.:
parametrow procesu

Charakterystyka wybranych modeli

do wielowymiarowej optymalizacji

% % Liczb
warto- % .« | wartosci y Funkcja - Licz-
. Sciw o wartosci w heu- aktywacji w Funkcja ba

Kryterium | Zbi6r : w zbiorze - ronéow - aktywacji na RMSE -

zbiorze X zbiorze warstwie o s zmie-

testuja-cym - ukry- - wyjsciu

uczy- walida- tveh: ukrytej nnych

cym cyjnym yen:
K-W 1 100 0 0 19 | tangensoidalna | tangensoidalna 1,50 30
K-W 1 100 0 0 22 | tangensoidalna | liniowa 1,85 30
K-W 1 100 0 0 22 | tangensoidalna | tangensoidalna 1,52 30
K-W 1 100 0 0 21 | tangensoidalna | liniowa 1,56 30
K-W 1 70 15 15 7 | tangensoidalna | liniowa 5,69 30
odwroconego
K-Wi
ANOVA 1 100 0 0 19 | tangensoidalna | tangensoidalna 1,78 47
odwroconego
K-Wi
ANOVA 1 100 0 0 22 | tangensoidalna | liniowa 1,60 47
odwroconego
K-Wi
ANOVA 1 100 0 0 22 | tangensoidalna | tangensoidalna 1,46 47
odwroconego
K-Wi
ANOVA 1 100 0 0 20 | tangensoidalna | tangensoidalna 1,61 47
odwroconego
K-Wi
ANOVA 1 70 15 15 7 | tangensoidalna | liniowa 4,03 47
K-W 2 100 0 0 2 | tangensoidalna | tangensoidalna 21,50 13
K-W 2 100 0 0 3 | tangensoidalna | tangensoidalna 21,50 13
K-W 2 100 0 0 2 | tangensoidalna | liniowa 22,70 13
K-W 2 100 0 0 3 | tangensoidalna | liniowa 22,70 13
odwroconego
K-Wi
ANOVA 2 100 0 0 2 | tangensoidalna | tangensoidalna 21,80 19
odwroconego
K-Wi
ANOVA 2 100 0 0 3 | tangensoidalna | tangensoidalna 21,50 19
odwroconego
K-Wi
ANOVA 2 100 0 0 3 | tangensoidalna | liniowa 21,60 19
K-W 3 100 0 0 23 | tangensoidalna | liniowa 0,92 31
K-W 3 100 0 0 21 | tangensoidalna | tangensoidalna 0,96 31
K-W 3 70 15 15 14 | tangensoidalna | tangensoidalna 1,28 31
K-W 3 70 15 15 7 | tangensoidalna | tangensoidalna 1,28 31
odwroconego
K-Wi
ANOVA 3 100 0 0 23 | tangensoidalna | liniowa 0,85 45
odwroconego
K-Wi
ANOVA 3 100 0 0 21 | tangensoidalna | tangensoidalna 0,90 45
K-W 4 100 0 0 2 | tangensoidalna | tangensoidalna 11,20 16
K-W 4 100 0 0 4 | tangensoidalna | tangensoidalna 5,40 16
K-W 4 100 0 0 5 | tangensoidalna | tangensoidalna 4,40 16
K-W 4 90 10 0 3 | tangensoidalna | tangensoidalna 12,70 16
K-W 4 90 10 0 4 | tangensoidalna | tangensoidalna 15,10 16
K-W 4 100 0 0 2 | tangensoidalna | liniowa 16,90 16
K-W 4 100 0 0 3 | tangensoidalna | liniowa 15,40 16
K-W 4 100 0 0 4 | tangensoidalna | liniowa 14,70 16
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odwroconego

K-W 4 100 0 0 2 | tangensoidalna | tangensoidalna 6,30 25
odwroconego

K-W 4 100 0 0 4 | tangensoidalna | tangensoidalna 2,10 25
odwroconego

K-W 4 100 0 0 5 | tangensoidalna | tangensoidalna 0,70 25
odwroconego

K-W 4 100 0 0 2 | tangensoidalna | liniowa 5,30 25
odwroconego

K-W 4 100 0 0 3 | tangensoidalna | liniowa 6,20 25
odwroconego

K-W 4 100 0 0 4 | tangensoidalna | liniowa 4,10 25
ANOVA 4 100 0 0 2 | tangensoidalna | tangensoidalna 6,40 26
ANOVA 4 100 0 0 4 | tangensoidalna | tangensoidalna 2,10 26
ANOVA 4 100 0 0 5 | tangensoidalna | tangensoidalna 1,30 26
ANOVA 4 90 10 0 3 | tangensoidalna | tangensoidalna 23,20 26
ANOVA 4 90 10 0 4 | tangensoidalna | tangensoidalna 12,10 26
ANOVA 4 100 0 0 2 | tangensoidalna | liniowa 7,00 26
ANOVA 4 100 0 0 3 | tangensoidalna | liniowa 4,20 26
ANOVA 4 100 0 0 4 | tangensoidalna | liniowa 2,30 26
K-W 5 100 0 0 2 | tangensoidalna | tangensoidalna 15,30 11
K-W 5 100 0 0 3 | tangensoidalna | tangensoidalna 12,70 11
K-W 5 90 10 0 3 | tangensoidalna | tangensoidalna 22,00 11
K-W 5 100 0 0 2 | tangensoidalna | liniowa 19,20 11
K-W 5 90 10 0 2 | tangensoidalna | liniowa 20,40 11
K-W 5 90 10 0 5 | tangensoidalna | liniowa 17,80 11
odwroconego

K-W 5 100 0 0 2 | tangensoidalna | tangensoidalna 6,30 26
odwroconego

K-W 5 100 0 0 3 | tangensoidalna | tangensoidalna 4,70 26
odwroconego

K-W 5 100 0 0 2 | tangensoidalna | liniowa 12,10 26
odwroconego

K-W 5 90 10 0 2 | tangensoidalna | liniowa 23,10 26
ANOVA 5 100 0 2 | tangensoidalna | tangensoidalna 5,90 27
ANOVA 5 100 0 0 3 | tangensoidalna | tangensoidalna 3,60 27
ANOVA 5 100 0 0 2 | tangensoidalna | liniowa 5,80 27
ANOVA 5 90 10 0 5 | tangensoidalna | liniowa 31,20 27

Dokonano takiego wyboru, aby jednoznacznie okresli¢ co wptywa na powstawanie wady w
produkcie. Podczas badan jednocze$nie zapisywano obliczone wagi 1 programowano
odpowiedz modelu (rys.5.2.7.1.). Dzi¢ki temu mozliwa byta optymalizacja parametréw procesu
dla minimalnej warto$ci wycieku, a wigc odlewu bez wady, oraz maksymalnej wartosci

wycieku, a wiec odlewu z wada.
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Rys.5.2.7.1. Zapisywanie obliczonych wartosci wag parametrow sztucznej sieci
neuronowej

W celu zapisania wag obliczonych podczas zaawansowanego modelowania sztucznych sieci
neuronowych nalezy (rys.5.2.7.1.):

e W punkcie 1, po ukonczeniu obliczen wybra¢ w zakladce szczegdty
przycisk ,,Wagi”

e W punkcie 2, skopiowa¢ wynikowe wartosci wag do stworzonego
pliku.

Celem zapisu wag zaprojektowano specjalny zaprogramowany arkusz programu Microsoft
Excel z wbudowanym dodatkiem Solver, umozliwiajacym nie tylko dowolne odpytywanie
zapisanej sieci ale takze np. optymalizacj¢ parametréw procesu dla uzyskania okre§lonego
wyniku (rys. 5.2.7.2.). Dzigki czemu mozliwa bedzie analiza i zbadanie, jakie parametry daja
niebezpieczne, czyli podwyzszone warto$ci przecieku w obwodzie wysokiego cisnienia, a jakie

bezpieczne czyli mate wartosci przecieku w obwodzie wysokiego cisnienia.
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5

DATA VALID FOR CURRENT DATA SET (all networks)

|Number of hiddig neurons

Before starting a new neural network delete values in columns B and €

Prepare

Bafore each run of Solver remember to: delete the walues in column G [G12:G31)

Name|RESULT of optimizationifly

Weights from Statistica Number of inputs:] 30 [INPUTS fuormalized value
Facilitypressure --= hidden neuron 1 \h 2079903054 an Min Value Mo. —
1stpahsetime —> hidden aeuron 1 -72,0774157) _‘. 3] 2 2,245803] 1] \. Facilityprasiure 0,245803181
Cycletime - hidden neuron 1 15.B1854975) 2333 2186 2281 754 2 e \. 0,65138783
Lisbricationeyelatime > hidden meunan 1 1, 3606590505/ 1728 78,2 136,9233 3 Cyclatima 0622069325
Digsingtime] --> hiddan euron 1 1648320733 315 2.4 2719737 4 Lubricationcycletime’ 0527183953
Dodingtime? --> hidden neuron 1 2007631545/ 33| 10,9 7543179 5 Dosingtimel 0657546861
I - hidden neuron 1 45, 70961641 108,56 538 1004845 [ Dosingtime2 0,884177872
Lubricationtife --> hidden neuron 1 7,995512734) 11,7 63 7855077 7 | o 0287977223
Wacuumfilterl —» hidden neurcn 1 50.58254943 53 5,1 9031612 ] Lubricationtime 0,936058029]
Lubricantconcentration -=» hidden neuron 1 -7,033234431] 1613 1358 148334 £l Vacuumfilterl 0, 492484536
Multiplicationdelay --> hidden newan 1 99,546745609) 2,7 149 2474134 10) Lubricantconcentration 0, 717730158
Indphasetime === hidden newon 1 34,95504169) 17g) 168 173 8328 11 Multiplicati 0, 77855982
Vacuumprofile] --» hidden neuron 1 4, 119581206 30| B3 BB,37833 13| 2ndph 0, 23]
Wp2 == hidden newron 1 40,10474869 1384 1037 1637 13| Vacuumprofilel 0
Flungercoolingflow —> hidden neuren 1 3, 100240884 870533 75900 293115,5) 14 VixVip2 0,273363703
CoolingcircultiSflow -<> hidden neuron 1 =21, B1059501| 28| 14] 19 86038 15) Pl gl 0488381418
Coolingeircuit] Tilow --> hidden neuron 1 -41.42683545) 28| 25 26,13516 18] Cosolingcircuit]Sflaw, 0,37B3BT232
Coolingcircultéflow > hidden newon 1 45,66123034 36| 20, ¥3,75787 i7) Coolingeireuitl Tilow 0,234867027
Multiplicationstroke --> hidden newon 1 12 6338295 33| 26 B0,56338 18| Coolingeircuitfflow 0,651911385
Flungercoclingtemperature —» hidden neuren 1 26,68025321 20, 17| 1840957, 19 Multiplieationstrake 0, 465855966)

Rys.5.2.7.2. Struktura zaprogramowanego arkusza do optymalizacji parametrow

procesu

W celu przeprowadzenia wiclowymiarowej optymalizacji parametrow procesu nalezy

(rys.5.2.7.2.):

w punkcie 1, wpisac¢ ilo$¢ neuronéw ukrytych,

w punkcie 2, wpisa¢ minimalng i maksymalng warto$¢ zmiennej
wyjsciowej,

punkcie 3, wpisa¢ minimalne i maksymalne wartosci kazdej
zmiennej z punktu 4,

w punkcie 5, wybra¢ przycisk uruchamiajacy makro przygotowujace
dane, a doktadniej kopiuje wartosci wag z punktu 8, do innych
obszaréw arkusza w innym ukladzie niz dostgpne w programie
Statistica,

w punkcie 6 i w punkcie 7 otrzymywany jest wynik obliczen po
uruchomieniu analizy przy uzyciu wbudowanego w oprogramowaniu
Microsoft Excel dodatku Solver (rys. 5.2.7.3.).
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Parametry dodatku Solver s

Ustaw cel: |5753f‘ El
Na: O Maks O min @ weartosc: 002 |
Przez zmienianie komérek zmiennych:
[sas12:86541 [2]
Podlegajgcych ograniczeniom:
$GH12:$GF <= SEF12:5E541 ~ Dodaj
$G$12:$G$41 > = $FE12:5F541 =

¥ Zataduj/zapisz
Ustaw wartoéci nieujemne dla zmiennych bez ograniczer
Wybierz metode Nieliniowa GRG | Opgje ‘
rozwigzywania:

Metoda rozwigzywania

W przypadku gfadkich nieliniowych probleméw dodatku Solver wybierz aparat nieliniowy GRG. Dla liniowych
probleméw dodatku Solver wybierz aparat LP simpleks, natomiast w przypadku probleméw, ktdre nie sa
gladkie, wybierz aparat ewolucyjny.

e

Rys.5.2.7.3. Prowadzenie badan przy uzyciu dodatku Solver

Dzigki wbudowanemu dodatkowi Solver, do oprogramowania Microsoft Excel istnieje
mozliwos¢ prowadzenia automatycznych obliczen optymalizacji parametrow procesu. Dodatek
ten zostal stworzony w celu wykonywania analiz typu ,,co jezeli”. Funkcjonowanie tego
dodatku daje mozliwo$¢ obliczenia optymalnej, czyli minimalnej lub maksymalnej warto$ci
formuly w jednej z komorek wybieranej jako komodrka celu, bioragc jednoczesnie pod uwage
ograniczenia i limity zadane w innych komoérkach. Dodatek Solver analizuje grupg komorek,
okreslanych jako zmienne decyzyjne, uzywanych do obliczen wynikowych komorek celu 1
ograniczen. Dodatek ten dostosowuje wartosci komorek zmiennych decyzyjnych celem
dopasowania si¢ do zadanych ograniczen i1 uzyskania okreslonego wyniku dla celu komorki. W
oknie dialogowym mozna wybra¢ metod¢ rozwigzywania problemu bazujaca na jednym z
trzech algorytmow, a doktadniej na metodzie nieliniowej GRG, LP simplex i ewolucyjnej.

Pierwsza z nich znajduje swoje zastosowanie w przypadku gladkich nieliniowych
problemow, druga metoda jest dedykowana dla problemow liniowych, trzecia natomiast dla
probleméw, ktore nie sg gtadkie. Wybrana metoda nieliniowa GRG analizuje problem poprzez
analiz¢ gradientu lub nachylenia funkcji celu, gdy zmienne decyzyjne zmieniajg si¢, okresla
osiggniecie optymalnego rozwigzania, gdy uzyska zero w wartosci pochodnych czastkowych.
W matematyce programowanie nieliniowe (NLP) jest procesem podczas ktorego
rozwigzywany jest problem optymalizacyjny, zawierajacy nieliniowa funkcje celu lub

nieliniowe ograniczenia. Jest to ogdlnie mowiac dziedzina matematycznej optymalizacji
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dedykowana do rozwigzywania problemow nieliniowych. Druga z wybranych metod, to
metoda ewolucyjna. Dla tych dwéch metod przeprowadzono nastgpnie badania i zapisano
wyniki w tabelach dedykowanych dwom algorytmom w oddzielnych tabelach dla minimalnej
warto$ci zmiennej wyjsciowej, maksymalnej wartosci zmiennej wyjsciowe;.

Ponizej przedstawiono przyktad utworzonych tabel na podstawie optymalizacji wynikéw
modelowania opartego na danych ze zbioru pierwszego, ustalonego wedtug kryterium K-W,
dla ktoérego ustalono 30 zmiennych wejsciowych. Sie¢ zawierata 100% wartosci w zbiorze
uczacym, 19 neuronéw w warstwie ukrytej i funkcje aktywacji w warstwie ukrytej i na wyjsciu

tangensoidalng, dla ktorej RMSE wyniosto 1,5.

Tab. 5.101.: Wyniki wielowymiarowej optymalizacji metoda nieliniowa GRG, z wielostartem
dla minimalnej warto$ci zmiennej wyjSciowe;j

Numer wykonanej optymalizacji
MIN, metoda nieliniowa GRG z
No wielostartem | Max MIN 1 2 3 4 5
1 Cisnienie wody obiegowej [Bar] 3,0 2,0 2,2 2,6 2,5 2,4 2,9
2 Czas pierwszej fazy wtrysku [ms] 2333,0| 2186,0f 2333,0] 2333,0| 2190,1| 2193,7| 22164
3 Czas cyklu [s] 172,6 78,2 170,8 1125 169,3 1724 116,9
4 Czas cyklu smarowania [s] 31,5 224 23,9 24,7 304 315 26,2
5 Czas dozowania stopu [s] 33,0 10,9 14,8 31,3 29,7 17,8 31,7
6 Czas dozowania stopu 2 [s] 106,6 53,8 64,1 64,4 65,3 65,0 71,8
7 Czas przedmuchu [s] 11,7 6,3 9,9 1,7 6,3 8,0 9,1
8 Czas smarowania [s] 9,3 51 5,9 7,0 8,5 8,0 8,1
9 Filtr prézni 1 [mBar] 1613,0| 1259,0| 1583,2| 1570,0| 12590| 1259,0| 13679
10 Koncentrat [%] 2,7 1,9 2,6 2,0 2,0 2,6 2,1
11 OpéZnienie multiplikacji [ms] 176,0| 168,0 169,4 168,0 168,0 168,0 169,3
12 Czas drugiej fazy wtrysku [ms] 90,0 88,0 89,9 88,6 88,0 88,0 88,0
13 Profil prézni 1 [mBar] 1384,0| 1037,0| 12595| 11195| 11166| 1260,8| 13039
14 V2xVp2 | 870539,0 | 75900,0 | 753407,5 | 822676,1 | 580134,6 | 626539,5 | 495750,5
15 Przeplyw chlodzenia tloka [1] 26,0 14,0 21,0 21,2 14,0 14,3 23,5
Przephyw w obwodzie chtodzenia
16 151] 28,0 25,0 27,2 27,6 25,1 26,4 27,4
Przephyw w obwodzie chtodzenia
17 17[1] 36,0 20,0 23,7 33,1 28,5 20,4 25,5
Przeplyw w obwodzie chlodzenia 6
18 [17 33,0 26,0 31,6 28,8 26,0 31,0 31,3
19 Suw pierwszej fazy wtrysku [mm] 20,0 17,0 175 18,1 17,0 17,7 19,2
20| Temperatura chlodzenia tloka [°C] 35,0 27,0 32,1 33,2 27,0 32,1 32,0
21 Temperatura stopu [°C] 689,2| 6699 677,1 670,9 686,1 675,3 685,3
Temperatura termoregulatora 3.2
22 [°C] 156,0 | 1440 154,3 1454 149,7 1459 154,8
23 Temperatura tulei 2 [°C] 235,0| 2050 2245 2228 2199 211,7 230,6
Temperatura w obwodzie
24 chiodzenia 1 [°C] 39,0 29,0 29,8 31,7 324 32,4 35,1
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Temperatura w obwodzie

25 chlodzenia 14 [°C] 34,0 31,0 34,0 331 313 31,3 33,1
Temperatura w obwodzie

26 chlodzenia 15 [°C] 36,0 32,0 34,5 324 35,8 33,2 33,1
Temperatura w obwodzie

27 chiodzenia 17 [°C] 35,0 25,0 27,9 34,8 275 32,6 25,5
Temperatura w obwodzie

28 chlodzenia 7 [°C] 30,0 27,0 27,1 28,0 29,9 28,0 29,0

29 Temperatura wody miejskiej [°C] 27,0 18,0 24,5 25,0 18,1 19,9 21,9

30 Warto$¢ prézni 1 [mBar] 599,0| 138,0 140,2 413,7 451,2 262,4 599,0

Tab. 5.102.: Wyniki wielowymiarowej optymalizacji metoda nieliniowa GRG, z wielostartem

dla maksymalnej warto$ci zmiennej wyjsciowe;j

Numer wykonanej optymalizacji
MAX, metoda nieliniowa GRG z
No. wielostartem 1 2 3 4 5
1 Cisnienie wody obiegowej [Bar] 29 2,8 2,8 2,9 3,0
2 Czas pierwszej fazy wtrysku [ms] 2186,0 2333,0 2333,0 2292,6 2186,0
3 Czas cyklu [s] 140,2 132,2 1449 1374 89,9
4 Czas cyklu smarowania [s] 23,2 247 28,2 30,5 31,0
5 Czas dozowania stopu [s] 13,7 24,6 12,9 234 13,9
6 Czas dozowania stopu 2 [s] 76,0 74,1 60,6 66,6 63,4
7 Czas przedmuchu [s] 9,2 9,9 8,9 104 6,8
8 Czas smarowania [s] 8,4 8,8 7,1 9,0 7,4
9 Filtr prézni 1 [mBar] 14255 1568,8 1279,8 1445,9 1562,7
10 Koncentrat [%] 1,9 2,2 2,2 2,3 2,5
11 Opoznienie multiplikacji [ms] 174,9 173,6 1718 171,0 172,2
12 Czas drugiej fazy wtrysku [ms] 88,6 90,0 89,3 89,7 88,0
13 Profil prozni 1 [mBar] 1319,7 1359,8 1158,3 1229,0 1246,5
14 V2xVp2 | 5431279 | 640109,6| 113305,5| 119170,3| 6921545
15 Przeplyw chiodzenia tloka [1] 23,5 24,6 23,6 20,9 15,2
16 Przeptyw w obwodzie chlodzenia 15 [1] 25,8 26,1 26,1 26,6 27,3
17 Przepbyw w obwodzie chlodzenia 17 [I] 28,9 35,7 28,8 32,6 28,2
18 Przepbyw w obwodzie chlodzenia 6 [1] 32,1 32,8 26,4 28,8 32,8
19 Suw pierwszej fazy wtrysku [mm] 171 19,1 18,9 17,9 17,8
20 Temperatura chlodzenia tloka [°C] 30,2 33,8 34,6 27,7 33,9
21 Temperatura stopu [°C] 685,4 671,6 672,8 674,6 683,1
22 Temperatura termoregulatora 3.2 [°C] 149,6 146,2 148,9 155,5 145,8
23 Temperatura tulei 2 [°C] 228,2 205,5 230,4 226,2 229,6
Temperatura w obwodzie chtodzenia 1
24 /[°C] 34,3 29,8 36,9 30,0 30,8
Temperatura w obwodzie chlodzenia 14
25 [°C] 33,9 33,0 32,1 32,1 31,8
Temperatura w obwodzie chlodzenia 15
26 /[°C] 35,2 34,6 35,9 33,2 32,9
Temperatura w obwodzie chlodzenia 17
27 /[°C] 30,3 26,6 28,5 27,1 32,7
Temperatura w obwodzie chlodzenia 7
28 [°C] 29,4 27,9 29,6 27,2 28,7
29 Temperatura wody miejskiej [°C] 26,8 22,9 23,7 18,9 22,3
30 Wartos¢ prozni 1 [mBar] 489,2 420,9 546,9 528,4 186,7
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Tab. 5.103.: Wyniki wiclowymiarowej optymalizacji metodg ewolucyjng, dla minimalnej
warto$ci zmiennej wyjsciowej

Numer wykonanej optymalizacji

No MIN, metoda ewolucyjna 1 2 3 4 5
1 Cisnienie wody obiegowej [Bar] 2,1 2,9 2,5 2,1 2,3
2 Czas pierwszej fazy wtrysku [ms] 2238,4 2321,6 2250,5 2229,2 2270,3
3 Czas cyklu [s] 103,4 154,6 119,8 146,0 160,9
4 Czas cyklu smarowania [s] 24,0 225 25,0 29,9 23,6
5 Czas dozowania stopu [s] 19,8 20,0 20,5 22,7 16,1
6 Czas dozowania stopu 2 [s] 59,9 70,6 87,8 63,3 92,6
7 Czas przedmuchu [s] 7,2 8,4 10,2 7,9 9,9
8 Czas smarowania [s] 8,6 5,9 5,3 7.8 7,0
9 Filtr prozni 1 [mBar] 1268,1 1332,6 1587,3 14212 14594
10 Koncentrat [%] 2,4 2,5 1,9 2,3 2,7
11 Opdznienie multiplikacji [ms] 170,4 168,3 168,6 169,6 170,9
12 Czas drugiej fazy wtrysku [ms] 89,5 89,7 89,7 89,3 88,7
13 Profil prézni 1 [mBar] 1310,3 1355,1 1093,0 12229 13175
14 V2xVp2 | 187138,8| 698137,1| 528601,0| 649724,3| 620248,5
15 Przeplyw chiodzenia tloka [1] 16,3 21,4 21,8 14,9 24,9
16 Przeptyw w obwodzie chtodzenia 15 [1] 26,4 27,0 26,5 27,2 27,3
17 Przeptyw w obwodzie chlodzenia 17 [1] 20,6 35,9 20,8 35,9 20,9
18 Przeptyw w obwodzie chtodzenia 6 [1] 31,3 29,0 29,0 31,9 29,9
19 Suw pierwszej fazy wtrysku [mm] 17,1 18,5 17,9 17,5 20,0
20 Temperatura chlodzenia tloka [°C] 27,9 33,0 33,3 32,3 35,0
21 Temperatura stopu [°C] 682,5 687,5 675,6 677,7 685,7
22 Temperatura termoregulatora 3.2 [°C] 153,8 148,0 152,5 146,6 149,2
23 Temperatura tulei 2 [°C] 2219 209,7 2311 232,9 226,6
24 Temperatura w obwodzie chlodzenia 1 [°C] 33,3 324 29,1 32,9 33,1
25 Temperatura w obwodzie chlodzenia 14 [°C] 33,3 31,0 33,7 32,1 33,9
26 Temperatura w obwodzie chlodzenia 15 [°C] 33,2 34,6 35,8 334 34,1
27 Temperatura w obwodzie chlodzenia 17 [°C] 31,0 28,4 28,0 32,9 31,7
28 Temperatura w obwodzie chlodzenia 7 [°C] 29,1 28,9 28,4 27,8 29,7
29 Temperatura wody miejskiej [°C] 19,1 23,8 26,2 23,9 26,2
30 Wartos¢ prozni 1 [mBar] 177,2 383,7 225,6 431,3 514,6

Tab. 5.104.: Wyniki wielowymiarowe]j optymalizacji metoda ewolucyjng, dla maksymalnej
warto$ci zmiennej wyjsciowej

Numer wykonanej optymalizacji
No. MAX, metoda ewolucyjna 1 2 3 4 5
1 Cisnienie wody obiegowej [Bar] 2,5 2,5 2,7 2,7 2,9
2 Czas pierwszej fazy wtrysku [ms] 22511 2230,0 22247 2331,3 22394
3 Czas cyklu [s] 1288 116,6 139,4 1117 123,7
4 Czas cyklu smarowania [s] 26,2 30,1 23,5 26,4 28,8
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5 Czas dozowania stopu [s] 17,4 30,0 31,0 22,2 15,7

6 Czas dozowania stopu 2 [s] 88,0 96,8 103,7 77,9 90,6

7 Czas przedmuchu [s] 10,9 7,1 10,7 8,0 8,7

8 Czas smarowania [s] 5,6 8,4 6,0 5,4 6,1

9 Filtr prozni 1 [mBar] 1385,9 1304,0 1386,2 1329,6 1446,0
10 Koncentrat [%] 2,3 19 2,4 2,2 2,4
11 Opdznienie multiplikacji [ms] 1729 174,7 170,6 1723 173,2
12 Czas drugiej fazy wtrysku [ms] 88,8 88,6 88,7 88,8 88,9
13 Profil prézni 1 [mBar] 1107,6 1171,9 1261,9 12111 12953
14 V2xVp2 | 619061,9| 530198,8 | 275586,1 | 696663,2| 549261,3
15 Przeplyw chiodzenia tloka [1] 16,0 18,0 14,5 17,8 17,1
16 Przeptyw w obwodzie chlodzenia 15 [1] 27,7 26,7 25,5 27,9 25,8
17 Przeptyw w obwodzie chtodzenia 17 [1] 27,7 23,8 20,2 34,7 27,4
18 Przeptyw w obwodzie chlodzenia 6 [1] 28,3 31,6 275 29,3 27,3
19 Suw pierwszej fazy wirysku [mm] 18,9 19,2 18,2 17,4 18,5
20 Temperatura chiodzenia Hoka [°C] 28,5 34,3 32,4 35,0 29,9
21 Temperatura stopu [°C] 677,5 683,8 678,6 669,9 676,5
22 Temperatura termoregulatora 3.2 [°C] 150,1 149,5 148,0 146,9 154,4
23 Temperatura tulei 2 [°C] 233,3 2147 210,1 2129 211,8
24 Temperatura w obwodzie chlodzenia 1 [°C] 31,3 30,7 315 34,3 354
25 Temperatura w obwodzie chlodzenia 14 [°C] 34,0 32,5 32,7 31,3 31,7
26 Temperatura w obwodzie chlodzenia 15 [°C] 33,1 344 34,6 32,4 34,3
27 Temperatura w obwodzie chiodzenia 17 [°C] 31,2 25,9 27,2 28,0 28,3
28 Temperatura w obwodzie chlodzenia 7 [°C] 28,3 28,4 29,1 27,9 29,0
29 Temperatura wody miejskiej [°C] 26,6 24,0 24,6 23,1 21,5
30 Wartos¢ prozni 1 [mBar] 302,0 493,4 333,7 273,1 170,0

Celem dalszej analizy dla wszystkich modeli policzono $rednie z pigciu przeprowadzonych

optymalizacji. Dodatkowo wyniki oznaczono kolorami, aby sprawdzi¢ wptyw okre§lonych

warto$ci danych parametréw na niskie i podwyzszone warto$ci zmiennej zaleznej — przecieku.

Tab. 5.105.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. K-W, dla
sieci z 100% wartosci w zbiorze uczacym, 19 neuronami w warstwie ukrytej i funkcja aktywacji

tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, MITIN, . M:X
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda Z‘z'laier(l)r?g' Zvr;aier?rslg'
GRG z GRGz ewolucyjna | ewolucyjna nie ale'n]e' nie ale'nje'
wielostartem | wielostartem 1ezaiezne] zaleane
Cisnienie wody obiegowej [Bar] 2,5 29 2,4 2,7 2 3
Czas pierwszej fazy wtrysku [ms] 2253,2 2266,1 2262,0 2255,3 2186 2333
Czas cyklu [s] 148,4 128,9 136,9 124,0 78,2 172,6
Czas cyklu smarowania [s] 27,3 27,5 25,0 27,0 22,4 31,5
Czas dozowania stopu [s] 25,1 17,7 19,8 23,3 10,9 33
Czas dozowania stopu 2 [s] 66,1 68,1 74,8 914 53,8 106,6
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Czas przedmuchu [s] 8,2 9,1 8,7 9,1
Czas smarowania [s] 7,5 82 6,9 6,3
Filtr prozni 1 [mBar] 1407,8 1456,5 1413,7 1370,3
Koncentrat [%] 2,3 2,2 24 2,2
Opdznienie multiplikacji [ms] 172,7 169,6 172,7
Czas drugiej fazy wtrysku [ms] 88,5 89,1 89,4 88,7
Profil prozni 1 [mBar] 1212,1 1262,7 1259,7 1209,5
V2xVp2 655701,7 4215736 | 536770,0| 534154,3
Przeplyw chiodzenia tloka [1] 18,8 21,6 19,9 16,7
Przeplyw w obwodzie chiodzenia
15[1] 26,7 26,4 26,9 26,7
Przeplyw w obwodzie chiodzenia
1711] 26,3 30,9 26,8 26,8
Przeplyw w obwodzie chlodzenia
6[I] 29,7 30,6 30,2 28,8
Suw pierwszej fazy wtrysku [mm] 17,9 18,2 18,2 18,4
Temperatura chlodzenia toka
[°Cj] Bilk 32,0 32,3 32,0
Temperatura stopu [°C] 678,9 677,5 681,8 677,3
Temperatura termoregulatora 3.2
[°Cj] 150,0 149,2 150,0 149,8
Temperatura tulei 2 [°C] 221,9 224,0 2244 216,6
Temperatura w obwodzie
chlodzenia 1 [°C] 32,3 32,4 32,2 32,6
Temperatura w obwodzie
chlodzenia 14 [°C] 32,6 32,6 32,8 32,4
Temperatura w obwodzie
chlodzenia 15 [°C] 33,8 344 34,2 33,7
Temperatura w obwodzie
chiodzenia 17 [°C] 29,7 29,0 30,4 28,1
Temperatura w obwodzie
chlodzenia 7 [°C] 28,4 28,5 28,8 28,5
Temperatura wody miejskiej [°C] 21,9 22,9 23,8 24,0
Wartos¢ prozni 1 [mBar] 373,3 4344 346,5 3144

Tab. 5.106.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, 22 neuronami w warstwie ukrytej i funkcja aktywacji
tangensoidalng na wyjsciu

MIN .metoda MA'X', metoda MIN MAX MIN MAX
Nazwa zmiennej niezaleznej igliniowa nieliniowa metoda metod;i wa.rtos'é. wa.nos'é.
J ) GRG z GRG z - - zmiennej | zmiennej
wielostartem wielostartem ewolucyjna | ewolucyjna niezaleznej | niezaleznej

Cisnienie wody obiegowej [Bar] 2,6 24 2,5 24
Czas pierwszej fazy wtrysku

[ms] 2228,3 2228,9 2262,8 2226,9

Czas cyklu [s] 129,4 123,9 107,8 140,3

Czas cyklu smarowania [s] 25,7 26,4 25,3 27,9

Czas dozowania stopu [s] 21,8 21,5 19,1 20,5

Czas dozowania stopu 2 [s] 74,1 82,3 72,7 78,0

Czas przedmuchu [s] 8,6 9,7 10,0 8,3

Czas smarowania [s] 8,0 8,0 85 6,7

Filtr prozni 1 [mBar] 1336,2 1458,6 1421,1 13421

Koncentrat [%] 2,4 2,3 2,2 2,4

Opdznienie multiplikacji [ms] 169,7 174,5 172,0 173,7

Czas drugiej fazy wtrysku [ms] 88,7 89,4 88,3 89,1

Profil prozni 1 [mBar] 1244,0 1198,6 1204,8 1279,0

V2xVp2 694416,6 612577,5| 561287,8 530365,0

Przeplyw chiodzenia tioka [1] 19,3 20,6 19,8 18,7
Przeptyw w obwodzie

chiodzenia 15 [1] 26,5 26,2 26,3 26,5
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Przeplyw w obwodzie
chlodzenia 17 [1] 27,8 29,2 27,8 29,8
Przeplyw w obwodzie
chlodzenia 6 [1] 31,1 29,7 29,8 31,1
Suw pierwszej fazy wtrysku
[mm] 18,6 18,3 18,0 18,4
Temperatura chlodzenia tloka
[°C] 314 30,9 314 31,0
Temperatura stopu [°C] 680,4 681,3 676,4 676,6
Temperatura termoregulatora
3.2/°C] 151,8 150,7 154,3 149,2
Temperatura tulei 2 [°C] 2217 220,0 218,6 2227
Temperatura w obwodzie
chiodzenia 1 [°C] 35,1 36,5 37,1 34,2
Temperatura w obwodzie
chiodzenia 14 [°C] 32,5 32,6 32,1 32,1
Temperatura w obwodzie
chiodzenia 15 [°C] 34,1 34,1 34,1 33,5
Temperatura w obwodzie
chlodzenia 17 [°C] 32,2 30,9 28,9 32,1
Temperatura w obwodzie
chiodzenia 7 [°C] 29,0 28,0 28,8 28,4
Temperatura wody miejskiej
[°C] 19,2 24,2 25,0
Wartosé prozni 1 [mBar] 341,2 360,4 304,9

W przypadku wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. K-W Solver nie

mogt znalez¢ dopuszcezalnego rozwigzania:

e dla sieci z 70% wartosci w zbiorze uczacym, 15% w zbiorze walidacyjnym i

15% w zbiorze testujacym, z 7 neuronami w warstwie ukrytej i funkcja

aktywacji liniowa na wyjsciu,

e dlasieci z 100% warto$ci w zbiorze uczacym, 22 neuronami w warstwie ukrytej

i funkcja aktywacji liniowa na wyjsciu

e dlasieci z 100% warto$ci w zbiorze uczgcym, 21 neuronami w warstwie ukrytej

i funkcja aktywacji liniowa na wyjsciu.

Tab. 5.107.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwroconego
K-W i ANOVA, dla sieci z 100% warto$ci w zbiorze uczacym, 19 neuronami w warstwie
ukrytej i funkcjg aktywacji tangensoidalng na wyjsciu

MIN, MAX,

metoda metoda MIN, MAX,

Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda
GRGz GRGz ewolucyjna | ewolucyjna

wielostartem | wielostartem

Cisnienie wody miejskiej [Bar] 4,1 3.9 44 83
Cisnienie wody obiegowej [Bar] 24 2,7 2,3 2,3
Czas pierwszej fazy wtrysku [ms] 2255,0 2289,6 2296,7 2275,8
Czas cyklu [s] 110,0 118,3 1158 1144
Czas cyklu smarowania [s] 27,0 26,4 27,2 26,7
Czas dozowania stopu [s] 22,8 26,2 20,7 18,2
Czas dozowania stopu 2 [s] 79,4 67,7 65,5 94,2
Czas krzepniecia t2 [s] 10,1 10,3 10,3
Czas przedmuchu [s] 8,9 9,7 9,5 9,2
Czas smarowania [s] 6,6 5,8 8.3 7,8
Dzienny numer wtrysku [j.] 3423 4873 267,8 310,1
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Filtr prozni 1 [mBar] 1493,1 1425,6 1421,8 1388,3
Grubosé pietki uktadu wlewowego [mm] 37,1 38,3 38,2 40,2
Koncentrat [%] 23 2,6
Cisnienie maksymalne [Bar] 3417 341,6
Predkos¢ witrysku maksymalna [m/s] 59 59
Opdznienie multiplikacji [ms] 172,6 1733
Stata temperatura chlodzenia ptyty [°C] 28,1 30,2 31,1 30,6

Poziom stopu w piecu podgrzewczym
[mm] 202,0 260,7 288,9 330,1

Poziom wody w strumieniu chiodzqcym
[mm] 246,1 260,8 265,0 276,3
Czas drugiej fazy wtrysku [ms] 89,0 88,9 89,1 88,7
Profil prozni 1 [mBar] 1149,1 1160,5 12245
V2xVp2 335167,5 658526,8 442790,1 416407,0
Przeplyw chiodzenia tioka [1] 20,2 19,8 22,5 19,4
Przeplyw w obwodzie chlodzenia 1 [l] 26,1 24,4 25,4 25,2
Przeplyw w obwodzie chiodzenia 13 [l] 18,0 17,6 16,9 18,0
Przeplyw w obwodzie chlodzenia 14 [1] 27,8 27,3 27,8 27,4
Przeplyw w obwodzie chlodzenia 15 [l] 26,9 26,3 26,7 26,1
Przeplyw w obwodzie chlodzenia 17 [1] 32,6 24,6 30,4 25,6
Przeplyw w obwodzie chiodzenia 20 [l] 23,5 23,4 23,6 231
Przeplyw w obwodzie chlodzenia 6 [1] 30,5 27,8 30,4 30,0

Predkos¢ we wlewach
doprowadzajgcych [m/s] 38,4 38,6 38,4 38,8
Suw pierwszej fazy wtrysku [mm] 18,3 18,2 18,9 19,0
Temperatura chlodzenia Hoka [°C] 31,5 30,8 31,4 32,0
Temperatura stopu [°C] 678,8 677,6 677,8 677,0
Temperatura termoregulatora 3.2 [°C] 1479 148,8 150,2 150,7
Temperatura tulei 2 [°C] 2254 218,3 2135 2199
Temperatura tulei 3 [°C] 2175 2294 220,8 204,7
Temperatura tulei 4 [°C] 234,3 232,6 225,9 233,8

Temperatura w obwodzie chtodzenia 1
[°C] 33,1 35,3 34,9 354

Temperatura w obwodzie chtodzenia 13
[°C] 36,3 34,6 35,4 34,5

Temperatura w obwodzie chtodzenia 14
[°C] 32,0 32,8 32,9 32,5

Temperatura w obwodzie chlodzenia 15
[°C] 33,7 344 33,3 344

Temperatura w obwodzie chlodzenia 17
[°C] 27,3 31,9 31,7 32,2

Temperatura W obwodzie chlodzenia 7
[°C] 27,9 28,1 28,4 28,7
Temperatura wody miejskiej [°C] 21,2 20,7 22,4 20,5
Wartosé prozni 1 [mBar] 4748 369,6 350,2 388,9

Tab. 5.108.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwréconego
K-W i ANOVA, dla sieci z 100% wartosci w zbiorze uczgcym, 22 neuronami w warstwie
ukrytej 1 funkcjg aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, Mr,!N, . M;?X
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda z\;vnai er?r:gj zvrzai eﬁsgj
GRGz GRG z ewolucyjna | ewolucyjna | ° N A
wielostartem | wielostartem niezaleznej | niezaleznej
Cisnienie wody miejskiej [Bar] 43 3.8 3.8 3,7
Cisnienie wody obiegowej [Bar] 2,4 2,2 2,7 2,6
Czas pierwszej fazy wtrysku [ms] 2289,7 2239,0 2251,9 2251,5
Czas cyklu [s] 1443 124,8 138,2 112,1
Czas cyklu smarowania [s] 29,2 25,9 28,5 26,7
Czas dozowania stopu [s] 18,1 24,5 19,0 21,1
Czas dozowania stopu 2 [s] 63,8 89,0 62,2 84,9
Czas krzepniecia t2 [s] 10,4 10,4 10,2 10,3
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Czas przedmuchu [s] 10,4 9,0 10,1 10,2

Czas smarowania [s] 6,0 7,7 7.7 8,1
Dzienny numer wtrysku [j.] 434,6 415,7 469,7 2674
Filtr prozni 1 [mBar] 13714 1361,1 1403,9 1452,8
Grubos¢ pietki uktadu wlewowego [mm] 38,8 36,8 38,8 38,5
Koncentrat [%] 25 2,2 2,1 2,3
Cisnienie maksymalne [Bar] 341,5 342,6 341,0 340,6
Predkos¢ wtrysku maksymalna [m/s] 58 59 59 58
Opdznienie multiplikacji [ms] 171,6 1704 1715 171,8
Stata temperatura chlodzenia plyty [°C] 30,1 28,2 28,8 29,5

Poziom stopu w piecu podgrzewczym
[mm] 367,0 365,2 268,1 359,2

Poziom wody w strumieniu chtodzgcym
[mm] 264,8 238,1 2422 223,0
Czas drugiej fazy wtrysku [ms] 88,8 88,9 89,4 89,3
Profil prozni 1 [mBar] 1233,2 1203,1 1175,4 1203,1
V2xVp2 361523,6 413018,7 | 407079,5| 517808,4
Przeplyw chiodzenia tloka [1] 19,3 21,2 21,7 18,3
Przeplyw w obwodzie chlodzenia 1 [I] 25,4 25,5 25,8 24,6
Przeplyw w obwodzie chiodzenia 13 [1] 17,3 16,4 17,9 17,8
Przeplyw w obwodzie chlodzenia 14 [1] 27,6 27,3 27,3 27,5
Przeplyw w obwodzie chlodzenia 15 [1] 26,1 25,9 26,3 26,4
Przeplyw w obwodzie chlodzenia 17 [1] 28,7 27,0 32,0 27,6
Przeplyw w obwodzie chiodzenia 20 [1] 22,5 23,8 22,5 23,0
Przeplyw w obwodzie chiodzenia 6 [1] 30,6 30,4 29,1 28,8

Predkos¢ we wlewach doprowadzajgcych
[m/s] 38,2 39,0 38,6 38,3
Suw pierwszej fazy wtrysku [mm] 17,4 18,9 18,5 18,5
Temperatura chlodzenia tloka [°C] 31,1 30,3 32,0 31,3
Temperatura stopu [°C] 678,6 677,1 679,8 679,7
Temperatura termoregulatora 3.2 [°C] 151,2 151,9 149,3 150,6
Temperatura tulei 2 [°C] 217,7 216,5 226,0 2227
Temperatura tulei 3 [°C] 218,4 202,7 228,8 216,6
Temperatura tulei 4 [°C] 241,2 226,6 2223 2427

Temperatura w obwodzie chtodzenia 1
[°Cj] 33,6 324 32,2 33,5

Temperatura w obwodzie chtodzenia 13
/[°C] 35,1 35,1 36,0 36,7

Temperatura w obwodzie chlodzenia 14
/[°C] 32,0 32,6 33,0 32,7

Temperatura w obwodzie chtodzenia 15
/°Cj 33,8 34,4 34,2 33,6

Temperatura w obwodzie chtodzenia 17
/°Cj 30,4 30,2 32,1 30,3

Temperatura w obwodzie chlodzenia 7
/[°C] 29,3 28,4 28,0 28,2
Temperatura wody miejskiej [°C] 22,2 23,7 24,4 22,6
Wartos¢ prozni 1 [mBar] 432,1 385,7 415,0 3774

Tab. 5.109.: Wyniki wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwroconego
K-W i ANOVA, dla sieci z 100% wartosci w zbiorze uczacym, 20 neuronami w warstwie
ukrytej i funkcjg aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, W';Ari(';léé w'\:rﬁ));é
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metod:_a metod:_a zmiennej | zmiennej
GRGz GRGz ewolucyjna | ewolucyjna | ° N A
wielostartem | wielostartem niezaleznej | niezaleznej
Cisnienie wody miejskiej [Bar] 4.2 3,9 43
Cisnienie wody obiegowej [Bar] 24 25 2,3
Czas pierwszej fazy wtrysku [ms] 2246,6 2260,1 22742
Czas cyklu [s] 133,2 113,9 106,4
Czas cyklu smarowania [s] 26,3 28,3 28,1
Czas dozowania stopu [s] 23,0 25,8 27,5
Czas dozowania stopu 2 [s] 76,6 82,2 72,3
Czas krzepnigcia 12 [s] 10,2 10,1 10,1
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Czas przedmuchu [s] 8,2 8,6

Czas smarowania [s] 8,1 7,7 | 62

Dzienny numer wtrysku [j.] 368,7 270,0

Filtr prézni 1 [mBar] 1499,4 14153

Grubos¢ pietki uktadu wlewowego [mm] 38,4 37,1

Koncentrat [%] 2,5 2.3

Cisnienie maksymalne [Bar] 339,6 343,8

Predkos¢ wirysku maksymalna [m/s] 5,9 5,9

Opéznienie multiplikacji [ms] 169,7 171,0

Stata temperatura chlodzenia plyty [°C] 30,3 30,2

Poziom stopu w piecu podgrzewczym [mm] 2742 2171

Poziom wody w strumieniu chlodzqcym [mm] 261,0 260,1

Czas drugiej fazy wtrysku [ms] 89,1 89,1

Profil prézni 1 [mBar] 1104,0 11918

voxvp2 |  511556,0 | 4742739

Przeplyw chlodzenia tloka [1] 19,3 21,3

Przeplyw w obwodzie chlodzenia 1 [I] 25,9 24,9

Przeplyw w obwodzie chtodzenia 13 [1] 16,5 17,8

Przeplyw w obwodzie chlodzenia 14 [1] 28,0 27,8

Przeplyw w obwodzie chlodzenia 15 [1] 26,3 26,8

Przeplyw w obwodzie chlodzenia 17 [1] 28,7 27,8

Przeplyw w obwodzie chlodzenia 20 [1] 234 223

Przeplyw w obwodzie chiodzenia 6 [I] 28,7 31,0

Predkos¢ we wlewach doprowadzajgcych -
[m/s] 38,5 38,7 38,7

Suw pierwszej fazy wtrysku [mm] 19,0 19,1

Temperatura chlodzenia tioka [°C] SIS 32,1

Temperatura stopu [°C] 680,8 681,1

Temperatura termoregulatora 3.2 [°C] 150,2 151,2

Temperatura tulei 2 [°C] 2243 2221

Temperatura tulei 3 [°C] 2149 236,1

Temperatura tulei 4 [°C] 2336 22538

Temperatura w obwodzie chlodzenia 1 [°C] 32,9 32,8

Temperatura w obwodzie chlodzenia 13 [°C] 34,4 36,1

Temperatura w obwodzie chlodzenia 14 [°C] 32,6 32,6

Temperatura w obwodzie chlodzenia 15 [°C] 33,7 34,2

Temperatura w obwodzie chlodzenia 17 [°C] 29,3 31,1

Temperatura w obwodzie chlodzenia 7 [°C] 28,8 28,8

Temperatura wody miejskiej [°C] 21,0 23,7

Wartos¢ prozni 1 [mBar] 3113 316,4 4111

W przypadku wielowymiarowej optymalizacji zbioru 1, ustalonego wg. kr. odwréconego K-
W i1 ANOVA, Solver nie mogt znalez¢ dopuszczalnego rozwigzania:
o dlasieci z 100% warto$ci w zbiorze uczacym, 22 neuronami w warstwie ukrytej
i funkcja aktywacji liniowa na wyjsciu,
e dla sieci z 70% warto$ci w zbiorze uczacym, 15% w zbiorze walidacyjnym i
15% w testujacym, 7 neuronami w warstwie ukrytej 1 funkcjg aktywacji liniowa

na wyjsciu.
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Tab. 5.110.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN,
meoda | ML TSR max | SR ek
Nazwa zmiennej niezaleznej nieliniowa GRG 7 metodq metodg Zmiennej Zmiennej
GRG z . ewolucyjna | ewolucyjna ; e Lo
wielostartem wielostartem niezaleznej | niezaleznej
Cisnienie wody miejskiej [Bar] 3,6 4,3 3.9 4,2
Grubosé pietki uktadu wlewowego [mm] 38,2 35,6 SoNI! 37,8
Cisnienie maksymalne [Bar] 3434 3422
Opoznienie multiplikacji [ms] 172,7 172,3 172,1 170,9
Profil prézni 2 [mBar] 1167,7 11315 1147,3 1117,9
Przeplyw chiodzenia tioka [I] 23,9 18,0 22,3 20,3
Przeplyw w obwodzie chlodzenia 13 [l] 18,0 17,2 17,0 17,1
C1FxCl14F 684,9 656,9 714,5 678,2
Przeplyw w obwodzie chlodzenia 15 [l] 27,7 26,6 27,2 27,4
Przeplyw w obwodzie chlodzenia 20 [1] 22,1 22,9 22,4 24,0
Przeplyw w obwodzie chlodzenia 6 [1] 29,3 30,0 28,9 29,1
Temperatura stopu [°C] 678,4 676,2 680,0
Wartos¢ prozni 1 [mBar] 253,6 340,2 329,2 325,8

Tab. 5.111.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla
sieci z 100% wartosci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, MIN, . MA)S,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda Z‘;'Vnalrgr(l)sg] Z‘;Vnalgr?rslgj
GRGz GRGz ewolucyjna | ewolucyjna . L . L
wielostartem | wielostartem niezaleznej | niezaleznej
Cisnienie wody miejskiej [Bar] 4,0 4.2 4,0
Grubosé pietki uktadu wlewowego
[mm] 35,0 37,6 36,1
Cisnienie maksymalne [Bar] 3424 343,0 3414
Opoznienie multiplikacji [ms] 172,6 1714 1734
Profil prozni 2 [mBar] 1134,9 11122 1179,2
Przeplyw chlodzenia tloka [1] 19,2 18,4 20,4
Przeplyw w obwodzie chlodzenia 13 [l] 17,6 18,1 17,0
C1FxCl14F 678,5 694,1 691,4
Przeplyw w obwodzie chiodzenia 15 [1] 26,6 26,8 25,8
Przeplyw w obwodzie chlodzenia 20 [l] 234 234 22,4
Przeplyw w obwodzie chiodzenia 6 [I] 28,8 29,4 28,4
Temperatura stopu [°C] 677,5 678,1 683,1
Wartosé prozni 1 [mBar] 2749 328,4 358,6

Tab. 5.112.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla
sieci z 100% wartosci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej i funkcja
aktywacji liniowg na wyjsciu

MIN, metoda MAX, MIN MAX
P metoda MIN, MAX, o o
Nazwa zmiennej niezaleznej mgg‘ (I;OW& nieliniowa metoda metoda wartose Wartos¢.
z . . zmiennej Zzmiennej
wielostartem - GRG z ewolucyjna | ewolucyjna niezaleznej | niezaleznej
wielostartem
Cisnienie wody miejskiej [Bar]
Grubosé pietki uktadu wlewowego [mm] 34,9 35,1 35,6 38,4
Cisnienie maksymalne [Bar] 3425 341,2 341,7 343,3
Opdznienie multiplikacji [ms] 170,3 173,7 172,1 172,3
Profil prézni 2 [mBar] 1110,6
Przeplyw chlodzenia tloka [1] 21,9 21,8 21,5 19,4
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Przeplyw w obwodzie chlodzenia 13 [I] 16,9 17,1 17,0 17,6
C1FxCl4F 684,6 7119 662,0 684,8
Przeplyw w obwodzie chlodzenia 15 [1] 26,5 26,4 26,5 26,3
Przeplyw w obwodzie chlodzenia 20 [1] 22,5 22,6 23,7 23,2
Przephyw w obwodzie chlodzenia 6 [1] 29,5 29,2 29,5 29,6
Temperatura stopu [°C] 673,9 681,3 676,2 6814
Wartosé prozni 1 [mBar] 273,0 251,6 359,9 372,8

Tab. 5.113.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej i funkcja

aktywacji liniowa na wyjsciu

MAX,
o Mnli’:I'irTi]g\t/(\;ga metoda MIN, MAX,
Nazwa zmiennej niezaleznej GRG 7 nieliniowa metodg metodz?\
wielostartem _GRG z ewolucyjna | ewolucyjna
wielostartem
Cisnienie wody miejskiej [Bar]
Grubosé pietki uktadu wlewowego [mm] 36,7 37,1 36,5 37,1
Cisnienie maksymalne [Bar] 341,3 341,7 342,1 341,1
Opdznienie multiplikacji [ms] 170,9 1715 170,6 172,7
Profil prozni 2 [mBar] 11911
Przepltyw chlodzenia tloka [1] 20,2 18,0 21,8 20,8
Przeplyw w obwodzie chlodzenia 13 [1] 18,0 19,4 16,7 17,9
C1FxCl4F 739,9 729,7 687,7 691,1
Przeplyw w obwodzie chlodzenia 15 [l] 26,6 26,2 26,2 26,4
Przeplyw w obwodzie chiodzenia 20 [l] 22,5 22,7 23,3 23,9
Przeplyw w obwodzie chlodzenia 6 [1] 29,1 30,3 30,4 30,1
Temperatura stopu [°C] 682,8 683,1 675,7 680,9
Wartos¢ prozni 1 [mBar] 326,7 282,6 297,2 361,6

MIN
warto$¢
Zmiennej
niezaleznej

MAX
warto$¢
Zmiennej
niezaleznej

Tab. 5.114.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. odwréconego
K-W i ANOVA, dla sieci z 100% warto$ci w zbiorze uczgcym, z 2 neuronami w warstwie
ukrytej i funkcjg aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda
GRGz GRGz ewolucyjna | ewolucyjna
wielostartem | wielostartem

Cisnienie wody miejskiej [Bar] 3.8 4,3 4,2 3,6
Czas krzepniecia t2 [s] 10,3 10,6 10,4 10,4
Filtr prozni 1 [mBar] 1486,2 1389,1 1473,4 14149
Grubosé pietki uktadu wlewowego [mm] 35,3 36,8 37,7 36,5
Cisnienie maksymalne [Bar] 3415 3429 342,0 340,8
Opdznienie multiplikacji [ms] 1717 172,5 173,0 172,6
Profil prozni 2 [mBar] 1180,5 1123,0 1159,9 1158,2
Przeplyw chlodzenia tloka [1] 21,1 18,9 19,0 20,9
C1FxCl4F 719,8 662,1 712,5 683,0
Przeplyw w obwodzie chlodzenia 13 [I] 17,6 16,9 18,1 16,1
Przeplyw w obwodzie chlodzenia 15 [1] 25,9 26,0 26,4 26,1
Przeplyw w obwodzie chlodzenia 20 [1] 23,2 22,9 23,0 21,9
Przeplyw w obwodzie chlodzenia 6 [1] 29,8 29,5 29,2
Temperatura chlodzenia tloka [°C] 31,7 31,4 33,1 30,2
Temperatura stopu [°C] 676,8 677,1 680,5 684,1
Temperatura w obwodzie chlodzenia 1
[°C] 34,9 34,7 35,1 32,7
Temperatura wody miejskiej [°C] 21,2 22,4 22,3 22,3
Temperatura wody W instalacji [°C] 23,5 24,3 24,0 23,9
Wartosé prozni 1 [mBar] 312,1 330,8 325,5 326,6
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MAX
warto$é
zmiennej

niezaleznej | niezaleznej




Tab. 5.115.: Wyniki wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. odwréconego
K-W i ANOVA, dla sieci z 100% warto$ci w zbiorze uczacym, z 3 neuronami w warstwie
ukrytej i funkcjg aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, MI N, . MA)?,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda Z":ﬁgﬁﬁg. wartosc
GRGz GRGz ewolucyjna | ewolucyjna | 1€ | zmienney
wielostartem | wielostartem niezaleznej | niczaleznej
Cisnienie wody miejskiej [Bar] 4,3 3,7 4,0 4,0
Czas krzepniecia 12 [s] 10,5 10,2 10,4 10,6
Filtr prézni 1 [mBar] 1394,2 1358,1 1420,3 14498
Grubos¢ pigtki uktadu
wlewowego [mm] 35,9 37,3 36,9 39,8
Cisnienie maksymalne [Bar] 343,9 341,3 341,9 342,3
Opéznienie multiplikacji [ms] 170,9 173,4 172,8
Profil prézni 2 [mBar] 1180,7 1177,1 1173,5 1170,2
Przeplyw chlodzenia tloka [I] 22,1 20,7 19,8 18,8
C1FxC14F 666,9 679,4 717,9 748,2
Przeplyw w obwodzie
chlodzenia 13 [l] 16,7 17,5 17,6 17,3
Przeplyw w obwodzie
chiodzenia 15 [1] 26,2 26,2 26,6 26,9
Przeplyw w obwodzie
chiodzenia 20 [1] 23,5 22,8 22,9 22,9
Przeplyw w obwodzie
chiodzenia 6 [1] 29,9 28,6 29,0 31,8
Temperatura chiodzenia tioka
[°C] 30,9 33,6 31,3 33,3
Temperatura stopu [°C] 678,8 676,0 679,7 681,0
Temperatura w obwodzie
chiodzenia 1 [°C] 36,1 34,7 35,5 31,6
Temperatura wody miejskiej
[°C] 24,2 22,3 23,5 20,8
Temperatura wody w instalacji
[°C] 24,1 239 24,0 24,1
Wartos¢ prozni 1 [mBar] 295,2 370,5 374,8 313,7

W przypadku wielowymiarowej optymalizacji zbioru 2, ustalonego wg. kr. odwréconego K-
W i ANOVA, Solver nie mogt znalez¢ dopuszczalnego rozwigzania:
e dla sieci z 100% warto$ci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej i

funkcja aktywacji liniowa na wyjsciu.
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Tab. 5.116.: Wyniki wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W, dla
sieci z 100% wartosci w zbiorze uczacym, z 23 neuronami w warstwie ukrytej i funkcja
aktywacji liniowg na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, M IN, . MA)?,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa | metoda metoda ZV:n?liﬁOSC_ wartose
GRG z GRG z ewolucyjna | ewolucyjna | ennej | zmiennej.
wielostartem | wielostartem niezaleznej | niezaleznej
Cisnienie wody obiegowej [Bar] 23 2,5 2,2 2,4
Czas pierwszej fazy wtrysku [ms] 22784 2261,0 2260,0 2297,6
Czas cyklu [s] 1174 106,2 112,8 118,6
Czas cyklu smarowania [s] 27,8 27,6 27,0 27,9
Czas dozowania stopu [s] 24,7 215 16,3 19,3
Czas dozowania stopu 2 [s] 75,4 87,1 77,0 74,5
Czas przedmuchu [s] 10,4 8,9 8,3 9,5
Czas smarowania [s] 6,9 7,3 73 78
Filtr prozni 1 [mBar] 1426,3 1339,8 1449,0 1336,1
Koncentrat [%] 22 2,2 2,3
Opoznienie multiplikacji [ms] 172,4 173,55 1741
Stata temperatura chiodzenia plyty
[°Cj] 29,3 28,7 28,4 29,2
Czas drugiej fazy wtrysku [ms] 89,3 88,6 88,6 88,6
Profil prézni 1 [mBar] 1226,3 1256,5 1204,7 1185,3
V2xVp2 461501,7 3789538 | 418216,3 | 620333,5
Przeplyw chiodzenia tloka [1] 19,1 18,5 18,6 22,8
Przeplyw w obwodzie chlodzenia 15 [1] 26,5 26,6 25,6 25,9
Przeplyw w obwodzie chlodzenia 17 [1] 32,8 30,2 26,1 26,6
Przeplyw w obwodzie chlodzenia 6 [1] 30,0 29,6 29,8 29,9
Suw docisku po multiplikacji [mm] 18,3 18,3 19,0 18,5
Temperatura chlodzenia tloka [°C] 31,8 31,6 31,4 31,3
Temperatura stopu /°C/ 678,1 676,9 676,6 680,9
Temperatura termoregulatora 3.2 [°C] 151,1 148,9 150,0 152,2
Temperatura tulei 2 [°C] 213,7 216,6 226,7 217,0
Temperatura w obwodzie chtodzenia 1
/°Cj 33,8 31,7 32,2 33,6
Temperatura w obwodzie chtodzenia
14 [°C] 32,5 31,8 32,8 32,9
Temperatura w obwodzie chlodzenia
15 [°C] 34,7 33,2 34,1 33,7
Temperatura w obwodzie chlodzenia
17 /°C] 29,5 28,7 30,2 29,7
Temperatura w obwodzie chtodzenia 7
/°Cj 27,9 29,1 27,9 28,6
Temperatura wody miejskiej [°C] 21,6 22,5 22,7 21,9
Wartosé prozni 1 [mBar] 333,3 282,8 354,7 310,4

Tab. 5.117.: Wyniki wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W, dla
sieci z 100% wartosci w zbiorze uczacym, z 21 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, MIN, i MA)S,
Nazwa zmiennej niezaleznej nieliniowa nieliniowa metoda metoda Z‘:ﬁgﬁﬁg. wartose.
GRG z GRG z ewolucyjna | ewolucyjna | nej | zmiennej
wielostartem | wielostartem niezaleznej | niezaleznej
Cisnienie wody obiegowej [Bar] 2,3 2,6 2,6 2,3
Czas pierwszej fazy wtrysku [ms] 2266,2 2246,2 2239,0 2242.,6
Czas cyklu [s] 140,9 147,8 131,0
Czas cyklu smarowania [s] 27,4 21,7 28,0
Czas dozowania stopu [s] 20,8 27,5 14,5
Czas dozowania stopu 2 [s] 81,3 66,9 74,7
Czas przedmuchu [s] 8,7 8,1 9,8
Czas smarowania [s] 6,8 6,7 6,5
Filtr prozni 1 [mBar] 1417,6 1400,8 1392,9
Koncentrat [%] 2,2 2,2 2,2
Opoznienie multiplikacji [ms] 170,3 169,7 171,3
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Stata temperatura chlodzenia plyty [°C] 28,5 29,2 28,7 29,6
Czas drugiej fazy wtrysku [ms] 89,5 89,0 89,1
Profil prozni 1 [mBar] 1190,9 1197,5 1182,3 1154,4
V2xVp2 376320,5 472592,8 431653,3 644357,1
Przeplyw chiodzenia tloka [1] 22,6 19,7 22,7 20,6
Przeplyw w obwodzie chlodzenia 15 [1] 26,1 26,9 26,3 26,4
Przeplyw w obwodzie chlodzenia 17 [1] 26,4 26,3 22,6 27,0
Przeplyw w obwodzie chlodzenia 6 [l] 29,2 30,9 29,8 29,2
Suw docisku po multiplikacji [mm] 19,1 17,9 19,1 18,4
Temperatura chlodzenia tloka [°C] 30,5 30,8 30,4 30,0
Temperatura stopu [°C] 681,3 682,6 679,4 676,4
Temperatura termoregulatora 3.2 [°C] 148,2 151,1 151,3 148,6
Temperatura tulei 2 [°C] 215,1 225,8 2173 2217
Temperatura w obwodzie chlodzenia 1 [°C] 33,9 34,8 34,9 35,0
Temperatura w obwodzie chtodzenia 14

[°Cj] 32,4 331 32,1 32,4
Temperatura w obwodzie chlodzenia 15

[°Cj] 34,1 34,6 334 34,6
Temperatura w obwodzie chlodzenia 17

[°C] 28,6 29,6 28,0 31,8
Temperatura w obwodzie chlodzenia 7 [°C] 28,5 28,8 28,7 29,2
Temperatura wody miejskiej [°C] 22,7 23,8 21,5 23,4
Wartosé prozni 1 [mBar] 392,4 324,2 406,3 393,0

W przypadku wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W Solver nie

mogt znalez¢ dopuszcezalnego rozwigzania:

dla sieci z 70% wartos$ci w zbiorze uczacym, 15% w zbiorze walidacyjnym i

15% w zbiorze testujacym, z 7 i 14 neuronami w warstwie ukrytej i funkcja

aktywacji tangensoidalng na wyjsciu.

Tab. 5.118.: Wyniki wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. odwroconego
K-W i ANOVA, dla sieci z 100% wartosci w zbiorze uczacym, z 21 neuronami w warstwie
ukrytej 1 funkcja aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, Mr:N, . MI',?X
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda zvr:ﬁer?r?:j zz]aier?r?gj
GRGz GRGz ewolucyjna | ewolucyjna | A .o
wielostartem | wielostartem niezaleznej | niezaleznej
Cisnienie wody obiegowej [Bar] 2,2 2,5 2,4
Czas pierwszej fazy wtrysku [ms] 2240,1 22814 2256,5
Czas cyklu [s] 96,8 1215 109,7
Czas cyklu smarowania [s] 28,2 26,7 28,5
Czas dozowania stopu [s] 29,5 27,3 15,2
Czas dozowania stopu 2 [s] 61,8 83,9 82,5
Czas krzepniecia t2 [s] 10,4 10,6 10,2
Czas przedmuchu [s] 10,8 74 \
Czas smarowania [s] 6,9 6,8 6,9
Filtr prozni 1 [mBar] 1439,0 1467,9 1419,0
Grubosé pietki uktadu wlewowego
[mm] 39,7 36,1 38,0
Koncentrat [%] 2,3 2,3 23
Cisnienie maksymalne [Bar] 341,7 343,1 3424
Predkos¢ wirysku maksymalna [m/s] 59 59 59
Opéznienie multiplikacji [ms] 172,3 171,9 171,6
Stata temperatura chlodzenia piyty [°C] 28,2 29,6 29,3
Poziom stopu w piecu podgrzewczym
[mm] 206,0 2619 337,1
Poziom wody w strumieniu chtodzgcym
[mm] 257,7 270,6 230,8
Czas drugiej fazy wtrysku [ms] 89,4 88,9 88,6
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Profil prézni 1 [mBar] 1184,3 1215,5 1098,7 1288,8
V2xVp2 483497 ,4 577698,6 | 310240,5| 475940,1
Przeplyw chiodzenia tioka [1] 20,0 20,7 17,8 18,2
Przeplyw w obwodzie chiodzenia 1 [I] 26,5 25,4 25,5 25,6
Przeplyw w obwodzie chlodzenia 13 [l] 17,9 18,4 16,4 17,0
Przeplyw w obwodzie chlodzenia 14 [1] 27,1 27,5 27,6 27,8
Przeplyw w obwodzie chiodzenia 15 [1] 25,7 26,1 26,0 26,7
Przeplyw w obwodzie chlodzenia 17 [l] 26,7 26,6 27,3 26,9
Przeplyw w obwodzie chlodzenia 17 [1] 22,7 23,2 22,8 23,6
Przeplyw w obwodzie chlodzenia 6 [1] 29,2 29,0 28,4 28,6
Predkosc we wlewach

doprowadzajgcych [m/s] 38,8 38,5 38,4 38,5
Suw docisku po multiplikacji [mm] 18,1 17,8 18,6 17,8
Temperatura chtodzenia tloka [°C] 32,4 30,6 30,1 29,3
Temperatura stopu [°C] 679,2 680,1 677,8 679,6
Temperatura termoregulatora 2.1 [°C] 70,8 70,7 70,5 71,1
Temperatura termoregulatora 3.2 [°C] 149,1 150,7 148,9 153,6
Temperatura tulei 2 [°C] 219,8 2214 217,6 213,6
Temperatura tulei 3 [°C] 2225 226,4 209,7 2227
Temperatura w obwodzie chtodzenia 1

[°C] 34,4 33,2 33,9 34,7
Temperatura w obwodzie chtodzenia 13

[°C] 37,2 35,9 34,3 36,4
Temperatura w obwodzie chtodzenia 14

[°C] 32,5 32,5 31,8 32,5
Temperatura w obwodzie chlodzenia 15

[°C] 35,0 34,0 34,0 34,0
Temperatura w obwodzie chlodzenia 17

[°C] 28,7 29,9 27,6 30,6
Temperatura w obwodzie chtodzenia 7

[°C] 28,5 28,9 28,5 28,2
Temperatura wody miejskiej [°C] 23,4 234 21,8 22,8
Wartos¢ prozni 1 [mBar] 467,3 3275 348,2 304,1

W przypadku wielowymiarowej optymalizacji zbioru 3, ustalonego wg. kr. K-W

odwrdconego i ANOVA, Solver nie mogt znalez¢ dopuszczalnego rozwigzania:

e dla sieci z 100% warto$ci w zbiorze uczacym, z 23 neuronami w warstwie

ukrytej 1 funkcja aktywacji liniowa na wyjs$ciu.

Tab. 5.119.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda
GRGz GRGz ewolucyjna | ewolucyjna
wielostartem | wielostartem

Czas cyklu smarowania [s] 27,4 26,2 27,9 25,2
Czas krzepniecia t2 [s] 10,6 10,2 10,7 10,3
Czas przedmuchu [s] 7,2 91 8,7 10,2
Czas smarowania [s] 6,7 79 6,6 75
Stata temperatura chtodzenia plyty
[°C] 28,5 28,7 29,0 30,4
Poziom stopu w piecu podgrzewczym
[mm] 372,4 373,22 410,5 354,4
V2xVp2 223066,3 350082,0 | 253880,4 | 355108,9
Przeplyw chlodzenia tloka [1] 19,0 20,5 21,2 20,1

219

MIN MAX
wartos¢ warto$é
zmiennej | zmiennej

niezaleznej | niezaleznej



Przeplyw w obwodzie chlodzenia 1 [l] 26,6 24,5 25,6 24,4

Przeplyw w obwodzie chlodzenia 13 [1] 17,9 17,5 17,4 18,5
Przeplyw w obwodzie chlodzenia 14 [1] 27,1 27,2 27,5 27,0
Przeplyw w obwodzie chlodzenia 15 [1] 26,7 26,9 26,7 27,2
Przeplyw w obwodzie chiodzenia 20 [1] 22,4 23,9 23,0 23,7
Temperatura tulei 2 [°C] 221,6 216,2 219,9 221,4
Temperatura w obwodzie chlodzenia 17

[°C] 30,1 315 29,7 28,5
Wartos¢ prozni 1 [mBar] 351,9 382,8 3475 380,1

Tab. 5.120.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 4 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, w';/lr:’:s'é W'\:I':‘O);C,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda . . ] .
: - zmiennej | zmiennej
GRG z GRG z ewolucyjna | ewolucyjna

. . niezaleznej | niezaleznej
wielostartem | wielostartem ) d

Czas cyklu smarowania [s] 28,5 _ 27,9 28,3

Czas krzepniecia t2 [s] 10,4 10,4 10,6 10,2
Czas przedmuchu [s] 9,8 10,0 9,9 10,4
Czas smarowania [s] 78 7,2 8,0 8,1
Stata temperatura chtodzenia plyty

[°C] 29,5 29,9 29,6 29,6
Poziom stopu w piecu podgrzewczym

[mm] 400,6 494,6 369,5 396,6
V2xVp2 445869,4 3747953 | 305496,2 | 499166,8
Przeplyw chlodzenia tioka [1] 19,4 20,0 18,4 17,3
Przeplyw w obwodzie chlodzenia 1 [1] 25,5 23,7 25,7 25,1
Przeplyw w obwodzie chiodzenia 13

[ 17,2 18,5 17,0 16,9

Przeplyw w obwodzie chiodzenia 14
[ 285 283 27,0

Przeplyw w obwodZzie chtodzenia 15

[1] 26,6 25,6 25,5 26,9
Przeptyw w obwodZzie chlodzenia 20

[ 22,2 234 22,1 23,2
Temperatura tulei 2 [°C] 220,6 217,0 219,3 217,6
Temperatura w obwodzie chtodzenia

17 [°C] 28,8 30,9 30,3 31,3
Wartosé prozni 1 [mBar] 405,8 354,2 365,3 404,3

Tab. 5.121.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 5 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN MAX
metod’a metod;i MIN, MAX, M IN, i MA)?,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda Wartose wartose
GRGz GRGz ewolucyjna | ewolucyjna Zmiennej | zmienney
wielostartem | wielostartem niezaleznej | niezaleznej
Czas cyklu smarowania [s] 27,4 28,6 28,9 27,3
Czas krzepniecia t2 [s] 10,2 10,7 10,7
Czas przedmuchu [s] 8,5 8,1 9.2 95
Czas smarowania [s] 7,3 7,6 72 72
Stata temperatura chlodzenia plyty [°C] 29,8 30,3 29,6 29,3
Poziom stopu w piecu podgrzewczym
[mm] 319,2 429,2 3211
V2xVp2 559367,5 374456,4 | 490026,4 | 406752,7
Przeplyw chiodzenia tioka [1] 22,4 18,4 21,7 17,7
Przeptyw w obwodzie chlodzenia 1 [I] 25,9 25,5 24,1 27,0
Przeplyw w obwodzie chlodzenia 13 [l] 18,0 18,6 18,0 17,1
Przeplyw w obwodzie chlodzenia 14 [1] 27,3 27,8 27,2 28,4
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Przeplyw w obwodzie chiodzenia 15 [1] 26,1 26,6 25,8 26,6
Przeplyw w obwodzie chlodzenia 20 [l] 23,1 23,5 22,4 23,3
Temperatura tulei 2 [°C] 225,0 2214 222,3 2238
Temperatura w obwodzie chlodzenia 17

[°C] 32,0 30,5 29,9 30,0
Wartos¢ prozni 1 [mBar] 311,9 360,0 290,9 421,2

Tab. 5.122.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 90% warto$ci w zbiorze uczacym i 10% w testujacym, z 3 neuronami w warstwie ukrytej
1 funkcja aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, MﬁIN’ . Mr'?x
Nazwa zmiennej niezalezne;j nieliniowa | nieliniowa metodg metodg zvr;lwa; er?r?:j z‘;vnai er?:gj
GRGz GRGz ewolucyjna | ewolucyjna | . R R
wielostartem | wielostartem niezaleznej | niezaleznej

Czas cyklu smarowania [s] 27,6 26,9 26,5 26,5

Czas krzepniecia t2 [s] 10,3 10,1 10,2

Czas przedmuchu [s] 10,2 8,7 8,1 95

Czas smarowania [s] 7,7 78 59 8,1

Stata temperatura chlodzenia plyty [°C] 28,6 28,9 28,8 30,4

Poziom stopu w piecu podgrzewczym

[mm] 467,1 2724 480,2 451,2

V2xVp2 308761,5 395909,3 | 249079,9 | 4119352

Przeplyw chlodzenia tloka [1] 16,3 17,4 16,2 21,0

Przeplyw w obwodzie chlodzenia 1 [1] 26,9 27,3 26,9 25,8

Przeplyw w obwodzie chlodzenia 13 [1] 17,6 16,5 17,8 18,5

Przeplyw w obwodzie chlodzenia 14 [1] 28,0 28,4 27,9

Przeplyw w obwodzie chiodzenia 15 [1] 27,4 26,5 26,6 27,3

Przeplyw w obwodzie chiodzenia 20 [1] 21,7 22,1 215 21,6

Temperatura tulei 2 [°C] 2235 220,3 220,2 216,5

Temperatura w obwodzie chtodzenia 17

[°C] 294 30,6 31,7 30,4

Wartosé prozni 1 [mBar] 270,9 4411 310,0 321,4

Tab. 5.123.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 90% warto$ci w zbiorze uczacym i 10% w testujgcym, Z 4 neuronami w warstwie ukrytej
1 funkcja aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, MrlN, . lex
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda z‘;'vnezer?rslgj Zvr:’laier?r::j
GRGz GRGz ewolucyjna | ewolucyjna | R L
wielostartem | wielostartem niezaleznej | niezaleznej

Czas cyklu smarowania [s] 25,8 27,0 29,1

Czas krzepniecia t2 [s] 10,6 10,2 10,3

Czas przedmuchu [s] 8,7 9,3 9,2

Czas smarowania [s] 7,9 6,8 58

Stata temperatura chlodzenia plyty [°C] 28,3 30,5 28,8

Poziom stopu w piecu podgrzewczym

[mm] 4724 443,9 2949

V2xVp2 516944,2 268098,9 | 392647,5

Przeplyw chiodzenia tioka [1] 18,7 22,0 16,1

Przeplyw w obwodzie chlodzenia 1 [I] 25,5 23,7 26,1

Przeplyw w obwodzie chtodzenia 13 [I] 18,0 174 16,7

Przeplyw w obwodzie chlodzenia 14 [1] 28,2 27,4 27,4

Przeplyw w obwodzie chtodzenia 15 [I] 26,4 27,0 27,4

Przeplyw w obwodzie chtodzenia 20 [1] 23,1 24,2 22,6

Temperatura tulei 2 [°C] 2215 2205 2229

Temperatura w obwodzie chlodzenia 17

[°C] 30,5 29,9 30,9

Wartos¢ prozni 1 [mBar] 370,2 3924 335,9
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Tab. 5.124.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej i funkcja

aktywacji liniowa na wyjsciu

MIN MAX
metocia metodél MIN, MAX, MIN, . MAX,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metodz?\ metodz?\ zmgr?r?:j zmgr?r?:j
GRG z GRG z ewolucyjna | ewolucyjna | R .
wielostartem | wielostartem niezaleznej | niezaleznej

Czas cyklu smarowania [s] 27,2 27,6 28,2 27,3

Czas krzepniecia t2 [s] 10,4 10,4 10,7 10,4

Czas przedmuchu [s] 8,7 9,3 9,7 8,7

Czas smarowania [s] 75 7,1 74 7,9

Stata temperatura chlodzenia plyty [°C] 30,6 27,9 30,6 28,4

Poziom stopu w piecu podgrzewczym

[mm] 303,9 387,6 406,3 455,7

V2xVp2 330312,8 337179,5| 462937,9 | 4968444

Przeplyw chiodzenia toka [1] 21,0 17,9 21,4 19,4

Przeplyw w obwodzie chlodzenia 1 [I] 26,0 26,0 24,6 24,4

Przeplyw w obwodzie chlodzenia 13 [l] 17,4 17,8 16,7 18,1

Przeptyw w obwodzie chiodzenia 14 [1] 28,5 28,4 27,0 27,8

Przeplyw w obwodzie chiodzenia 15 [l] 27,1 26,8 26,5 26,6

Przeptyw w obwodzie chiodzenia 20 [1] 22,6 21,6 219 22,7

Temperatura tulei 2 [°C] 2218 218,0 2235 2219

Temperatura w obwodzie chlodzenia 17

/[°C] 29,1 29,1 32,6 32,3

Wartos¢ prozni 1 [mBar] 320,2 332,2 279,6 290,1

Tab. 5.125.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 100% warto$ci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej i funkcja
aktywacji liniowg na wyjsciu

MIN MAX
metod’a metod;i MIN, MAX, M IN, i MA)?,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda zv:nﬁg:sgj z‘;vn‘iilgr?r::j
GRGz GRGz ewolucyjna | ewolucyjna | R I Lo
wielostartem | wielostartem niezaleznej | niezaleznej

Czas cyklu smarowania [s] 25,9 27,2 27,1 28,1

Czas krzepniecia t2 [s] 10,5 10,2 10,4 10,5

Czas przedmuchu [s] 8,6 8,4 9,0 9,3

Czas smarowania [s] 6,9 74 78 7,6

Stala temperatura chiodzenia plyty [°C] 29,0 29,0 29,0 29,9

Poziom stopu w piecu podgrzewczym

[mm] 380,2 354,2 310,6 393,6

V2xVp2 356126,2 326865,0 | 333704,2 | 408109,7

Przeplyw chiodzenia tloka [1] 17,0 18,5 22,3 19,8

Przeplyw w obwodzie chlodzenia 1 [I] 25,3 25,8 24,8 25,8

Przeptyw w obwodzie chiodzenia 13 [1] 16,6 16,3 16,5 18,0

Przeplyw w obwodzie chiodzenia 14 [1] 27,8 27,4 27,2 28,1

Przeplyw w obwodzie chlodzenia 15 [l] 27,1 26,7 26,3 26,8

Przeptyw w obwodzie chtodzenia 20 [1] 235 22,3 22,8 22,8

Temperatura tulei 2 [°C] 225,7 2242 2234 2215

Temperatura w obwodzie chlodzenia 17

[°C] 31,1 31,4 31,6 32,3

Wartosé prozni 1 [mBar] 394,7 293,6 225,7 369,6
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Tab. 5.126.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W, dla
sieci z 100% wartosci w zbiorze uczacym, z 4 neuronami w warstwie ukrytej i funkcja
aktywacji liniowa na wyjsciu

MIN MAX
metocia metodél MIN, MAX, M IN, i MA)?,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metodg metodg z?nﬁgr?rsm:j z‘;vnigtr?rlej
GRG z GRG z ewolucyjna | ewolucyjna | e L
wielostartem | wielostartem niezaleznej | niezaleznej

Czas cyklu smarowania [s] 21,7 27,0 27,4 28,0

Czas krzepniecia t2 [s] 10,5 10,2 10,2 10,5

Czas przedmuchu [s] 9,2 8,4 94 10,1

Czas smarowania [s] 7,6 6,6 7.8 7,0

Stata temperatura chlodzenia plyty

[°C] 29,1 29,0 30,0 28,9

Poziom stopu w piecu podgrzewczym

[mm] 307,1 361,8 377,8 287,5

V2xVp2 308025,0 436490,9 | 503890,2 | 333389,5

Przeplyw chiodzenia toka [1] 19,6 16,7 19,1 19,2

Przeplyw w obwodzie chlodzenia 1 [I] 26,4 26,4 25,5 25,6

Przeplyw w obwodzie chlodzenia 13 [l] 16,7 17,0 17,8 17,7

Przeplyw w obwodzie chlodzenia 14 [1] 28,2 28,4 27,7 27,9

Przeplyw w obwodzie chlodzenia 15 [l] 27,0 26,8 26,6 26,6

Przeplyw w obwodzie chlodzenia 20 [1] 22,7 22,7 23,4 22,7

Temperatura tulei 2 [°C] 217,6 223,2 218,3 2243

Temperatura w obwodzie chtodzenia

17 [°C] 29,6 30,5 30,9 29,8

Wartos¢ prozni 1 [mBar] 275,3 340,6 321,8 320,3

Tab. 5.127.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. odwroconego
K-W, dlasieci z 100% warto$ci w zbiorze uczgcym, Z 2 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, M N, i MAX,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda Zvrrﬁzr?;:. Wartosc
GRG z GRGz ewolucyjna | ewolucyjna | €] | zmiennej
wielostartem | wielostartem niezaleznej | niezaleznej

Czas cyklu smarowania [s] 27,6 25,8 27,1 27,7

CtxDt2 14185,3 9310,4 12936,3

Czas krzepnigcia 12 [s] 10,5 10,4 10,5 10,4

Czas przedmuchu [s] 83 8,7 8,2 9,1

Czas smarowania [s] 7,3 7,1 6,8 7,9

Filtr prozni 1 [mBar] 1398,8 1430,8 1394,5 1455,6

Grubosé pietki uktadu wlewowego [mm] 41,2 38,1 40,7 41,3

Cisnienie maksymalne [Bar] 3417 340,8 343,2 3428

Predkos¢ wtrysku maksymalna [m/s] 59 5,9 5 52

Opdznienie multiplikacji [ms] 172,9 172,4 172,6 171,6

Stala temperatura chiodzenia plyty [°C] 30,8 30,4 30,4 28,9

V2xVp2 213849,8 453349,8 | 303422,7 | 422436,2

Przeptyw chlodzenia tloka [I] 19,2 19,9 20,2 18,4

Przeptyw w obwodzie chlodzenia 1 [I] 25,2 26,4 24,6 25,5

Przeplyw w obwodzie chlodzenia 13 [l] 17,4 18,9 16,9 17,1

Przeplyw w obwodzie chiodzenia 14 [1] 27,1 27,9 27,3 27,3

Przeplyw w obwodzie chlodzenia 15 [l] 26,4 27,0 26,9 26,4

Przeptyw w obwodzie chtodzenia 20 [1] 239 22,6 22,9 23,2

Temperatura chlodzenia Hoka [°C] 30,6 32,1 29,4 32,4

Temperatura tulei 2 [°C] 2247 221,0 215,7 2235

Temperatura w obwodzie chlodzenia 1

[°C] 31,9 33,6 34,1 34,0

Temperatura w obwodzie chlodzenia 17

[°C] 30,1 30,7 31,2 30,3

Temperatura w obwodzie chtodzenia 7

[°C] 28,8 28,5 28,3

Temperatura wody miejskiej [°C] 23,9 24,1 24,2 23,9

Wartos¢ prozni 1 [mBar] 364,1 351,3 3124 292,8

223




Tab. 5.128.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. odwroconego
K-W, dla sieci z 100% warto$ci w zbiorze uczacym, z 4 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, M IN, i MA)?,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa | metoda metoda Z”:ﬂﬁrtosc. wartosc
GRG z GRG z ewolucyjna | ewolucyjna | ennej | zmiennej
wielostartem | wielostartem niezaleznej | niezaleznej
Czas cyklu smarowania [s] 26,8 26,0 28,0 29,5
CtxDt2 124129 9981,4 8116,0 7660,1
Czas krzepniecia 12 [s] 10,4 10,4 10,6 10,4
Czas przedmuchu [s] 8,3 9,9 73 8,6
Czas smarowania [s] 74 79 6,4 7.2
Filtr prozni 1 [mBar] 1425,1 1461,9 1449,3 1416,2
Grubosé pietki uktadu wlewowego
[mm] 38,0 37,3 38,1 41,0
Cisnienie maksymalne [Bar] 3425 343,4 341,9 341,8
Predkos¢ wirysku maksymalna [m/s] 59 58 59| 58]
Opdznienie multiplikacji [ms] 174,0 173,7 1714
Stata temperatura chlodzenia plyty [°C] 29,6 30,2 29,8 30,0
V2xVp2 298984,8 331876,9 | 256446,5 | 421930,4
Przephyw chiodzenia tioka [1] 21,3 21,1 20,3 19,2
Przeplyw w obwodzie chlodzenia 1 [I] 25,4 25,6 25,7 25,1
Przeptyw w obwodzie chiodzenia 13 [1] 16,9 18,8 17,4 17,7
Przeplyw w obwodzie chlodzenia 14 [1] 27,5 27,1 27,0 27,8
Przeplyw w obwodzie chlodzenia 15 [1] 26,7 27,3 26,6 26,6
Przeplyw w obwodzie chiodzenia 20 [l] 22,4 22,7 22,2 22,5
Temperatura chlodzenia Hoka [°C] 315 29,8 30,1 30,4
Temperatura tulei 2 [°C] 220,2 213,7 2174 218,2
Temperatura w obwodzie chtodzenia 1
[°C] 33,9 34,9 33,1 33,9
Temperatura w obwodzie chtodzenia 17
[°C] 29,6 30,5 28,8 30,0
Temperatura w obwodzie chtodzenia 7
[°C] 28,3 28,7 28,2 28,6
Temperatura wody miejskiej [°C] 24,5 24,2 23,8 24,0
Wartos¢ prozni 1 [mBar] 378,2 326,4 289,6 338,9

W przypadku wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. K-W
odwréconego, Solver nie moégt znalez¢ dopuszczalnego rozwigzania:
e dlasieciz 100% wartosci w zbiorze uczacym, z 5 neuronami w warstwie ukrytej
1 funkcjg aktywacji tangensoidalng na wyjsciu,
e dlasieciz 100% wartosci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej
i funkcjg aktywacji liniowa na wyjsciu,
e dlasieciz 100% wartosci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej
1 funkcja aktywacji liniowa na wyjsciu,
o dlasieciz 100% wartosci w zbiorze uczacym, z 4 neuronami w warstwie ukrytej

1 funkcjg aktywacji liniowa na wyjsciu.
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Tab. 5.129.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla
sieci z 100% warto$ci w zbiorze uczacym, z 4 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, W’;Ar:(’:ls,é W'\:r';“ggc,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda zmiennej | zmiennej
GRG z GRG z ewolucyjna | ewolucyjna | L .
wielostartem | wielostartem niezaleznej | niezaleznej
Czas cyklu smarowania [s] 27,5 28,8 25,3 28,5
CtxDt2 9887,0 14247,5 7509,3 11446,9
Czas krzepniecia t2 [s] 10,4 10,4 10,5 10,6
Czas przedmuchu [s] 8,0 9,7 9,1 8,7
Czas smarowania [s] 7,1 6,2 57 6,3
Filtr prozni 1 [mBar] 1387,8 1422,8 1360,6 1510,2
V2xVp2 193590,0 260699,3 | 308162,4 | 437917,1
Grubosé pietki uktadu wlewowego
[mm] 39,4 37,3 40,2 35,3
Cisnienie maksymalne [Bar] 343,3 340,0 3419 341,2
Predkos¢ wirysku maksymalna [m/s] 59 5,8 59 5,9
Opdznienie multiplikacji [ms] 172,9 169,2 171,7 1738
Stata temperatura chtodzenia plyty
[°C] 29,8 29,7 29,8 28,9
Przeplyw chiodzenia toka [1] 22,8 20,0 21,1 20,4
Przeplyw w obwodzie chlodzenia 1 [I] 25,0 25,9 26,2 254
Przeplyw w obwodzie chlodzenia 13 [l] 17,2 17,9 16,3 18,0
Przeplyw w obwodzie chlodzenia 14 [1] 27,6 27,4 27,0 27,8
Przeplyw w obwodzie chlodzenia 15 [l] 26,8 26,4 26,7 26,3
Przeplyw w obwodzie chlodzenia 20 [1] 22,5 22,4 22,8 22,6
Temperatura chlodzenia tloka [°C] 30,8 32,6 31,1 29,9
Temperatura stopu [°C] 675,7 682,7 677,8 677,7
Temperatura tulei 2 /°C] 2171 2211 2224 220,2
Temperatura w obwodzie chtodzenia 1
[°C] 35,8 34,1 35,6 31,8
Temperatura w obwodzie chtodzenia
17 [°C] 29,8 31,5 29,8 29,1
Temperatura w obwodzie chlodzenia 7
[°C] 28,8 28,3 28,2 28,8
Temperatura wody miejskiej [°C] 24,1 24,1 24,1 24,2
Wartosé prozni 1 [mBar] 263,9 390,8 295,6 387,3

Tab. 5.130.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla
sieci z 100% warto$ci w zbiorze uczacym, z 5 neuronami w warstwie ukrytej i funkcja
aktywacji tangensoidalng na wyjsciu

meoda | mewca | M, | max, | MIN | MAX
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metodz'i metodg z‘:’nai:r?r?gj zméligr?rfgj
) GRGz ) GRGz ewolucyjna | ewolucyjna niezaleznej | niezalezni
wielostartem | wielostartem

Czas cyklu smarowania [s] 27,3 24,9 25,6 26,6

CtxDt2 12159,9 12118,2 9572,3 137494

Czas krzepnigcia t2 [s] 10,6 10,6 10,6 10,5

Czas przedmuchu [s] 9,8 7.2 8,7 9,5

Czas smarowania [s] 6,8 7,2 74

Filtr prozni 1 [mBar] 1463,7 1482,4 1458,7

V2xVp2 467304,2 458864,5 | 475087,8 | 500348,1

Grubos¢ pietki ukladu wlewowego [mm] 37,8 36,2 40,7 35,2

Cisnienie maksymalne [Bar] 344,0 343,9 3414 3411

Predkos¢ wtrysku maksymalna [m/s] 5, 5 59

Opdznienie multiplikacji [ms] 1719 172,0 171,1

Stata temperatura chlodzenia plyty [°C] 30,3

Przeplyw chiodzenia tloka [1] 17,6
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Przeplyw w obwodzie chiodzenia 1 [I] 25,4 24,0 25,4 25,0

Przeplyw w obwodzie chlodzenia 13 [l] 18,5 17,7 17,8 17,7
Przeplyw w obwodzie chiodzenia 14 [1] 27,2 28,2 27,6 28,1
Przeplyw w obwodzie chlodzenia 15 [l] 25,6 25,5 25,6 26,6
Przeplyw w obwodzie chiodzenia 20 [1] 23,4 23,9 23,3 23,3
Temperatura chlodzenia Hoka [°C] 31,1 29,8 30,9 30,4
Temperatura stopu [°C] 677,8 674,0 680,6 682,8
Temperatura tulei 2 [°C] 215,4 2147 2241 220,3
Temperatura w obwodzie chlodzenia 1

[°C] 34,0 34,5 33,1 33,6
Temperatura w obwodzie chlodzenia 17

[°C] 29,7 27,9 30,7 30,0
Temperatura w obwodzie chlodzenia 7

[°C] 28,7 28,6 28,3
Temperatura wody miejskiej [°C] 24,3 24,2 24,1 24,1
Wartos¢ prozni 1 [mBar] 404,7 344,3 403,8 330,7

Tab. 5.131.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla
sieci z 90% wartosci w zbiorze uczacym i 10% w testujacym, z 4 neuronami w warstwie ukrytej
i funkcja aktywacji tangensoidalng na wyjsciu

metoda metota MIN, MAX, MIN | MAX
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda z‘;'vnalgr(l)r?g] Zvr:'lalgr?s:j
GRGz GRGz ewolucyjna | ewolucyjna | N L
wielostartem | wielostartem niezaleznej | niezaleznej
Czas cyklu smarowania [s] 27,2 28,2 26,3 25,9
CtxDt2 7372,4 10869,3 7540,2 11101,2
Czas krzepniecia 12 [s] 10,3 10,5 10,6 10,6
Czas przedmuchu [s] 9,2 8,7 8,1 9,8
Czas smarowania [s] 73 8,2 6,5 6,8
Filtr prozni 1 [mBar] 1464,6 13351 1483,9 1464,0
V2xVp2 245988,3 254517,0 | 4049113 | 4169972
Grubosé pietki uktadu wlewowego [mm] 41,6 36,0 40,5 39,6
Cisnienie maksymalne [Bar] 342,1 341,6 3424 340,9
Predkos¢ wtrysku maksymalna [m/s] 59 59 59 59
Opoznienie multiplikacji [ms] 174,0 172,2 173,2 173,2
Stata temperatura chlodzenia plyty [°C] 29,4 30,5 29,7 29,2
Przeplyw chlodzenia tloka [1] 22,7 19,0 19,9 20,5
Przeplyw w obwodzie chlodzenia 1 [I] 25,6 25,2 25,1 26,0
Przeplyw w obwodzie chiodzenia 13 [1] 17,4 17,6 16,9 18,1
Przeplyw w obwodzie chiodzenia 14 [1] 21,7 21,7 26,9 27,3
Przeplyw w obwodzie chiodzenia 15 [1] 26,5 26,3 26,7 26,4
Przeplyw w obwodzie chlodzenia 20 [l] 23,6 23,2 23,2 23,1
Temperatura chlodzenia Hoka [°C] 31,4 30,4 33,1
Temperatura stopu [°C] 678,2 684,7 678,1 676,7
Temperatura tulei 2 [°C] 224,8 218,1 218,9 2142
Temperatura w obwodzie chlodzenia 1
[°C] 32,5 32,8 33,9 34,0
Temperatura w obwodzie chlodzenia 17
[°C] 30,6 29,4 30,5 30,5
Temperatura w obwodzie chtodzenia 7
[°C] 28,7 28,5 28,1 28,2
Temperatura wody miejskiej [°C] 24,1 24,0 244 23,7
Wartos¢ prozni 1 [mBar] 289,6 416,7 355,1 344,2
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Tab. 5.132.: Wyniki wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, dla
sieci z 100% warto$ci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej i funkcja
aktywacji liniowa na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, W’;Ar:(’:ls,é W'\grﬁ));c,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metodg metodg zmiennej | zmiennej
GRG z GRG z ewolucyjna | ewolucyjna | . N R
wielostartem | wielostartem niezaleznej | niezaleznej
Czas cyklu smarowania [s] 27,1 26,4 28,4 27,1
CtxDt2 12001,0 13143,7 13109,1 12052,8
Czas krzepnigcia t2 [s] 10,5 10,6 10,5 10,5
Czas przedmuchu [s] 78 8,7 8,1 8,1
Czas smarowania [s] 7,5 6,7 7,1 6,9
Filtr prézni 1 [mBar] 1438,3 1396,2 14575 14235
V2xVp2 342087,3 366957,0 | 371670,9 | 3777412
Grubos¢ pigtki uktadu wlewowego
[mm] 37,9 41,7 36,4 39,0
Cisnienie maksymalne [Bar] 340,3 343,6 342,1 342,1
Predkos¢ wtrysku maksymalna [m/s] 59 59 58
Opdznienie multiplikacji [ms] 170,6 1742 1725 1715
Stata temperatura chtodzenia plyty
[°C] 30,7 29,0 28,8 29,7
Przeplyw chlodzenia tioka [1] 20,7 19,9 21,6 20,2
Przeplyw w obwodzie chtodzenia 1
[ 24,2 25,7 26,0 24,6
Przeplyw w obwodzie chiodzenia 13
[1 17,3 17,6 17,7 17,3
Przeptyw w obwodzie chlodzenia 14
[1 275 27,6 27,8 27,7
Przeptyw w obwodzie chlodzenia 15
[ 26,7 26,0 26,2 26,7
Przeplyw w obwodzie chiodzenia 20
[ 24,1 23,1 231 23,3
Temperatura chlodzenia tloka [°C] 29,8 30,4 31,1 31,2
Temperatura stopu [°C] 683,4 675,5 679,8 678,8
Temperatura tulei 2 [°C] 2218 222,1 2254 219,6
Temperatura w obwodzie chtodzenia
1/°C] 33,3 34,5 36,3 33,6
Temperatura w obwodzie chtodzenia
17 [°C] 28,6 32,2 313 32,2
Temperatura w obwodzie chtodzenia
7[°C] 28,2 28,4 28,7 28,3
Temperatura wody miejskiej [°C] 234 23,9 23,7 23,8
Wartosé prozni 1 [mBar] 410,9 324,0 338,5 2945

W przypadku wielowymiarowej optymalizacji zbioru 4, ustalonego wg. kr. ANOVA, Solver
nie mogt znalez¢ dopuszczalnego rozwigzania:

e dlasieciz 100% wartosci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej
1 funkcja aktywacji tangensoidalng na wyjsciu,

e dlasieci z 90% wartosci w zbiorze uczacym, 10% w testujagcym z 3 neuronami
w warstwie ukrytej 1 funkcjg aktywacji tangensoidalng na wyjsciu,

e dlasieciz 100% wartosci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej
1 funkcja aktywacji liniowa na wyjsciu,

e dlasieciz 100% wartos$ci w zbiorze uczacym, z 4 neuronami w warstwie ukrytej

i funkcjg aktywacji liniowa na wyjsciu.
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Tab. 5.132.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. K-W, dla
sieci 2 90% wartosci w zbiorze uczacym, 10 % w testujacym, z 3 neuronami w warstwie ukrytej
i funkcja aktywacji tangensoidalng na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, W’;/Ir:(’:léé W'\:Iféc,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda . . . .
GRGz GRGz ewolucyjna | ewolucyjna Zmiennej | zmiennejy
wielostartem | wielostartem niezaleznej | niezaleznej
Czas krzepniecia t2 [s] 10,2 10,4
Cisnienie maksymalne [Bar] 3424 3414 342,0 342,2
Profil prézni 1 [mBar] 1135,1 11751 1214,3 1145,5
V2xVp2 242309,4 388547,7 | 401939,1 | 252461,4
Przeplyw chiodzenia tioka [1] 19,9 16,8 20,8 15,8
Przeplyw w obwodzie chlodzenia 1 [I] 24,3 26,8 25,9
Przeplyw w obwodzie chiodzenia 13
[1 16,6 17,7 18,5
Przeplyw w obwodzie chiodzenia 15
[1] 26,7 26,8 26,6
Temperatura tulei 2 [°C] 225,3 ; 218,9
Temperatura w obwodzie chlodzenia
14 /°C] 32,2 33,1 32,1
Zuzycie smaru [l] 0,6 0,6 0,3

W przypadku wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. K-W, Solver nie
mogl znalez¢ dopuszczalnego rozwigzania:

e dlasieciz 100% wartosci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej
1 funkcjg aktywacji tangensoidalng na wyjsciu,

e dlasieciz 100% warto$ci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej
1 funkcjg aktywacji tangensoidalng na wyjsciu,

e dlasieciz 100% warto$ci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej
i funkcjg aktywacji liniowa na wyjsciu,

e dlasieci z 90% wartosci w zbiorze uczacym, 10% w testujagcym z 2 neuronami
w warstwie ukrytej i funkcja aktywacji liniowa na wyjsciu,

e dlasieci z 90% wartosci w zbiorze uczacym, 10% w testujacym z 5 neuronami

w warstwie ukrytej i funkcja aktywacji liniowa na wyjsciu.

Tab. 5.133.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. odwroconego
K-W, dla sieci z 90% wartosci w zbiorze uczacym, 10 % w testujagcym, z 2 neuronami w
warstwie ukrytej 1 funkcja aktywacji liniowa na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX, ';AriN, . '\:rf‘x
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda zmier?sg' z‘;vnier?rig'
GRGz GRGz ewolucyjna | ewolucyjna niezaleznfa . niezaleinje .
wielostartem | wielostartem . J
Czas cyklu [s] 123,33 136,2 149,5 116,8
Czas dozowania stopu 2 [s] 75,5 83,3 77,9 77,4
Czas krzepniecia 12 [s] 10,8 10,3 10,6
Czas smarowania [s] 7,7 6,1 7,9
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Grubosé pigtki uktadu wlewowego [mm] 40,8 38,8 38,9 37,2
Cisnienie maksymalne [Bar] 3419 340,7 3422 341,0
Opdznienie multiplikacji [ms] 170,8 170,0 1725 1715
Stata temperatura chlodzenia plyty [°C] 28,7 29,7 29,5 29,2
Poziom wody w strumieniu chtodzgcym

[mm] 2477 238,2 238,4 2495
Profil prézni 1 [mBar] 1202,7 1203,9 1139,2 1175,1
V2xVp2 271565,1 385240,6 | 324558,9 | 454804,9
Przeplyw chlodzenia tloka [1] 18,5 19,1 17,3 21,5
Przeplyw w obwodzie chlodzenia 1 [I] 25,9 25,7 26,1 24,5
Przeplyw w obwodzie chiodzenia 13 [l] 17,7 18,4 17,7 17,4
Przeplyw w obwodzie chiodzenia 14 [1] 26,8 28,1 27,5 27,6
Przeplyw w obwodzie chlodzenia 15 [l] 26,6 26,1 26,6 26,3
Przeplyw w obwodzie chiodzenia 20 [1] 22,8 23,1 23,0 22,7
Predkos¢ we wlewach doprowadzajgcych

[m/s] 38,4 38,2 38,6 38,7
Temperatura chlodzenia Hoka [°C] 32,6 32,4 30,9 30,8
Temperatura tulei 2 [°C] 2211 216,2 2223 2198
Temperatura w obwodzie chlodzenia 1 [°C] 33,3 34,6 34,3 35,2
Temperatura w obwodzie chtodzenia 14

[°C] 324 33,0 32,7 32,8
Temperatura w obwodzie chlodzenia 7 [°C] 28,1 27,4 28,2 28,2
Temperatura wody miejskiej [°C] 24,1 24,0 24,0 23,8
Wartos¢ prozni 1 [mBar] 274,1 368,7 351,8 373,8
Zuzycie smaru [l] 0,4 0,9 0,9 0,4

Tab. 5.134.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. odwréconego
K-W, dla sieci z 100% wartosci w zbiorze uczacym z 2 neuronami w warstwie ukrytej i funkcja
aktywacji liniowa na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda
GRGz GRGz ewolucyjna | ewolucyjna
wielostartem | wielostartem

Czas cyklu [s] 125,1 132,2 141,7 127,5
Czas dozowania stopu 2 [s] 76,6 78,6 70,8 72,9
Czas krzepniecia 12 [s] 10,5 10,6 10,7 10,7
Czas smarowania [s] 6,8 59 6,9 7.8
Grubos¢ pigtki uktadu wlewowego
[mm] 40,2 36,5 38,4 38,9
Cisnienie maksymalne [Bar] 342,2 3422 342,0 341,9
Opoznienie multiplikacji [ms] 172,6 172,0 1729 172,6
Stata temperatura chlodzenia plyty
/°Cj 28,7 29,0 29,7 30,6
Poziom wody w strumieniu chlodzgcym
[mm] 257,5 2421 246,5 235,2
Profil prézni 1 [mBar] 1208,4 1175,4 1173,0 1200,5
V2xVp2 483258,2 296550,1 | 419242,1 | 326483,6
Przeplyw chlodzenia tioka [1] 18,7 21,3 17,9 20,4
Przeplyw w obwodzie chlodzenia 1 [l] 25,1 25,1 25,3 25,9
Przeplyw w obwodzie chlodzenia 13 [1] 17,0 174 17,1 16,5
Przeplyw w obwodzie chlodzenia 14 [1] 27,4 27,5 27,4 27,5
Przeplyw w obwodzie chlodzenia 15 [I] 27,2 26,0 26,5 26,5
Przeplyw w obwodzie chlodzenia 20 [1] 23,3 24,1 23,2 23,0
Predkosé we wlewach
doprowadzajgcych [m/s] 38,3 38,2 38,3 38,4
Temperatura chlodzenia tloka [°C] 31,1 29,4 31,1 30,6
Temperatura tulei 2 [°C] 2175 222,0 220,6 220,0
Temperatura w obwodzie chtodzenia 1
[°C] 32,3 34,3 35,3 34,0
Temperatura w obwodzie chtodzenia 14
[°C] 325 33,4 32,5 32,8
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Temperatura w obwodzie chtodzenia 7

[°C] 28,8 29,0 28,5 27,8
Temperatura wody miejskiej [°C] 23,7 23,8 24,1 239
Wartosé prozni 1 [mBar] 292,8 413,7 2919 352,8
Zuzycie smaru [l] 0,8 0,4 0,9 1,0

W przypadku wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. odwréconego K-
W, Solver nie mogt znalez¢ dopuszczalnego rozwigzania:
e dlasieciz 100% warto$ci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej
1 funkcjg aktywacji tangensoidalng na wyjsciu,
e dlasieciz 100% warto$ci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej

1 funkcjg aktywacji tangensoidalng na wyjsciu.

Tab. 5.135.: Wyniki wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. ANOVA, dla
sieci z 100% wartos$ci w zbiorze uczacym z 2 neuronami w warstwie ukrytej i funkcja aktywacji
liniowa na wyjsciu

MIN, MAX,
metoda metoda MIN, MAX,
Nazwa zmiennej niezaleznej nieliniowa | nieliniowa metoda metoda
GRGz GRGz ewolucyjna | ewolucyjna
wielostartem | wielostartem

Czas cyklu smarowania [s] 129,2 127,1 1211 118,2
Czas dozowania stopu 2 [s] 73,9 90,6 78,6 78,2
Czas krzepniecia t2 [s] 10,5 10,6 10,4 10,5
Czas smarowania [s] 6,9 73 6,8 7,0
Grubosé pietki uktadu wlewowego [mm] 38,0 36,6 38,5 37,6
Cisnienie maksymalne [Bar] 342,6 343,5 343,0 342,6
Opoznienie multiplikacji [ms] 171,9 1714 171,3 170,6
Stata temperatura chlodzenia plyty [°C] 29,8 30,0 29,5 29,6
Poziom wody w strumieniu chiodzqcym
[mm] 2448 232,1 248,9 250,3
Profil prézni 1 [mBar] 1172,7 1233,0 1146,7 1163,8
V2xVp2 429876,6 414196,7 | 359649,2 | 3391425
Przeplyw chlodzenia tioka [1] 21,7 19,5 21,7 20,7
Przeplyw w obwodzie chlodzenia 13 [1] 18,4 16,8 17,3 17,9
C1FxC14F 684,5 660,3 689,2 674,0
Przeplyw w obwodzie chlodzenia 15 [1] 26,4 26,3 26,5 26,5
Przeplyw w obwodzie chlodzenia 20 [I] 23,0 23,2 22,9 22,4
Przeplyw w obwodzie chlodzenia 6 [I] 29,5 30,9 29,5 29,4
Predkosé we wlewach doprowadzajgcych
[m/s] 38,3 38,1 38,7 38,2
Temperatura chlodzenia tloka [°C] 31,4 30,3 31,3 31,6
Temperatura stopu [°C] 681,8 679,6 676,9 679,8
Temperatura tulei 2 [°C] 221,2 220,6 2241 2224
Temperatura w obwodzie chlodzenia 1
/°C] 35,2 35,8 34,0 35,0
Temperatura w obwodzie chlodzenia 14
/°C] 31,8 32,1 32,6 32,9
Temperatura w obwodzie chtodzenia 7
[°C] 27,9 28,8 29,0 28,6
Temperatura wody miejskiej [°C] 23,9 24,3 24,2 24,1
Wartosé prézni 1 [mBar] 4239 453,7 334,1 363,2
Zuzycie smaru [1] 1,1 0,9 1,1 0,9

MIN MAX
warto$¢ warto$¢
zmiennej | zmiennej

niezaleznej | niezaleznej

W przypadku wielowymiarowej optymalizacji zbioru 5, ustalonego wg. kr. ANOVA, Solver

nie mogl znalez¢ dopuszczalnego rozwigzania:
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e dlasieciz 100% wartosci w zbiorze uczacym, z 2 neuronami w warstwie ukrytej

1 funkcjg aktywacji tangensoidalng na wyjsciu,
e dlasieciz 100% wartosci w zbiorze uczacym, z 3 neuronami w warstwie ukrytej

1 funkcjg aktywacji tangensoidalng na wyjsciu,
o dlasieci z 90% warto$ci w zbiorze uczacym, z 5 neuronami w warstwie ukrytej

1 funkcja aktywacji liniowa na wyjsciu.

W niektorych przypadkach Solver nie znalazt wykonalnego rozwiazania. Oznacza to, ze nie
istnieje zaden zestaw wartosci spelniajacy wszystkie ograniczenia a zadany problem jest
niewykonalny. Czyli nie ma limitu warto$ci funkcji celu, poniewaz warto$ci komorki celu nie

sg zbiezne.
5.2.7.2. Omowienie wynikéw i wnioski

Wyniki analizy przeprowadzonej dla pigciu zbiorow danych wedlug trzech kryteriow
wskazuja, ze w wigkszosci przypadkéw wielowymiarowa optymalizacja parametrow procesu
nie ma mozliwos$ci zobrazowania co doktadnie wplywa na formowanie si¢ wady w produkcie,
w tym przypadku w odlewie. Doktadniej nie jest w stanie okresli¢ jakie wartos$ci parametrow
procesu wptywaja na wytwarzanie wadliwych odlewow.

Mimo to udato si¢ uzyska¢ w paru przypadkach taka odpowiedz. (rys. od 5.7.7.4 do 5.7.7.8).
Na wykresie (rys.5.7.7.4.) nalezy zwrdci¢ uwage, ze wyzsze wartosci zmiennej niezaleznej -
opoznienie multiplikacji [ms] sprzyjaja powstawaniu wyzszych warto$ci przecieku. Parametr
ten jest kluczowym etapem w procesie, ktorego celem jest zmniejszenie porowatoSci
skurczowe] produkowanych odlewow, poprzez wymuszone podawanie cieklego stopu do
krzepnacego odlewu. Parametr ten definiuje moment rozpoczgcia tej fazy procesu i jego
znaczenie uzyskane w wyniku modelowania nie jest zaskakujace. Mozliwe, ze w przypadku
wymuszenia podawania metalu, ktore rozpocznie si¢ za pdzno moze okazaé sie¢, ze bedzie ono
nieefektywne z powodu duzej frakcji zakrzepnigtego metalu w odlewie. W publikacji [149] ten
sam parametr zostat zidentyfikowany jako statystycznie istotny i wplywajacy na wlasciwosci
materialowe. Wynik ten sugeruje Ze parametr ten ma z pewnoscig duzy wplyw na
wystepowanie nieszczelnosci w odlewach 1 powinien by¢ bardzo powaznie traktowany przez
pracownikow odlewni, uznany wrecz za krytyczny z punktu widzenia zarzadzania i kontroli

jakosci.
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Rys.5.2.7.4. Wyniki optymalizacji sktonnosci do powstania wady na podstawie modelu
neuronowego dla parametru opdznienie multiplikacji (szczegoty w Tablicy 5.105)

Drugim wykrytym parametrem byta widoczna na wykresie (rys.5.7.7.5.) temperatura wody
miejskiej. Wyzsze warto$ci zmiennej niezaleznej rowniez sprzyjaja powstawaniu wyzszych
warto$ci przecieku, co moze mie¢ zwigzek z niedoskonatos$cig systemu stabilizacji temperatury

formy, ktorej rola w powstawaniu porowatosci jest dos¢ oczywista.
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Rys.5.2.7.5. Wyniki sktonno$ci do powstania wady na podstawie modelu neuronowego
dla parametru temperatura wody miejskiej (szczegoty w Tablicy 5.106)

Trzecim wykrytym parametrem byt widoczny na wykresie (rys.5.7.7.6.) czas dozowania
stopu 2. Wyzsze warto$ci zmiennej niezaleznej rowniez sprzyjaja powstawaniu wyzszych
wartosci przecieku, jednak mechanizm tego oddziatywania nie jest jasny. By¢ moze, znaczaca

role odgrywaja tu korelacje z innymi parametrami procesu, co oméwiono w p. 5.2.2.1.
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Rys.5.2.7.6. Wyniki sktonnosci do powstania wady na podstawie modelu neuronowego
dla parametru czas dozowania stopu 2 (szczegdty w Tablicy 5.108)
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Czwartym wykrytym parametrem bylo widoczne na wykresie (rys.5.7.7.7.) czas
przedmuchu. W tym przypadku nizsze warto$ci zmiennej niezaleznej sprzyjaja powstawaniu
wyzszych warto$ci przecieku. Wykazana zalezno$¢ pochodzi z optymalizacji modelu zbioru 3,
w ktorym wystepowala znaczgca zmienno$¢ wartosci przecieku, a rozktad zmiennej zaleznej
byl zblizony do rozkladu normalnego, z zwigkszonym wystgpowaniem warto$ci
podwyzszonych. Interpretacja wptywu tego parametru nie jest prosta, réwniez dla personelu

technicznego odlewni 1 wymagataby glebszych analiz i dodatkowych prob.
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Rys.5.2.7.7. Wyniki sktonno$ci do powstania wady na podstawie modelu neuronowego
dla parametru czas przedmuchu (szczegoty w Tablicy 5.118)

Pigtym wykrytym parametrem byt widoczny na wykresie (rys.5.7.7.8.) przeplyw w obwodzie
chiodzenia 14. W tym przypadku rowniez nizsze wartosci zmiennej niezaleznej sprzyjaja
powstawaniu wyzszych wartosci przecieku. Wykazana zalezno$¢ pochodzi z optymalizacji
modelu zbioru 4, ktory utworzony zostat celem wykrycia parametrow wptywajacych na
zwigkszenie warto$ci przecieku w niepozadanym stopniu. Wydaje si¢ dos¢ oczywiste, ze
obnizenie intensywnosci przeplywu wody w okreslonych kanatach, skutkujagce zmniejszeniem
lokalnej intensywnosci studzenia odlewu moze mie¢ wplyw na zwigkszenie czasu krzepnigcia

1 koncentracje porowatosci odlewu w tym miejscu prowadzacej do nieszczelnosci.

234



—o0 - - MIN, Nieliniowa GRG z multistartem
----@« MAX, Nieliniowa GRG z multistartem
—B— MIN, Ewolucyjna

= ---e--- MAX, Ewolucyjna
3 —— MIN wartos¢ parametru z danych rzeczywistych
©
c MAX warto$¢ parametru z danych rzeczywistych
g 30
o
S 29 —

O~ — . —) [5]
3 T T Tl

. ~_~pg—- - — —_ 0. L~ o

$ 28 L &= - -
8 o~ =R
2 O e TS
2 27 e O e S " )
= T L 4 R
Qe S
[ U UUTUTURROPPPPITLL @ cererinniiniiiiaenaa... @ e “~
N @aeeeeeeeee eI B P .
& 26 -

1 2 3 4 5

Numer przeprowadzonej optymalizacji

Rys.5.2.7.8. Wyniki sktonnosci do powstania wady na podstawie modelu neuronowego
dla przeptyw w obwodzie chtodzenia 14 (szczegoty w Tablicy 5.120)

Na rys. 5.2.7.9 pokazano przyktad wynikéw optymalizacji, ktéore nie wskazaly
jednoznacznego wptywu danej zmiennej procesu na wystgpowanie wady - przecieku.
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Rys.5.2.7.9. Wyniki optymalizacji sktonnosci do powstania wady na podstawie modelu
neuronowego dla parametru czas cyklu (szczegoty w Tablicy 5.134.)

Przyczyny dla ktorych procedury optymalizacyjne nie wskazaty jednoznacznie na kierunek
wplywu wigkszosci zmiennych wejsciowych moga by¢ rdzne. Pierwsza zwigzana jest z

losowym charakterem dziatania procedur optymalizacyjnych, co prowadzi do znajdowania
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ekstremoéw lokalnych. Ma to szczegdlne znaczenie przy optymalizacji wielowymiarowej, jak
w niniejszej pracy. Druga przyczyng moze by¢ fakt stabych zalezno$ci migdzy niektorymi
zmiennymi wej$ciowymi a zmienng wyj$ciowg odzwierciedlanych przez modele neuronowe
pomimo, ze analizy istotno$ci oparte na metodach statystycznych (p. 5.2.3) wskazywaly na
znaczace role tych zmiennych. To z kolei moglo by¢ wynikiem ztozonosci tych
wielowymiarowych zalezno$ci i naturalnego zaszumienia danych przemystowych.

Niemniej, w przypadku kilku zmiennych wskazania uzyskane z optymalizacji sg do$¢
wyrazne, cho¢ nie zawsze mozliwe do zinterpretowania bez dodatkowych pomiaréw i préb
warsztatowych, ewentualnie komputerowych symulacji proceséw krzepnigcia odlewu. Warto
zauwazy¢, ze nawet bez takich pogtebionych analiz moga one postuzy¢ personelowi odlewni

do wprowadzenia bardziej rygorystycznych procedur kontrolnych tych wlasnie parametrow.
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6. Podsumowanie i wnioski ogélne

Problematyka ogdlna doktoratu zawierajaca si¢ w pytaniu ,,w jaki sposob przy uzyciu
zaawansowanego modelowania opartego na duzych zbiorach danych mozna diagnozowaé
przyczyny powstawania wad wyrobow?”, stanowi swego rodzaju przyczyn¢ podjetych i
realizowanych w niniejszej rozprawie doktorskiej badan. Niniejsza praca zamierzata
udowodni¢ ogolng hipoteze badawczg, ktora zakladala, iz diagnozowanie przyczyn
powstawania wad wyrobow wymaga zastosowania zbioru metod zaawansowanego
modelowania opartego na duzych zbiorach danych.

W rozdziatach 2, 3 1 4 poswieconych studium literaturowemu, zwrocono szczegdlng uwage,
na fakt, iz dotychczas uzywane metody zaawansowanej analizy danych oraz ekstrakcji wiedzy
byly niewystarczajace, aby stworzy¢ uniwersalng metodologi¢ przewidywania wartos$ci
badanej zmiennej zaleznej oraz dzigki temu skutecznego diagnozowania przyczyn powstawania
wad wyrobow. Dotychczas badane metody nie byly w stanie automatycznie wykrywac
zaleznosci wystepujacych w danych, opisujacych okreslone procesy czy zjawiska. Zgodnie z
opinig wielu badaczy kolejnym przetomowym krokiem w zakresie dziedziny byto opracowanie
dedykowanych badan w oparciu o specjalnic wybrane narzgdzia, celem optymalizacji
uzyskanych wczeséniej modeli, a wigc rozszerzenie interpretacji ich wynikow poza podstawowa
interpretacje skutecznosci przewidywania warto$ci zadanej zmiennej wyjsciowej. Przekonanie
stanowito swego rodzaju podstawe do opracowania etapow 1 metod badan zmierzajacych do
wydobywania wiedzy z badanych zbiorow danych, w oparciu 0 metody sztucznych sieci
neuronowych, ktorych wynikiem byla wielowymiarowa optymalizacja parametrow procesu.

W niniejszej rozprawie doktorskiej opisano doktadnie 6 etapéw badan wtasnych, majacych
na celu doprowadzi¢ do odkrycia przyczyn powstawania wad w produktach:

e wstepne przetwarzanie danych,

e analizg¢ istotnosci zmiennych,

e zaawansowane modelowanie oparte na danych metoda sztucznych sieci
neuronowych,

e zaawansowane modelowanie danych metoda drzew regresyjnych,

e zaawansowane modelowanie oparte na danych metoda maszyn
wektorow wspierajacych,

e Dbadanie modelu w celu wielowymiarowej optymalizacji parametrow

procesu.
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Podczas badan zrealizowano koncepcje rozwigzania problemu badawczego, poprzez
postgpowanie uwzgledniajace nastepujace dziatania: okreslenie obszaru badawczego,
sformulowanie pytan badawczych, ocen¢ wartosci naukowej pytania na podstawie studiow
literaturowych, wykonanie studium przypadku, sformutowanie problemu badawczego i
hipotezy badawczej, zweryfikowanie hipotezy badawczej przez wlasne badania zasadnicze.
Postawione w rozdziale pigtym niniejszej rozprawy pytania badawcze znalazty odpowiedz w
przeprowadzonych badaniach wiasnych oraz ich wynikach. Pierwsze pytanie rozwazato, czy
zaawansowane metody analizy danych bgda w stanie skutecznie przewidzie¢ pojawienie si¢
wady w wyrobie? Kazda z uzytych metod pozwolita na do$¢ skuteczne przewidzenie warto$ci
zmiennej wyj$ciowej, jednak metoda sztucznych sieci neuronowych uzyskala najlepsze wyniki,
a wiec najlepsze dopasowanie i najmniejsze wartosci bledu przewidywania (RMSE, tab. 6.1.)
sposrod duzych 1 matych zbioréw danych. Dane do tab. 6.1. zostaty wybrane sposrod wynikow
zaprezentowanych w rozdziale 5 w tab. 5.91. i 5.92. (dla badan przeprowadzonych metoda
sztucznych sieci neuronowych), tab. 5.94., tab. 5.95. i 5.96. (dla badan przeprowadzonych
metodg drzew regresyjnych) i w tab. 5.98. i 5.99. (dla badan przeprowadzonych metoda
wektorow wspierajacych). W tabeli 6.1. przywotano rowniez parametry modeli, w ktérych
uzyskano najnizsze wartoS§ci RMSE. Uzasadnienie wyboru wskazanych parametréw modeli

zawarto w rozdzialach 5.2.4.1.,5.2.5.1.,5.2.6.1..

Tab. 6.1.: Poréwnanie najlepszych wynikéw zaawansowanego modelowania

Metoda
zaawansowanego Rozmiar Wynik
) ] Parametry modelu
modelowania zbioru danych | RMSE

opartego na danych

Zbior 4 (ustalony wedtug
kryterium odwroconego K-W i

Sztuczne sieci Maty 0.90 | ANOVA), bez zbioru testujacego, 5
neuronowe (SSN) ’ neuronow w warstwie ukrytej,
tangensoidalna funkcja aktywacji na
wyjsciu
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Zbior 3 (ustalony wedtug
' kryterium odwroconego K-W i
Duzy 0,86 ANOVA), bez zbioru testujacego,
23 neurony w warstwie ukrytej,
liniowa funkcja aktywacji na
wyjsciu

Zbior 2 (ustalony wedtug
710 kryterium K-W), bez walidacji

krzyzowej, minimalna liczno$¢
Drzewa regresyjne wezta rowna 5

Maty

(RT) Zbior 3 (ustalony wedtug
Duzy 0.93 kryterium odwroconego K-W i

’ ANOVA), bez walidacji krzyzowe;j,
minimalna liczno$¢ wezta rowna 50

Zbiér 2 (ustalony wedtug
29 20 kryterium odwroconego K-W i

’ ANOVA), SVM typu 2, z funkcja
Maszyny wektorow jadrowa RBF

Maty

wspierajacych (SVM) _ Zbior 3 (ustalony wedtug

Duzy 1.10 kryterium odwroconego K-W i

ANOVA), SVM typu 1,  funkcja
jadrowa wielomian

Najlepsze wyniki kazdorazowo otrzymywano dla duzych zbioréw danych zawierajacych
wigcej obserwacji opisujacych proces, jednoczes$nie bardziej zréznicowanych. W matych
zbiorach danych, ktére zawieraly mniej obserwacji, posrod ktorych byto mniej danych
zaszumionych 1 niezrownowazonych najlepsze wyniki z najmniejszymi wartosciami btedow
przewidywania uzyskano rowniez metodg sztucznych sieci neuronowych. Metoda drzew
decyzyjnych okazata si¢ by¢ mniej precyzyjna, szczegdlnie dla matych zbioréw danych.
Wyniki modelowania uzyskane za pomoca maszyn wektorow wspierajacych zasadniczo
odzwierciedlaja oczekiwane tendencje, jednak warto$ci wynikowe sg mniej doktadne niz te
uzyskane metoda sztucznych sieci neuronowych i drzew decyzyjnych.

Koncowa cze$¢ planu badan dotyczyta zaawansowanej analizy wynikow i badania modelu
w celu wielowymiarowej optymalizacji parametrow procesu przeprowadzonej, aby okresli¢
jakie warto$ci parametrow danej zmiennej wptywaja na formowanie si¢ wady w wyrobie.
Whyniki tej analizy pozwalaja uzyska¢ odpowiedZ na drugie zadane pytanie badawcze, czy
wielowymiarowa optymalizacja parametrow procesu bedzie w stanie wskaza¢ warto$ci

parametrow okreslonych zmiennych, wptywajace na powstanie wady w produkcie? Wyniki
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analizy pokazaly, ze konkretne warto$ci parametrow sprzyjaja powstawaniu wyzszych warto$ci
przecieku a wigc formowania si¢ wady w produkcie, w odlewie. Wskazano, ze podwyzszone
warto$ci parametrow: opoznienie multiplikacji, temperatura wody miejskiej 1 czas dozowania
stopu 2 oraz obnizone wartoSci paramentéw: czas przedmuchu i przepfyw w obwodzie
chlodzenia 14, wplywaja na osigganie wyzszych wartosci przecieku w obwodzie wysokiego
cisnienia a tym samym na powstawanie wady w odlewie. Mimo, ze udato si¢ w niektorych
przypadkach uzyskac obiecujace wyniki, dzieki ktorym istnieje mozliwo§¢ wyboru istotnych
zmiennych i ich okre$lonych wartosci jako istotnych dla badanego procesu, wskazujgc na
koniecznos¢ traktowania ich jako krytycznych przez pracownikow odlewni, to nie w kazdym
przypadku uzyskanie takiej informacji z utworzonych modeli bylo mozliwe.

Niniejsza praca dowiodla, iz tworzenie si¢ wad w odlewach mimo, ze czgsto wydaje Si¢
przypadkowe, bez mozliwosci identyfikacji jego przyczyn, tak naprawde jest spowodowane
okreslonymi przedzialami warto$ci parametréw opisujacych dany proces. Narzedzia
zastosowane do badan dobrane zostaly w oparciu o ich mozliwosci pracy z danymi o
niedoskonatej jakos$ci i wysokim skomplikowaniu, a wigc zawierajacymi roznego typu rozktady
zmiennych, z réznego typu korelacjami pomiedzy parametrami procesu i, CO najtrudniejsze,
zawierajacymi bardzo malg reprezentacje podwyzszonych wartosci przecieku w obwodzie
wysokiego cisnienia, opisujacych produkty z wadg. Podczas badan zidentyfikowano ogolne
trudnos$ci zwigzane z zaawansowanym modelowaniem opartym na duzych zbiorach danych, a
wigc w modelach sztucznych sieci neuronowych ich nieodtaczng losowos$¢ (ro6zne wartos$ci wag
w sieciach o identycznej strukturze, ograniczong wydajno$¢ modeli drzew regresyjnych oraz
trudnos$¢ zastosowania modeli maszyn wektoréw wspierajacych.

Mimo, zidentyfikowanych probleméw, uzyskane wyniki modelowania i wielowymiarowej
optymalizacji wydaja si¢ by¢ obiecujace 1 mogg stanowi¢ motywacj¢ do dalszych badan.
Wyniki potwierdzaja, ze przewidywanie poziomu wady w odlewie moze by¢ dokonywane z
zadowalajaca jakoscig 1 doktadnoscia, dlatego moze stanowi¢ bardzo wazny punkt dla dalszego
rozwoju odlewni. Nadal jednak widoczna jest potrzeba pracy nad nowymi metodami wstepnego
przygotowania danych, aby zapewni¢ eliminacj¢ btedow i wlasciwg reprezentacje wartosci
parametrow jakosci W zbiorach danych. Duza szansa moze by¢ opracowanie modeli mogacych
przewidzie¢ jakos¢ produktow z okreslonym wyprzedzeniem czasowym, co moze pozwoli¢ na
lepsze poznanie procesu produkcyjnego i ewentualng zmiang procedur kontroli jako$ci w

przedsigbiorstwie.
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